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From the Editor’s Desk 
Lorelei Boschman 

I was thinking this week about the vastness of mathematics. Not only do we need to be fluent in the basics 
of mathematics, but we also need to recognize and use much more complicated mathematical ideas. I think of 
it as a spectrum—from the basics of operations to complex investigations into how mathematics works for us 
and applies to us and, furthermore, how we actually use mathematics and its related skills.

On the cover of this issue of delta-K, you will see one end of the spectrum, or perhaps the beginning, of 
mathematics. Throughout the issue, you will see more applications of mathematics, delving deeper into how 
much mathematics is woven into ideas around us, as well as some interesting and perplexing deeper mathemat-
ics and life situations that can be related to mathematics. We need to question, investigate and apply in our 
mathematical world today. There are so many truly interesting mathematical applications that we are only now 
starting to investigate. This field is growing at a very fast rate. We are seeing more connections and mathemati-
cal threads every day—if we look.

We know that there are big ideas in terms of mathematical concepts and content in mathematics. We also 
know that there are big process ideas that are part of the crucial goals in mathematics. When we think about 
the underlying procedural or process goals in mathematics that we want our students to reach, we see goals 
such as the following:

•	 Self-directed problem solving using a variety of strategies
•	 Effective mathematical communication
•	 Reasoning and generalization of connections and conclusions
•	 Fluency in situations that require the use of numbers

These goals take the so-called basics of mathematics and expand the scope of how we use them, throughout 
all content areas of mathematics.

When we think even deeper about what mathematics accomplishes, we can answer for our students the age-
old question “When am I going to use this?” They will be using the process of problem solving as they inves-
tigate the best travel path and the costs for their holiday. They will be communicating, in a mathematical sense, 
when they sketch their kitchen with measurements for a home renovation project and set forth the materials 
needed and the cost. They will be reasoning, likely daily, through actions that must be taken in a multitude of 
situational contexts and the order of those actions, with likely consequences—all the while thinking through 
and reflecting on what has happened previously in a similar situation and rationalizing the worth. They will be 
using number sense as they examine their cellphone bill or pay stub for correctness. Wow! These are complex 
processes, and mathematics is the precursor to practising them in life. That is a fundamental reason why we 
practise mathematics. (Of course, as mathematics teachers, we know that there is also a certain joy in learning 
the mathematics involved.)

Recently, I looked at a list of skills workers will need in 2020 (Beckford 2018; Gray 2016), based on a World 
Economic Forum (2016) report. The first two skills on the list are complex problem solving and critical think-
ing. Does that sound familiar? Also, the seventh skill is judgment and decision making. When we work with 
our students on these big process ideas in our schools and through our content, students are practising the skills 
they will need for the future. Mathematics is the venue we use to develop and practise those skills.

Mathematics has a truly important place in our world today, based on the sheer frequency with which we 
use it, create with it, evaluate with it and solve with it. Our challenge, as mathematics teachers, is to allow our 
students to practise these big process ideas in meaningful situations, questions and projects and to help them 
develop these skills so that they can transfer them to new situations. Even if this practice does not immediately 
present as a mathematical situation, the skills are still in place, and we work with students on how to transfer 
their applicability to a novel situation. Mathematics develops skills that are necessary for our students today.
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This spectrum of mathematics has far-reaching 
implications, far beyond simply looking at the content 
we teach through the K–12 curriculum. It is how we 
let our students practise the needed skills through the 
content, knowing that these skills will emerge 
throughout life as a necessary element of how they 
walk through their day.

How can we purposefully and effectively give our 
students practice with these big process ideas and 
skills? What can you do this year to further develop 
these skills in your students? How can we help stu-
dents see the intrinsic value of mathematics beyond 
what they may think it is on the surface?
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Conversation Starters: Issues in the Field_________________

An Open Letter on Standardized Testing 
Alicia Burdess 

Close your eyes and imagine that it’s the last week 
of June. The weather has been beautiful for a while 
now, and you are excited about your summer holidays. 
You can’t wait for camping, outdoor sports and spend-
ing time with your family. It’s time for a well- 
deserved break from work. Just one thing is stopping 
you. Actually, more than one thing. You have to write 
final exams. The province needs to see where you are 
in science, social studies, reading comprehension, 
writing and math. To make sure, we’ll double up on 
math and make you do a timed portion without a 
calculator. If you have a government job and speak 
French, you will have to take the reading and writing 
exams in two languages.

Fast-forward to the last day of exams. It’s time for 
math. Math may be your favourite subject, or it may 
be the subject you struggle with the most. You may 
feel anxious right now just thinking about writing a 
math test. You have spent the past couple weeks writ-
ing exams every day, and you are tired of multiple-
choice questions and bubble sheets.

Imagine that you write the first part of the math 
exam in the morning. It’s difficult. You run out of 
time. You don’t get to finish. You can’t figure out why 
the test is trying to confuse you. You can’t figure out 
why all the questions are trying to trick you. You have 
a break for lunch, and then you have to write the 
second part in the afternoon. You are supposed to 
answer 20 questions in 20 minutes. It takes you five 
minutes to finish the first question. The answer is a 
fraction. It takes you another couple of minutes to 
figure out how to put the answer into the answer boxes 
and fill in the bubbles. Now your heart is racing, you 
are sweating, and you are starting to panic. Now you 
think that you are stupid because you aren’t going to 
have time to finish the test.

Imagine that you have trouble reading. Imagine 
that you have trouble focusing. Imagine that you are 
tired. Imagine that you are hungry. Imagine that you 
have test anxiety. Imagine that you just immigrated 
here a few months ago and this entire process has 

been done in your second or third language. Imagine 
that you have special needs. Imagine that you are 
struggling with your mental health. Imagine that your 
family is struggling at home. Imagine that you are a 
refugee. Imagine that you have all sorts of knowledge 
and ideas in your head that you can’t explain on a 
multiple-choice test.

Imagine that your boss gets a letter in the mail 
saying that you scored 18 per cent on the math exam. 
Imagine that you don’t get a promotion because of 
this mark. Imagine that this mark affects your future 
learning opportunities. You can’t go to certain confer-
ences and training seminars because you aren’t good 
at math. At least, that’s what the test said. Imagine 
that you now believe you aren’t good at math and that 
you lack confidence to use math in your everyday 
life. Imagine that you tell your own children you 
aren’t good at math and that they now think it’s ge-
netic. Imagine that you live the rest of your life trying 
to avoid math.

Now, imagine that you are 8 years old (Grade 3 
provincial achievement test). Or 11 years old (Grade 6 
provincial achievement test). Or 14 years old (Grade 9 
provincial achievement test). Or 17  years old 
(Grade  12 diploma exam).

As an adult, would you like to be assessed, ranked 
and labelled? With a multiple-choice exam built to 
fit a bell curve? How about if you had to write exams 
in four subject areas? How about if you had to write 
exams in a language you are just learning? Just be-
cause it happened to us as kids doesn’t make it right. 
Just because it’s how we’ve always done things 
doesn’t make it right.

Government, if you need data, why not use math 
and trust statistics? Why not use a sample population? 
Why not make it anonymous so that kids don’t pay 
the price?

We are preparing our children for jobs that don’t 
yet exist. Why are we still using standardized tests 
when we don’t want standardized learners and work-
ers? We need flexibility, creativity, problem solving 
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and perseverance—none of which can be assessed 
through multiple-choice tests.

We know better, so let’s do better. It’s time to end 
standardized tests in Alberta.

Alicia Burdess grew up in St Albert, Alberta, and 
completed her bachelor of physical education degree 
at the University of Alberta, followed by an after 
degree in education at the U of A’s Campus Saint-Jean 
and a master of education degree through Simon 
Fraser University. She has been a teacher with 

Grande Prairie and District Catholic Schools for 14 
years, serving in a variety of capacities. Her passion 
is teaching math and working with students and 
teachers to increase their understanding of and con-
fidence in learning math. She spent four years as her 
district’s numeracy lead teacher and instructional 
coach. She is past president of MCATA and enjoys 
supporting math teachers through conferences and 
professional development. She is also a wife and a 
mother of two and enjoys spending time with family, 
coaching sports and reading.
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How Often Do I Do Math? 
David Martin

I have seen English teachers sit around and discuss 
the books they are reading and social studies teachers 
debate current issues and their impact on society. I 
have seen career and technology studies (CTS) teach-
ers talk to their students about the projects they are 
working on—a woodworking project, an automotive 
problem or even an attempt to code an Arduino board 
to allow for more functionality in their home. As I 
meet more teachers, I am constantly hearing about 
how they are students of their own subject areas 
outside the walls of the classroom.

This has caused me to reflect—which I ask you to 
do as well—on the question, How often do I sit down 
and work on mathematical problems outside my own 
classroom?

When I first asked myself this question, I, sadly, 
had to respond with rarely or never. At the time, I 
would ask my students to try multiple questions daily, 
learn new ideas, consolidate older information and, 
ultimately, be problem solvers when faced with ques-
tions they had never seen before; regretfully, I mod-
elled none of this outside the classroom.

Perseverance, resilience, creativity and critical 
thinking are what I expected of my students daily in 
mathematics, but until I embraced these practices in 
my own life, I didn’t truly know how it feels to be 
stuck in a problem and not know what to do.

“What do you do when you don’t know what to 
do in a math problem?” I asked this question to 800 
Grades 4–12 students, and the number one answer 
(from over 80 per cent of the respondents) was “Ask 
the teacher.” This was startling! I couldn’t arm my 
students with authentic problem-solving strategies 
until I put myself in their shoes. I tried working on 
problems that caused me to stop and ask myself, What 
should I do now? Only then could I understand that 
global problem-solving strategies were missing in my 
own math classes.

Originally, I would teach students that when they 
were working on a problem from unit X, they should 
try certain strategies, and in unit Y, try other strategies. 
I wasn’t teaching true problem solving; instead, I was 
teaching strategies specific to certain domains. When 
I tried solving math problems on my own time, and 
at my own level, I quickly learned that the following 
are some of the best strategies:

•	 Visualize the problem. Draw it out.
•	 Guess-and-check. Change your guess slightly and 

see how it changes the result.
•	 Approach the problem logically. Use if-then state-

ments to simplify information.
•	 Identify a pattern. Change a number, a sign or 

something critical, and see how that changes the 
problem.

•	 Work backward. If we can hypothesize the result, 
what else would have to be true?

•	 Solve an easier problem. Simplify the problem into 
one that is easier to work with, and see if you can 
identify anything new.

My challenge for myself now—and I extend this 
challenge to you—is to try a math problem once a 
week. Ensure that the problem isn’t one you can solve 
in seconds, or even minutes. Try to find a problem 
that makes you reflect on the question, What do I do 
when I don’t know what to do in a math problem?

David Martin has a master’s degree in mathematics, 
a bachelor’s degree in education and, most important, 
a love of learning. Throughout his career, he has 
challenged many traditional educational practices, 
such as homework, tests and even grading. As a divi-
sion math/science lead teacher, he has the opportunity 
to learn with teachers and students from pre-K to 
Grade 12. He is also president of MCATA. You will 
often find him tinkering with code, playing with math-
ematics or counting by prime numbers. 
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Problem-Solving Moments ____________________________

Problems from Open Middle
Lorelei Boschman

The website Open Middle (www.openmiddle.com) 
contains some great problem-solving moments for 
all grades. The website’s tagline is “Challenging math 
problems worth solving,” and that is a great descrip-
tion. What an amazing collection of math problems 
to give to your students today! The problems are 
categorized by grade level (from kindergarten to high 
school), as well as by mathematical area of focus. 
Read on for examples from Grades 1, 3, 6 and 8 and 
high school.

For Grade 1 (geometry), we have this problem on 
composite two-dimensional shapes.

Source: Bryan Anderson, Open Middle, www.openmiddle.com/ 
composite-2d-shapes/. Licensed under CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/).

Here is a problem for Grade 3 (number and opera-
tions in base 10).

Source: Marilyn Burns and Graham Fletcher, Open Middle, 
www.openmiddle.com/missing-digits/. Licensed under CC 
BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-
sa/4.0/).

Here’s one from Grade 6 (expressions and 
equations).

Source: Robert Kaplinsky, Open Middle, www.openmiddle.com/
solving-one-step-equations-greatest-solution/. Licensed under 
CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-
nc-sa/4.0/).
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Here is one from Grade 8 (the number system).

Source: Daniel Luevanos, Open Middle, www.openmiddle.com/
pythagorean-theorem-prob/. Licensed under CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/).

The last problem is for high school (functions).

Source: Lynda Chung, Open Middle, www.openmiddle.com/
discriminant/. Licensed under CC BY-NC-SA 4.0 (https://
creativecommons.org/licenses/by-nc-sa/4.0/).

Open Middle is worth browsing through. Most of 
the problems can be used immediately and as is with 
your students. Hints and answers are provided, as is 
a worksheet that students can use to think through 
their attempts at solving a problem. Make sure to look 
at the problems for other grades, as some problems 
are applicable for many grades.

These problems would make great cooperative 
learning explorations. How could you incorporate at 
least one or more of these per week in your 
classroom?

Lorelei Boschman received her bachelor of education 
and master of education degrees from the University 
of Lethbridge. She is the education coordinator at 
Medicine Hat College, facilitating the four-year 
bachelor of education program (a collaborative de-
gree program with Mount Royal University) and in-
structing a variety of postsecondary courses with a 
mathematics focus. Previously, she taught K–8 at a 
rural school and spent 21 years teaching high school 
mathematics. Mathematics education is her passion 
and life work, and she has been involved in many 
local and provincial initiatives.
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Research Articles ___________________________________

Discerning a Critical Aspect of 
Computational Thinking and  

Developing a Computational Disposition 
with a Logic Puzzle Game

Sally Rudakoff and Steven Khan

Teachers are still struggling with understanding 
computational thinking vs. coding and how it re-
lates to their curriculum. As well, some see this as 
an “add-on” that they don’t have time for. I hope 
if we emphasize computational thinking skills in 
[the] elementary [grades that] students will begin 
to develop skills and concepts that will follow them 
as they advance through our school system.

Sally

Proto-Computational Thinking (PCT) might be a 
more realistic and achievable systemic goal for 
naming what we do at the earliest grade levels in 
a way that is intellectually honest and respectful 
of the multiple responsibilities around learner 
competencies that teachers are already charged 
with (read responsible or accountable for) 
developing.

Steven1

We, the authors of this article, have responsibilities 
related to supporting teachers’ growth at various 
stages in their careers. In both of our contexts—pre-
service teacher education and school district nu-
meracy and technology support—we have noticed 
K–6 teachers’ interest in and struggles with the rela-
tionships between computational thinking, coding 
and the existing curriculum. At the same time, we are 
attuned to concerns in the literature about levels of 
enactment (Namukasa 2018) and the challenges posed 
by the multiple origins, definitions and frameworks 
for the practice and study of computational thinking 
in multiple environments (Khan et al 2017).

We see our discussion here as propaedeutic—a 
preliminary excursion and exploration that invites 

readers to attend to the possibilities for mathematics 
and computational thinking in children’s life-worlds. 
Computational thinking can be defined as “solving 
problems, designing systems, and understanding 
human behavior, by drawing on the concepts fun-
damental to computer science” (Wing 2006, 33). In 
a more recent review, Shute, Sun and Asbell-Clarke 
(2017, 142) define it as “the conceptual foundation 
required to solve problems effectively and efficiently 
. . . with solutions that are reusable in different 
contexts.” Indeed, what separates computational 
thinking from other forms of mathematical problem 
solving is the ability to extract or abstract the answer 
into other domains and apply the solution to other 
cases. Khan et al (2017, 5) adopt a sociocultural 
approach to computational thinking, taking it as “an 
enculturated set of human practices to see, hear, 
encounter, and ultimately read and write the world, 
in a Freirian sense, in particular ways that are val-
ued/rewarded in specific computational cultures.” 
Ultimately, computational thinking is a literacy 
practice (Bers 2017) that is essential for understand-
ing and participating meaningfully in the transfor-
mations of all areas of life in the 21st century (Kafai 
and Burke 2014).

Figure 1 shows how we conceptualize the place 
and importance of computational thinking from a 
complex systems (or transdisciplinary) perspective. 
In our framework, foundational computational ex-
periences are necessary (but not sufficient) for de-
veloping computational identities (including dispo-
s i t ion) ,  which contr ibutes  to  developing 
computational thinking in diverse computational 
communities. Such communities require members 
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FIGURE 1. A framework for thinking about the significance of computational thinking in schools and society.

to participate meaningfully in diverse ways (for 
example, as coders, legislators or critical consumers) 
and give rise to webs of connected computational 
communities or computational ecologies. These 
computational ecologies contribute to the ongoing 
transformation of social, political, economic and 
ecological life-worlds and necessitate thinking in 
terms of their ethics and sustainability with regard 
to human and planetary flourishing. Our work here 
and that of others in early learning, such as Kotso-
poulos et al (2019), is situated at the base of these 
nested systems—a consideration of an early experi-
ence of computational thinking and its potential for 
contributing to the development of some aspects of 
a computational identity (in particular, those aspects 
related to computational disposition).

Here, we think through how one might use 
Archelino—a commercially available (but easily 
generalizable) wooden logic puzzle game—to de-
velop one aspect of computational thinking: the 
ability to see problems as decomposable and recom-
posable for learners aged four to eight years old 
(pre-kindergarten to Grade 3) and preservice teach-
ers. We suggest ways that the critical aspect (Marton 
2014) of decomposing and recomposing problems, 
while working toward a clearly defined goal, is a 
necessary component of computational thinking that 
can be developed through attending to the design of 
the puzzles offered by commercial logic games. We 
also draw attention to how the game might contribute 
to the development of a healthy computational dis-
position (Pérez 2018).

The activity we describe can be used with a whole 
class, with small groups or partners (station work), 
or at home (with parental support). Archelino pres-
ents opportunities for problem solving (especially 
logical reasoning) at various levels of difficulty, 
allows for differentiation with students who are in 
the early stages of developing understanding of the 
concept, and highlights the importance of sequenc-
ing/ordering (algorithmic thinking) and decomposi-
tion. It also affords opportunities for developing 
understanding of positional language related to 
spatial reasoning—a common learning outcome 
across Canadian and international curricula.

To be clear, we are not arguing that this should 
be the only experience learners have with sequenc-
ing/ordering and decomposition, or the only place 
to develop a computational disposition. As Resnick 
(2016) writes,

For a technology to be effective, . . . it should 
provide easy ways for novices to get started 
(low floor) but also ways for them to work on 
increasingly sophisticated projects over time 
(high ceiling). . . .
	 . . . For a more complete picture, we need 
to add an extra dimension: wide walls. It’s not 
enough to provide a single path from low floor 
to high ceiling; we need to provide wide walls 
so that kids can explore multiple pathways 
from floor to ceiling.

We believe that Archelino, along with focused, 
pedagogically informed teacher- or parent-led ques-
tioning or discussion, provides excellent low-floor 
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entry points for educators and students to begin 
discussing computational thinking concepts, with 
good potential for high ceilings and wide walls. We 
will not here discuss using this activity as a form of 
assessment, though the formative assessment aspects 
are evident to us as teachers, especially in student–
teacher direct engagement and questioning.

We hope that teachers and other readers see how 
whole-class or partner activities like this can con-
tribute to developing critical foundational aspects 
of both mathematical thinking and computational 
thinking simultaneously in young learners, as well 
as a productive disposition toward learning. We also 
hope readers will seek out and share additional op-
portunities with each other and the wider commu-
nity, and that they will continue to develop the activ-
ity in order to draw attention to other aspects of value 
and to opportunities for learning that we have not 
yet considered.

About Archelino
Archelino is a commercial logic puzzle game 

created by Inon Kohn and distributed by the German 
game company HUCH! The game is recommended 
for ages four and up; it requires one or more players, 
and the typical playing time is approximately 10 
minutes.

The game set consists of one grooved wooden 
ark; seven wooden figures (Noah and six animals), 
each about two inches tall; a puzzle book containing 
60 puzzles in the categories of starter, advanced, 
expert and master; and one multilingual instruction 
booklet (see Figure 2). The game is based on the 
story of Noah’s ark, with the premise that each ani-
mal wants to sit next to or converse with another 
specific animal. The essence of the game, however, 
can be recreated with other story scenarios not tied 
to this particular narrative.

Archelino allows players to solve puzzles that 
present a visual description of how the animals 
should be ordered from left to right (first, second 
and so on), how they should be oriented (facing left 
or right), and whether they want to converse (facing 
each other). The goal is to use the visual clues to 
solve the puzzle by correctly ordering, orienting and 
sequencing the animals on the ark. The instruction 
booklet and box art explicitly state that learning to 
think strategically is the main affordance of engag-
ing with the puzzle.

Archelino retails for approximately C$29 on 
Amazon.ca and C$25 on FoxMind (www.foxmind 
.com). Considering the wider social content and 

taking a critical view of our work, we acknowledge 
that, as with many durable wooden resources for 
early learners (for example, traditional Montessori 
and Waldorf materials), price can be an access bar-
rier for individuals, schools and districts. At the same 
time, the organizations we work for have developed 
and maintain libraries that lend materials such as 
games, puzzles and technological devices, and the 
public library system enables teachers and parents 
to access similar resources through requests and 
delivery to community branches. Also, at thrift stores 
we often find wooden animal toys that could be used 
in place of the Archelino materials.

In the next section, we elaborate on the specific 
affordances we see for developing a computational 
thinking skill—decomposition and recomposition—
in the context of Archelino.

Choosing Archelino
We would like to say that we did an exhaustive 

exploration of a number of commercial games and 
picked the one best suited to our purpose, or that we 
reviewed lists of award-winning toys. However, the 
truth is more mundane—and, we believe, more typi-
cal of how games like Archelino get considered and 
incorporated into teaching and learning at home, in 
school settings, and in extracurricular or cocurricular 
groups.

A departmental colleague of Steven’s, who does 
research on commercial games and who is also a 
parent, suggested the game to him for use with his 
three-and-a-half-year-old daughter. This was around 
the same time we were having conversations about 

FIGURE 2. The Archelino wooden figures and ark, puzzle 
book, and solved puzzle.
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the difficulties teachers have in thinking about com-
putational thinking in elementary schools. Alberta’s 
current curriculum does not explicitly name anything 
as computational thinking, but the draft K–4 revised 
mathematics curriculum—which we both indepen-
dently reviewed in our respective professional ca-
pacities—foregrounds aspects related to algorithmic 
thinking.2 We were interested in finding ways to 
support preservice and inservice teachers as they try 
to integrate and incorporate computational thinking 
ideas in that context. We saw an opportunity for 
learning, and we took it.

We had another moment of insight when we were 
working with Archelino while thinking about the 
learning of elementary mathematics alongside com-
putational thinking. We had several moments of 
recognition in making connections by seeing—and 
naming—the familiar (decomposition) in the unfa-
miliar (a puzzle game context). We feel that it is also 
important to draw attention to such occasions that 
provide opportunities for building learners’ capacity 
for transfer (Salomon and Perkins 1989), especially 
through noticing (Lobato, Rhodehamel and Ho-
hensee 2012), from singular embedded learning 
experiences to more general applied learning in 
different contexts across time.

Our modest hope is that by encouraging teachers 
(and parents) to find the familiar in unfamiliar 
places, by choosing to bring opportunities for distal 
connections across multiple types of mathematical 
texts, and by guiding students to make those con-
nections explicit (notice, name and nurture) through 
meaningful questioning or discussion, we can in-
crease the probability that learners will see the 
relevance structure (Marton 2014) and potential of 
learning in general in multiple contexts. We note 
that educating for far transfer of learning remains 
an elusive goal in many areas but especially in the 
area of computational thinking, where the evidence 
for such claims is weak (Denning 2017). With a 
pedagogical program of selectively experimenting 
in deliberately combinatorial ways to prevent ideas 
from becoming inert (Whitehead 1967), we see 
increased probability of far transfer and meaningful, 
joyful learning.

When we were revising this article, one reviewer 
asked if we could offer examples of what far transfer 
might look like in the context of the particular learn-
ings from this game and how one might look for far 
transfer. We acknowledge the value of this request 
and state that part of the difficulty of recognizing 

far transfer is that it often becomes evident long after 
the initial foundational experiences and cannot be 
explicitly drawn upon as easily as a causal phenom-
enon. Another difficulty with far transfer is that in 
real life multiple confounds occur as experiences 
leach into each other over time. In the case of the 
affordance of discerning decomposition/recomposi-
tion in this game, one might see near transfer in the 
short term of decomposing problems in other areas 
not explicitly mathematical or computational (for 
example, sports, cooking, science or the fine arts). 
Making a strong claim about far transfer is not easy, 
and it is precisely the overblown claims in much of 
the literature related to computational thinking in 
education that Denning (2017) explicitly critiques. 
Our position is to proceed cautiously, with modest 
claims about what might be discerned in this game 
while acknowledging that learning involves multiple 
opportunities for recursive elaboration over time and 
contexts.

Discernment in Variation Theory
Discernment—or the coming into conscious 

awareness of an object, relation, concept or phenom-
enon of which one was not previously consciously 
aware—is a focus of the variation theory of learning 
(Marton 2014). The aspects of the object of learning 
(what one is trying to learn or to have a learner notice 
and become aware of) are referred to as the critical 
aspects. So, for example, one could say that Hoyles 
and Noss’s (2015) framework for computational 
thinking has four critical aspects—pattern recogni-
tion, decomposition, abstraction and algorithm de-
sign—that are to be discerned and developed by the 
learner, with the help of the teacher and the learning 
materials.

Low-floor puzzle games (such as Archelino) offer 
an opportunity for what Trninic (2018, 150) de-
scribes as “explorative practice”: “a pedagogical 
approach with a high degree of guidance but a mini-
mal degree of explaining.” Trninic draws on Freud-
enthal’s (1971) suggestion that learning mathematics 
(specifically, geometry) should be like learning to 
swim. In swimming lessons, a qualified teacher helps 
the learner come to sensory-motor and conscious 
awareness without initially offering explanations. 
This keeps the learner’s limited attentional (cogni-
tive-emotional) resources focused on a small set of 
critical aspects that are important in that moment.
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Discerning Decomposition in Archelino
The ability to decompose a problem into smaller 

components is seen as an important aspect of both 
computational thinking and mathematical problem 
solving (Hoyles and Noss 2015; Polya 2014). It is 
also a core component of other computational think-
ing frameworks, such as Computing at School’s 
concepts of computational thinking (Csizmadia et 
al 2015, 8) and the International Society for 

Technology in Education (ISTE) Standards for Stu-
dents (under Computational Thinker).3

Figures 3–7 show several of the Archelino puzzle 
clue cards and the possible discernments. Players 
are presented with these cards one at a time, and are 
instructed to place the animals in the same sequence 
as depicted on the card or to determine the sequence 
of all the animals in the ark. We have arranged these 
clue cards in a sequence to show some of the dis-
cernments they make possible.

FIGURE 3. Discernments: animals can all face in one direction, can face each other or can face away from each other; facing left 
or facing right; positional/ordinal language (such as next to, to the left of, to the right of, first, second, third).

FIGURE 4. Discernments: puzzle clues can be decomposed into simpler parts (decomposition); puzzle clues can be recomposed into 
one whole part (recomposition); multiple strategies can be used to construct the puzzle.
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FIGURE 6. Discernments: animals that are talking to each other are next to each other; showing who is talking to whom is a new 
type of clue.

FIGURE 7. Discernments: not all positions have to be labelled; order can be determined even if no information is given about 
position number.

FIGURE 5. Discernments: multiple strategies can be used to solve the puzzle; clues do not have to be followed in the same sequence 
presented.
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After exploring the puzzles, we explicitly labelled 
the concept we saw with the sequencing of puzzle 
clues as decomposition—that is, breaking down the 
general problem of placing the animals in the correct 
order (sequence) into a set of two or more discrete, 
non-overlapping puzzles. We also noticed that none 
of the clues contained redundant information (such 
as placing the same animal in its correct position in 
more than one clue).

We observed that when learners attempted to do 
puzzle 4 (see Figure 4), it was critical for them to 
first understand what the image represented. A 
young child’s interpretation and the questions asked 
by several preservice teachers who played the game 
suggest that they saw the two images as discrete 
situations—asking, “Do I need two arks?”—and not 
as a decomposed clue to the general goal of placing 
the animals in the ark in the right order and orienta-
tion (facing left or right). This, we believe, offers 
the opportunity to draw learners’ awareness to the 
representation in the puzzle clues as a decomposition 
of the final goal (placing all the animals in the cor-
rect order). Puzzles 7 (Figure 4) and 11 (Figure 5) 
continue this elaborative explorative practice—first, 
with a puzzle that is decomposed in a continuous 
piecewise manner, and then with a puzzle in which 
the animals are unevenly distributed.

We recognize that naming this process decompo-
sition was a result of priming ourselves beforehand 
by considering what aspects of computational think-
ing might be present in this game. We had an intui-
tive sense that the actions the game guides players 
to explore could be framed within the educational 
discourse of decomposition. Having thus recognized 
the naming as a function of priming, we note that 
decomposition in computational thinking (in this 
case, with Archelino) is an illustrative example of 
Polya’s (2014) more general heuristic regarding 
decomposing and recombining in problem solving, 
which involves analyzing a problem and breaking 
it into smaller, discrete problems, the sum total of 
which solves the original problem.

We also want to emphasize that while the se-
quence of puzzles in Archelino teaches the idea of 
decomposition, nowhere does the game explicitly 
name it as such, nor would we expect teachers (or 
parents) to do so without prompting or consideration 
of the particular affordances for learning. We also 
note that in developing explicit conscious awareness 
of this critical aspect of computational thinking, it 

is important for teachers to place a semiotic linguis-
tic marker on the necessary aspect of the experi-
ence—that is, to label the puzzle image as “a de-
composition into two parts,” “a decomposition into 
three parts” and so on. If teachers explore and name 
decomposition with students in an explicit teaching 
opportunity, students will, ideally, be able to make 
connections to the importance of decomposing in 
other situations.

In the next section, we discuss our approaches to 
and strategies for playing Archelino (including our 
differing strategies) and move into how teachers 
might use the game in the classroom in various 
formats.

Affordances for Developing 
Computational Thinking

Initially, we each played the game individually. 
Steven also played it with his three-and-a-half-year-
old daughter. We then discussed how our strategies 
differed for some puzzles.

For example, in puzzle 9 (Figure 8), Sally’s strat-
egy involved following each line of the visual in-
structions and enacting them sequentially: first, 
placing the giraffe and the kangaroo; then, placing 
the hippo and the lion; and, finally, placing the zebra 
and the panda. Steven’s strategy involved working 
across the three clues to place the animals serially, 
following the ordinal numbers: placing the giraffe 
and then the hippo, the zebra and the panda, the lion, 
and, finally, the kangaroo.

FIGURE 8. Puzzle 9.
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Sally’s Strategy
•	 The giraffe is in the first position, facing to the 

right.
•	 The kangaroo is in the last/sixth position, fac-

ing left.
•	 The hippo is next to the giraffe, facing the 

giraffe.
•	 The lion is next to the kangaroo, facing right.
•	 The zebra is to the right of the hippo, facing 

right.
•	 The panda is facing the zebra.

Steven’s Strategy
•	 The giraffe is in the first position, facing right.
•	 The hippo is in the second position, facing left.
•	 The zebra is in the third position, facing right.
•	 The panda is in the fourth position, facing left.
•	 The lion is in the fifth position, facing right.
•	 The kangaroo is in the sixth position, facing 

left.

As we talked about our different approaches, we 
came to appreciate not only that we approach puz-
zles differently but also that there is value in some-
one else’s approach. These are valid alternative 
strategies, and they both will lead to successfully 
solving the puzzle. In a classroom, a small group or 
a teacher interview setting, allowing students to see 
and make sense of alternative strategies is important. 
This increases both the personal example space of 
strategies of which students are aware and the po-
tential for students’ flexible thinking when working 
on future puzzles.

Other ways of giving the instructions can draw 
attention to the structure of the visual clues in a 
mathematical way. For example, a preservice teacher 
in a workshop setting stated, “The animals are ar-
ranged in pairs facing each other; there is an AB 
repeating pattern.” With a similar puzzle, a preser-
vice teacher noticed that “animals placed on odd-
numbered spaces are facing left, and animals placed 
on even-numbered spaces are facing right.” The 
existence of a number of valid ways to approach the 
problem (depending on what is noticed and attended 
to) and the opportunity to bring in a variety of math-
ematical ideas are characteristic of a good low-floor 
task for elementary learners. Working one-on-one 
with students allows teachers to use deliberate ques-
tioning to further investigate their chosen strategies 
and the mathematical thinking behind their 
responses.

The observation that there are multiple ways to 
provide instructions that result in the same goal us-
ing different mathematical concepts is meaningful 
in the context of Rich et al (2017), who argue for an 
“offline-before-online heuristic” in learning com-
putational thinking. They begin their sequencing 
trajectory with two fundamental ideas that relate to 
the Archelino puzzles. The first idea focuses on the 
importance of specificity when giving instructions, 
and the second explores the importance of the order 
of the instructions, as changing the order can lead 
to different results.

Adapting for a Partner Activity
When we were discussing our strategies, the idea 

emerged to play Archelino as a two-player game, 
with one player translating the visual clues into oral 
instructions and the other player building the se-
quence. This approach is related to our familiarity 
with barrier games in elementary education. Playing 
in this way, with the two players alternating roles, 
also allows for immediate feedback and a sort of 
debugging of instructions, as the translator can see 
immediately whether the builder has carried out the 
instructions correctly or whether steps are missing 
or unclear.

Displaying a poster with question prompts along-
side the game would be beneficial for students when 
playing with a teacher or a partner. These questions 
could be used during the game or after solving the 
puzzle (as an opportunity for reflection). Questions 
could include the following:

•	 Why did you choose _________ as your first 
move?

•	 What did you first notice when looking at the visual 
clue?

•	 What strategy did you use to solve the puzzle?
•	 Did you notice a pattern when looking at the visual 

clue?
•	 How did you know to place the _________ in that 

spot?
•	 How did you know to place the _________ facing 

left?4

Demonstrating this type of questioning with 
parents and preservice teachers helps them to notice 
important aspects of the game play and to nurture 
students’ thinking, problem-solving and oral com-
munication skills. We also note the increased chal-
lenge and cognitive demand involved in attempting 
to verbalize visual instructions and how this verbal-
ization helped us attend differently and effortfully 
to critical aspects such as the orientation of the 
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figures, their relative positions and the sequence in 
which we gave the instructions, especially with the 
more challenging puzzles.

Adapting for a Whole-Class Activity
Exploring the activity as a class before having 

students play Archelino as a two-player game has 
benefits. It enables students to build an understand-
ing of the goals and purpose of the activity and 
prepares them for playing the game with a partner. 
Doing a whole-class activity also allows the teacher 
to provide students with the appropriate language 
to use when completing the activity and to offer 
suggestions for problem solving. Here is an example 
of how such an activity can be structured:

•	 To begin, invite six students to the front of the class 
to represent the six animal figures on the ark. You 
may want to use hats or coloured fabric to identify 
them, as they will be moving around.

•	 Tape an ark (a number line) to the floor so that 
students know where to stand. You can identify 
one student as Noah to stand at the front of the ark.

•	 Display a visual clue on the board, using a docu-
ment camera or a slideshow projector.

•	 Give students quiet thinking time to explore how 
they would place the animals on the ark.

•	 When students are ready, select one student to give 
oral instructions to the students who are represent-
ing the animals so that they appear on the ark ex-
actly as they do in the visual clue.

•	 In addition to giving oral instructions, students can 
be responsible for moving the animals into the 
correct order on the ark.

•	 Invite students to use various strategies to place 
the animals on the ark, and take the time to explore 
their differing strategies.

•	 Once the animals are in the correct order on the 
ark, students can discuss their strategies and how 
they solved the visual clue.5

This approach resonates with Sung, Ahn and 
Black’s (2017) discussion of the benefits of teaching 
computational thinking through embodied experi-
ences, which allows for hands-on learning before 
the introduction of digital tools. Their study, which 
used the introductory programming language 
ScratchJr for coding number lines and doing arith-
metic on the number line, found that “children who 
were asked to provide commands to a surrogate by 
decomposing steps to solutions developed robust 
learning and improved their number line estimation” 
(p 459). In particular, the ScratchJr interface af-
forded opportunities for discerning the equidistance 

of moves on a number line and enacting the com-
position of moves in addition.

Abstracting to Other Games and 
Representations

The Archelino game was a convenient choice for 
us. However, other commercially available games 
could be used to explore the same ideas. The animal 
figures in the Archelino set could be replaced with 
more readily available and affordable items (such 
as connecting cubes, recycled plastic toys or tangram 
animals) (see Figure 9), though we do not underes-
timate the value of investing in high-quality wooden 
toy puzzles and manipulatives that will last for many 
years and classes. The most important aspect of the 
Archelino set is the puzzle cards, and parents and 
preservice and inservice teachers should spend time 
thinking about how the puzzles are sequenced if they 
plan to remix this game using different materials or 
scenarios.

In the next section, we discuss an affordance for 
developing computational thinking dispositions with 
Archelino.

Developing Computational 
Thinking Dispositions

Computational thinking disposition refers to “the 
willingness and opportunity to make use of [student] 
knowledge and ability” in the area of computational 

FIGURE 9. A variant of puzzle 4, using connecting cubes.
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thinking (Pérez 2018, 427). According to Pérez, stu-
dents must develop computational thinking disposi-
tions if they are to derive benefit from meaningful 
computational thinking learning opportunities pre-
sented in classrooms in mathematical contexts. In 
addition, if students can recognize computational 
thinking opportunities on their own, they will then be 
able to “recognize, respond to, and appropriately act” 
(p 428) on these opportunities.

Pérez’s framework for the three necessary disposi-
tions for computational thinking—tolerance for 
ambiguity, persistence and collaboration—is relevant 
to the Archelino game and can also be used when 
working with students on developing their computa-
tional thinking dispositions. Next, we elaborate on 
these dispositions and how they can be developed 
with Archelino.

Tolerance for Ambiguity
Pérez (2018, 444) describes the first disposition—

tolerance for ambiguity—as “a tendency to experience 
ambiguous situations or stimuli as enriching and 
engaging.”

As noted before, Archelino puzzle 4 (Figure 4) is 
an ambiguous visual stimulus for some learners and 
requires interpretation and teacher intervention to 
explain the connection between the puzzle clues and 
the task goal. This is an easily resolved ambiguity. 
When working in partners, for example, one learner 
must listen attentively and carefully to the oral in-
structions given by the partner and try to place the 
animals in the correct sequence and the correct ori-
entation. Depending on the degree of specificity of 
the oral instructions (for example, the mathematical 
language used), in addition to various possible solu-
tion pathways, both learners may experience what we 
will call productive ambiguity (as an analogue to 
productive struggle). This requires them to find ways 
to reduce the ambiguity (for example, by asking 
clarifying questions) and move toward successfully 
completing the puzzle.

Teachers have a tendency to too quickly reduce 
such ambiguity for students in the same way that they 
sometimes too quickly reduce the cognitive demands 
of a task, which takes away learners’ experience of 
productively struggling with the mathematics—the 
work of learning. We see a need (and an opportunity 
through playing Archelino) to give students more 
opportunities to experience productive ambiguity and 
to work to resolve—communicatively, mathemati-
cally and computationally—ambiguous situations that 
are nonthreatening. This helps build their confidence 

and questioning skills for when they face challenging 
cognitive tasks involving decomposition.

Persistence
Persistence is a necessary and valued habit for 

learners of all ages. It is related to developing resil-
ience in challenging contexts, such as problem solving 
and computational thinking (with or without 
coding).

In Archelino, students display task persistence as 
they work to successfully complete the puzzles. Pérez 
(2018) argues that the classroom environment and 
learning opportunities should encourage persistence 
among students in order to develop this disposition.

To develop persistence, students need challenging 
tasks at the appropriate cognitive level that offer posi-
tive reinforcement upon completion. They may need 
numerous attempts to complete some puzzles, espe-
cially as the difficulty level increases and the puzzles 
begin to incorporate more elements (such as increased 
ambiguity and multiple possibilities for character 
orientation). Productive failure in mathematics (Ka-
pur 2016), however, is one way to guide instruction. 
Learners’ failed attempts provide teachers with rich 
information about their thinking and problem-solving 
skills that can guide further instruction.

The range of difficulty in the Archelino puzzles 
also allows for differentiation in the classroom. Ad-
ditionally, to support all learners in solving the Arche-
lino puzzles, teachers can use different scaffolding 
tools (such as a number line in front of the ark, labels 
for the positions on the ark, or left and right direc-
tional signs beside the ark).

Collaboration
Pérez (2018, 449) defines collaboration as a “ten-

dency to coordinate effort and negotiate meaning with 
peers to accomplish a shared goal.”

As a partner or a parent–child activity, playing 
Archelino allows for working together to complete 
the given task. At first, students can complete the 
puzzle by listening to instructions provided by the 
teacher or a parent. With explicit teaching, students 
can move to providing oral instructions to their peers.

Completing the puzzle as a whole-class activity, 
as explored earlier, encourages students to work to-
gether. In this setting, deliberate and intentional se-
quencing of the sharing of important variations in 
strategies allows students to experience situational 
ambiguity (Pérez 2018) and make connections as they 
discuss possible solution pathways. For example, 
immediate feedback from watching a partner place 
animals in the ark can lead to discussions about 
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strategy and the specificity of instructions. Overall, 
this activity allows students to practise collaboration 
as part of developing computational thinking 
dispositions.

Archelino allows teachers to focus on developing 
computational thinking dispositions by explicitly 
teaching the concepts and by encouraging students 
to notice, name and nurture the computational think-
ing in this activity. Pérez’s (2018) framework gives 
teachers a tool to guide instruction, explore student 
dispositions and improve how they approach com-
putational thinking tasks in the classroom. Explicitly 
teaching young students this important construct can 
help them notice, name and nurture computational 
thinking opportunities in their later studies.

The framework also gives teachers an important 
tool for gauging students’ computational thinking 
dispositions and planning further instruction. Like 
Pérez, we believe that these dispositions are mal-
leable and that students can work toward improving 
their computational thinking dispositions over time.

Conclusion
Several good low-floor, unplugged activities for 

developing the skills and dispositions of computa-
tional thinking with young learners, as well as with 
teachers new to computational thinking, already 
exist. Commercially available or publicly accessible 
puzzle games, such as Archelino, allow teachers to 
bring computational thinking and mathematical 
ideas into the classroom in a nonthreatening way 
while developing a healthy disposition.

We have attempted to show readers how a game-
based resource can be used to encourage discussion 
and engagement with foundational computational 
thinking ideas, such as decomposition and sequenc-
ing, together with early mathematical concepts, such 
as ordering and orientation. It is our hope that after 
reading this article, readers will be more alert to 
opportunities to explore foundational computational 
thinking ideas through resources they already have 
at hand.

Notes
1. This statement and the previous one are excerpts from 

early written reflections and conversations during team meetings.

2. See https://new.learnalberta.ca/Resources/content/cda/
documents/math_en.pdf (accessed September 10, 2019).

3. See www.iste.org/standards/standards/for-students/ 
(accessed September 10, 2019).

4. A downloadable poster is available at https://docs.google 
.com/drawings/d/1TT4KSdJG_Taas9ksEK8qlc3t59kFPjLDs 
I7D6ihhNdk/edit (accessed September 10, 2019).

5. A downloadable lesson poster is available at https:// 
docs.google.com/drawings/d/12lP87PzgFWwkkfp4oG96cDm5
_8bNbOicAeI5FB9MXzg/edit (accessed September 10, 2019).
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Junior High Students’ Perceptions of 
Mathematics Learning Experiences 

Jesse Diachuk 

Purpose, Question and 
Subquestions

The purpose of this basic qualitative research, 
operating within a constructivist theoretical frame 
(Guba and Lincoln 1994), was to explore junior high 
students’ perceptions of mathematics learning 
experiences.

To facilitate this research, I interviewed four 
Grade 8 students from one school in an urban central 
Alberta school district to unveil the challenges associ-
ated with learning mathematics, the strategies and 
supports that increase the likelihood of success, and 
the impact of assessment in the classroom. I selected 

the student participants through convenience sam-
pling (Merriam and Tisdell 2016), choosing the four 
participants by random selection from the group that 
returned the required forms. Though there were no 
criteria for selection beyond participation in Grade 8 
mathematics, the participants happened to be diverse 
both ethnically and demographically and possessed 
a range of confidence levels and ability in mathemat-
ics. I conducted one-on-one, open-ended, semistruc-
tured interviews of 17–25 minutes, and had no prior 
relationship with the participants.

The data analysis involved transcribing, analyzing 
and interpreting qualitative data attained through the 
interviews. I sorted raw data from the interview tran-
scripts into a number of open codes and narrowed 
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those down through axial coding into the emerging 
themes presented in this article.

The research question guiding this inquiry was, 
What are the perceptions of four Albertan junior high 
students about their mathematics learning experi-
ences? To support this key question, I used the fol-
lowing subquestions:

•	 What challenges exist for junior high mathematics 
students?

•	 What learning techniques increase the likelihood 
of success in junior high mathematics?

•	 How are students supported in their junior high 
mathematics learning experiences?

•	 How do students describe assessment practices 
that improve mathematics learning experiences?

Findings
After data collection and analysis, four main 

themes emerged from the central phenomenon of 
student perceptions of mathematics learning 
experiences:

•	 Barriers to student success in mathematics
•	 Learning supports that increase the likelihood of 

student success
•	 Factors affecting student engagement in 

mathematics
•	 The impact of assessment on mathematics 

experiences

Barriers to Student Success
For students, an inequitable mathematics experi-

ence can be as debilitating as an equitable experience 
can be affirming. Numerous factors lead to students’ 
negative perceptions of mathematics and can contrib-
ute to the development of mathematics anxiety.

Several studies (Lin, Durbin and Rancer 2017; 
Núñez-Peña, Suárez-Pellicioni and Bono 2013; Ruff 
and Boes 2014) have defined mathematics anxiety as 
fear, nervousness, helplessness, anxiety and dread 
related to learning mathematics and solving mathe-
matical problems, which can lead to the avoidance of 
mathematics activities altogether.

The participant interviews illuminated several bar-
riers to student success in mathematics that may 
coincide with the development of mathematics anxi-
ety. After I analyzed the participant data, it became 
evident that the barriers to student success could be 
sorted into four subcategories: the content, the 
teacher, peers and the classroom.

The Content
All four participants—participant 1 (P1), partici-

pant 2 (P2), participant 3 (P3) and participant 4 
(P4)—indicated that curricular content served as an 
inhibitor to success in mathematics, an assertion 
consistent with the findings of prior research (Lin, 
Durbin and Rancer 2017; Ruff and Boes 2014).

Both P3 and P4 referred to the sequential aspect 
of mathematics as being a potential barrier. P3 pointed 
out that success in previous grades has an impact on 
success in future mathematics. P4 stated, “If you don’t 
understand the first part, you’re not going to under-
stand the rest of the unit.”

P2 lamented her inability to understand some cur-
ricular content, even with repeated explanations from 
the teacher, and P1 and P3 pointed out the content-
related barriers associated with problem-solving 
question formats, which can undoubtedly be a 
struggle for struggling readers and English-language 
learners. P3 explained this in a unique manner, talking 
about “making questions bigger than they need to 
be.”

Taken together, the participants’ perceptions of 
content as a barrier highlight the important role of 
learning supports in increasing the likelihood of stu-
dent success in mathematics.

The Teacher
The participants zeroed in on many teacher-centred 

barriers to student learning.
Both P3 and P4 mentioned having difficulty when 

the teacher provided too little or no explanation of 
the content, with P3 elaborating that some teachers 
“don’t explain” and others “talk too fast.”

P1, P2 and P3 reported that different teaching 
methods had an impact on their understanding. P1 
expressed that she felt confused when the teacher was 
“teaching one way, but you actually know the other 
way.” She queried, “If the teacher recommends one 
[method], but we get the other one, what should we 
do?” P3 echoed this sentiment and belaboured the 
problem of learning one method at home and then 
being expected to use a different method at school. 
P2 admitted to struggling when one teacher “used to 
write all around the classroom” and “all over the 
board.” The first three participants also emphasized 
that they felt frustrated when teachers struggled to 
explain something properly.

Research has shown that ineffective teaching prac-
tices have a negative impact on student learning (Lin, 
Durbin and Rancer 2017; Ruff and Boes 2014; Whyte 
and Anthony 2012). The participants’ views support 
the idea that aligned with inquiry-based, student-
centred mathematical pedagogy, teachers must 
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embrace various styles and methods of both teaching 
and learning in order to better accommodate all 
learners.

P1 highlighted the issue of poorly established 
teacher–student relationships, disclosing that she was 
“not really comfortable” with her teacher: “Even if I 
have questions, I won’t ask.” P2 noted that access to 
the teacher can be a barrier to student success because 
“there are a lot of people in our class, so the teacher 
can’t focus on us individually” and sometimes “ev-
eryone needs help with different things, so the teacher 
gets kind of confused.” These accounts demonstrate 
how instrumental it is for teachers to build relation-
ships with their students and to make themselves 
readily available as a learning support.

Peers
The participants noted several peer-related barriers 

to mathematical success, in both collaborative work 
situations and project-based learning (PBL) 
settings.

P3 remarked that working with people who are at 
different levels of understanding can “bump you down 
and make you feel different,” and P2 stated that, in 
group situations, “if it’s a concept I don’t get, it’s 
going to be tough for me.” She elaborated, “If I’m 
with people I’m uncomfortable with, I won’t share 
my ideas. I would just do everything that they say.”

P1 raised issues related to differing ideas about the 
direction of projects. She also noted the problems of 
having to work in confined spaces and of the noise 
level when everyone talked and planned at the same 
time in PBL environments.

Two participants conveyed their hesitance about 
depending on other people to complete their work 
effectively, with P4 claiming, “If they do something 
wrong and I’ve done all my work, it’s all their fault.” 
P3 and P4 both said that they preferred independent 
work to PBL, citing differing personalities, levels of 
ability, work speeds and quality of work, as well as 
problems related to meeting outside class time.

Teachers can address these concerns by allowing 
students to choose their own groups, by allowing 
flexible project timelines, and by coaching students 
on group dynamics and productivity.

The Classroom
The participants identified numerous classroom-

based barriers to optimal mathematics learning.
P3 and P4 cited noise and distractions as factors 

that prevented them from focusing on their work.
P1 saw the lack of time given to respond to teacher 

questions as a barrier, asserting that it “doesn’t give 
people that many chances to answer questions.” P2 

reported that it “brings me down [when] I’m trying 
to figure out the answer and they already said [it].”

P3 (who had taken three years of math in French 
before pivoting to classes in English) and P2 both 
discussed communication as a barrier to learning. P2 
sat beside three students who often spoke another 
language, and she struggled because she “focused 
less on math and more on trying to figure out what 
they were trying to say.”

All four participants discussed the downside of 
technology in the classroom, referring to its distrac-
tive nature as a barrier to learning. Participants ex-
plained that students “sneak onto YouTube” or other 
websites and “lie, saying they’re doing their work.” 
As summarized by P4, “It’s hard to keep a junior high 
school student focused on the task at hand.”

It would behoove teachers to be aware of the dis-
tractive elements in the classroom that serve as bar-
riers to student learning and to mitigate their 
effects.

Learning Supports
During data analysis, I identified myriad factors 

that support student learning in mathematics. Within 
this theme, five subcategories emerged: the teacher, 
peers, personal strategies, external supports and 
technology.

The Teacher
All four participants spoke of the importance of 

having a strong teacher who is willing to help stu-
dents, who explains material effectively and who 
allows multiple methods of finding answers. P3 spoke 
about how her teacher “would explain different 
[ways] to certain kids” and “write it down if it was a 
reading question to make it easier for me.”

Three participants insisted on the importance of 
communicating directly and sharing work progress 
with the teacher. Teacher–student relationships di-
rectly affect student success, and the participants saw 
teachers who were “encouraging,” “nice” and “un-
derstanding” as more approachable and supportive. 
P3 explained that students should “talk to [teachers] 
about the way [they] understand,” which is far easier 
when the student and teacher feel comfortable with 
each other.

P2 and P3 noted the importance of accommodating 
students’ individual needs and differentiating learning 
in the classroom. This is consistent with prior re-
search, which found that it is vital for teachers to have 
the ability to nurture trusting, caring relationships 
with and between students, in order to create an at-
mosphere of safety where everyone feels involved, 
appreciated and able to communicate openly 
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(Dunleavy 2015; Griggs et al 2013; Tait-McCutcheon 
and Loveridge 2016).

Peers
One of the most discussed topics across the inter-

views was peer support. All four participants men-
tioned often their strong belief that peer support and 
collaboration were essential to their success in the 
classroom, a finding supported by the research 
(Brenner, Bianchini and Dwyer 2016; Griggs et al 
2013; Tait-McCutcheon and Loveridge 2016).

P1 stated that working with peers made learning 
math “more fun and easy,” a sentiment echoed by the 
other three participants, who explained that through 
working together, students could share methods and 
ideas.

All the participants made it known that they en-
joyed supporting their classmates as much as seeking 
help themselves. According to P4, the collaborative 
nature of the math classroom created an environment 
where students were “all very supportive of each other 
and help each other learn what we need.” P3 specified 
that sometimes she would ask what the right answer 
was and work backward to learn how to find it, while 
at other times she would ask other students, “Which 
way are you doing it?”

Three participants pointed out that group work in 
PBL situations could involve idea sharing and helped 
fill in knowledge gaps for each group member. P2 
stated, “Sitting next to people I’m comfortable with 
is really good for me. They try to explain . . . and go 
over and over it until I understand.”

The participants unanimously agreed that peer 
support was extremely important to finding success 
in math. Thus, teachers should be ever cognizant of 
the benefits of peer support and should continually 
promote healthy collaboration in the classroom.

Personal Strategies
Three participants disclosed the personal strategies 

they employed to help them achieve success in math-
ematics, noting the importance of practice and com-
pleting assigned work.

P1 and P3 both referred to their personal learning 
style as being visual-spatial. P1 stated, “If I do hands-
on stuff, I understand it better.” P3 seconded this 
sentiment and added, “I have to visually see the 
pictures.” P1 talked about how supportive it was to 
her learning to explore different methods before se-
lecting the one that worked best for her.

External Supports
Both P1 and P2 disclosed that they spent time with 

a tutor outside school, which helped support their 

mathematical understanding. P3 noted that regular 
time spent working on math with parents was helpful, 
expressing that her mom could “explain it in a smaller 
way.” Additionally, P3 spoke of private classes she 
had attended in prior years to augment her learning.

Technology
All the participants confirmed that technology was 

present in their classrooms and that it supported their 
learning in mathematics, despite the barriers it 
presented.

P1 and P2 pointed to the academic benefits of 
YouTube. Many mathematics help videos are avail-
able to explain concepts when other support is not 
available. P1 and P4 explained that websites such as 
Mathletics and Math Antics were strong learning 
supports for them, for both extra practice and video 
tutorials. P2 shared that her math class used Google 
Classroom and that the teacher posted notes and sup-
port materials for the students. In terms of working 
collaboratively, P3 said that computers could be 
helpful “if we’re working on a project.”

All participants indicated that it would be helpful 
if teachers could figure out a way to ensure that stu-
dents were responsible when using technology, but 
they did not seem confident that this would happen.

Student Engagement
The participants were eager to detail the factors 

that affected their engagement in mathematics learn-
ing. Because of the nature of the responses, I have 
arranged this emerging theme into two sections: en-
gagement and disengagement.

Engagement
The participants mentioned an array of factors that 

increased their engagement in mathematics.
P1 shared that her teacher told students that “there 

are no right and wrong answers,” and she noted that 
this process-based approach made it “nice to 
participate.”

All four participants agreed that mathematical 
content could be fun and engaging. P1 and P2 both 
said that they enjoyed “learning new things,” and P2 
spoke of the sequential aspect of math, claiming that 
students got to “build on what [they] learned about 
last year.” P4 indicated that he “enjoys the challenge 
and the subject matter.”

An interesting revelation by P3 was that she would 
demonstrate her engagement to her teacher not by 
raising her hand but, rather, by “mouthing the answer 
to [herself] instead of [saying] it out loud.” Another 
indicator of student engagement, suggested by both 
P1 and P2, was attention-seeking behaviour, such as 
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engaging in class talks and going in front of the class 
to explain concepts to peers. P2 explained that doing 
this “shows the teacher that I care.”

Three participants stated that they engaged in and 
were motivated by math when they experienced suc-
cess. This is substantiated by other studies, which 
have found that self-efficacy positively correlates with 
effort and achievement and inversely correlates with 
the presence of mathematical anxiety and the per-
ceived difficulty of the content (Çiftçi 2015; Gafoor 
and Karukkan 2015; Martin and Rimm-Kaufman 
2015; Mata, Monteiro and Peixoto 2012). P1 stated, 
“When people get it, they’re really noisy because 
they’re confident.”

Based on these participant perceptions, teachers 
would be wise to facilitate student exploration of 
curricular content, provide opportunities for meaning-
ful class discussion, and celebrate students’ learning 
breakthroughs and successes.

Disengagement
Three participants cited the mood in the classroom 

as contributing to their disengagement from math. P1 
clarified that “if it’s too quiet, it gives you a vibe that 
no one gets it,” which “brings you down.”

For all four participants, content emerged as a 
source of disengagement, for a range of reasons. P4 
stated that the content was sometimes “too easy” and 
“boring,” whereas P1 and P2 said that they disengaged 
when faced with an utter lack of understanding.

For P1, P2 and P3, feelings associated with math 
anxiety were also an impetus for disengagement. This 
is pertinent for mathematics teachers to consider, 
alongside several studies that have found that students 
who find mathematics easier and who have higher 
self-efficacy are more willing to seek help, whereas 
those who struggle and have lower self-efficacy tend 
to quit when the perceived difficulty is too high (Ga-
foor and Kurukkan 2015; Martin and Rimm-Kaufman 
2015; Newman and Schwager 1993). These three 
participants conveyed a sense of fear associated with 
giving wrong answers in front of others. Two of them 
added that they disengaged when other students came 
up with the answers too fast and were not 
supportive.

Classroom distractions served as a source of dis-
engagement for all four participants. P4, who claimed 
to have a high success rate in mathematics, asserted 
that he found it “very hard . . . to concentrate” when 
the classroom pacing was too slow. He stated, “I usu-
ally end up talking because I get too bored.”

It is essential that teachers become attuned to the 
factors contributing to student disengagement and 

that they work to ensure that classroom practices af-
ford all students the unimpeded opportunity to learn.

Assessment
The participants shared the assessment practices 

that enhanced their mathematics learning and helped 
them experience success in the mathematics 
classroom.

P1 and P4 both expressed the importance of teach-
ers providing review packages for students. P1, P2 
and P3 claimed to have no aversion to testing, but 
they felt somewhat apprehensive about concepts that 
they did not understand well. P3 said that she pre-
ferred assignments and book work to projects and 
exams, because she preferred “not to work with other 
people” and feared “not understanding on a test” 
because one misunderstood concept can “hurt my 
whole . . . test.” P4 said that he favoured tests over 
other assessments because he wanted to “just get 
down to the material rather than spending forever on 
a whole bunch of tiny projects.” P1 suggested that, 
with regard to group work, teachers should consider 
“marking just one person, not the whole group” be-
cause “if the group does badly, you get the mark, too.”

The participants did not seem overly concerned 
about the type of assessments teachers provided; 
instead, they focused on how they could support 
themselves in day-to-day mathematics learning to 
prepare for those assessments, a notion reflected by 
the significantly lower number of codes in this theme.

Suggestions for Teacher Action
As evidenced by these findings, student perspec-

tives are valuable for informing teaching practices 
and should be central in conversations of pedagogy. 
Based on my research findings, I offer the following 
six suggestions for teacher action, along with other 
supporting research:

•	 Be aware of content-, teacher-, peer- and class-
room-related barriers that prevent students from 
reaching their full learning potential and that 
contribute to the development of debilitating math-
ematics anxiety (Griggs et al 2013; Lin, Durbin 
and Rancer 2017; Maloney and Beilock 2012; 
Núñez-Peña, Suárez-Pellicioni and Bono 2013; 
Ruff and Boes 2014; Whyte and Anthony 2012).

•	 Maximize the availability of learning supports in 
the classroom so that students are best equipped 
to overcome barriers to learning (Brenner, Bi-
anchini and Dwyer 2016; Dunleavy 2015; Griggs 
et al 2013; Tait-McCutcheon and Loveridge 2016).
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•	 Build healthy, supportive relationships with stu-
dents to nurture the development of trust and care, 
which serve as the foundation of optimal learning 
environments (Dunleavy 2015; Griggs et al 2013; 
Tait-McCutcheon and Loveridge 2016).

•	 Encourage regular, meaningful collaboration be-
tween students, including PBL, and promote the 
benefits of peer support (Brenner, Bianchini and 
Dwyer 2016; Griggs et al 2013; Tait-McCutcheon 
and Loveridge 2016).

•	 Be aware of classroom dynamics (including the 
notion of productive noise, helpful and harmful 
student interactions, and the positive and negative 
impacts of technology) to ensure that students are 
placed in positions that will enhance their learning 
(Lin, Durbin and Rancer 2017; Maloney and 
Beilock 2012; Ruff and Boes 2014; Tait-McCutch-
eon and Loveridge 2016; Whyte and Anthony 
2012).

•	 Adopt a process-based, rather than a product-
based, approach to mathematics that celebrates 
mistakes as part of the learning process and em-
braces the idea of productive struggle. Using such 
an approach will reduce the effects of math anxiety 
and prevent student disengagement (Brenner, Bi-
anchini and Dwyer 2016; Dunleavy 2015; Núñez-
Peña, Suárez-Pellicioni and Bono 2013; Ruff and 
Boes 2014; Tait-McCutcheon and Loveridge 2016; 
Whyte and Anthony 2012).

Conclusion
This article has reviewed four themes that emerged 

surrounding the central phenomenon of junior high 
students’ perceptions of mathematics learning 
experiences:

•	 Barriers to student success in mathematics
•	 Learning supports that increase the likelihood of 

student success
•	 Factors that affect student engagement in 

mathematics
•	 The impact of assessment on mathematics 

experiences

The findings suggest that students are attuned to 
the intricacies of their mathematics learning experi-
ences. Thus, it is evident that the voices of students 
warrant regular consideration in discussions about 
pedagogical advances in and beyond the mathematics 
classroom. Although students seem to be less inclined 
to weigh in on assessment practices, they are acutely 
aware of the barriers that prevent them from achieving 
success, well versed in seeking ways to support and 

augment their own learning, and cognizant of the 
factors affecting their engagement in mathematics.
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Learning from Math Class Misadventures: 
The Experiences of Students with 
Dyslexia and Considerations for 

Educators
Lauren D Goegan, Amy Domenique Gadsden,  

Wyatt Schiefelbein and Lia M Daniels

Most people have heard the term dyslexia. Popular 
culture often suggests that dyslexia involves the re-
versal of letters in words, leading to jokes such as 
“Dyslexics of the world, untie” or jokes about chil-
dren writing letters to Satan instead of Santa. Others 
see dyslexia as a difficulty with understanding the 
sounds in words (phonological knowledge of the 
language). These perspectives lead people to interpret 
dyslexia as having an impact on young students when 
it comes to language (more specifically, English 
language arts class) but perhaps not mathematics. 
Indeed, dyslexia is predominantly characterized as a 
reading-based learning disorder that can also affect 
writing. Challenges in mathematics are often labelled 

as math-based learning disorders (such as dyscalcu-
lia), which is a separate category.

Although dyslexia is often diagnosed and treated 
as separate from mathematical skills, one can be di-
agnosed with both dyslexia and dyscalculia. More-
over, difficulties in reading and math can have similar 
underlying challenges, including effects on working 
memory, processing speed and oral language com-
prehension (Willcutt et al 2013). The experiences in 
math class of students with dyslexia can provide in-
sight into how dyslexia affects learning and perfor-
mance in mathematics and how teachers can support 
these students.
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Toward that end, this narrative article has two main 
sections. First, we present the retrospective first-
person stories of three students with dyslexia, who 
offer various viewpoints on what it is like to be a 
student with dyslexia in an elementary math class. 
Second, through these stories, we explore the op-
portunity to identify and adapt practices in the 
classroom.

These accounts are meant to help teachers think 
about their own teaching practices and how best to 
support student diversity in the classroom, building 
on the idea of universal design for learning (UDL) 
and motivation design principles. This examination 
is both timely and important. As the Alberta Educa-
tion website states,

Future curriculum focuses on foundational 
elements, such as reading, writing, and arith-
metic, while also incorporating competencies 
like problem solving and critical thinking.
	 Literacy and numeracy foundational ele-
ments are in every subject and at every grade 
level, and with greater emphasis on the devel-
opment of competencies.1

Therefore, supporting students with dyslexia when it 
comes to mathematics instruction is vital.

Stories of Three Students with 
Dyslexia

Story 1: Misreading the Problems
I always hated math class. However, as I look back 

on my time in elementary school, I wonder if this 
hatred stemmed from the math itself or from the 
words associated with math.

The first time I remember disliking math was in 
Grade 2. As part of math class, we learned how to 
spell all the numbers up to 100. For a student who 
couldn’t spell in general, having to spell in math class 
was terrible. To make matters worse, the paper would 
always come back covered in red ink from all my 
spelling mistakes, undoing any positive attitude I may 
have had toward math. Those days, it felt like math 
class was just an extension of English language arts, 
and all I wanted was more numbers and fewer words. 
Then, once we had learned how to spell all the num-
bers, we were given math tests that contained no 
numerals, only spelled-out numbers. I was lost in the 
sea of words, and I felt like I was drowning. I couldn’t 
read questions properly, making it impossible for me 
to ever really get to the “math part” of a question. 

I often sat in class frustrated, knowing that I could do 
the math but unable to see the math in front of me. 
The teacher seemed to ignore my challenges and just 
told me to try harder next time.

Things didn’t get any easier in the years to come, 
as math worksheets and tests began to include word 
problems. To this day, I refer to word problems as a 
reading test. The first time I remember encountering 
word problems was in math class in Grade 4. We were 
completing a unit on medieval times, and the word 
problems reflected this theme. Therefore, on top of 
the usual words I couldn’t read, this unit introduced 
a new, specific vocabulary, which I also could not 
read. The words prevented me from showing what I 
actually knew in math because I had no idea what the 
questions were asking. My strategy was to guess what 
math skills the words were trying to get at: a big 
number with a small number probably meant a sub-
traction question; two bigger numbers probably meant 
addition. Guessing is never very accurate, and the red 
ink once again covered my paper. The words contin-
ued to get in the way, even though I could answer all 
the questions when they used numerals.

After a few tests like this, my teacher began to real-
ize that something was going on when it came to the 
word problems. This teacher took the time to look at 
my tests and recognized the pattern in my errors. She 
recognized that my mistakes could be attributed to 
the words and not the math, and she was willing to 
make changes to support my success.

Specifically, she began to read the math tests aloud 
to me. Something about this combination of auditory 
and visual information supported my comprehension 
of the questions. Once I could understand what a 
question was asking, I could perform the necessary 
mathematical operation, and the red ink began to 
disappear. This supported my learning and became a 
strategy for solving word problems in the future. Of-
fering multiple modalities for students can support 
the various learning needs in the classroom.

Story 2: Misunderstandings and 
Misperceptions

As an elementary student with dyslexia and other 
learning disabilities, I had many deeply wounding 
experiences, especially in math. As early as kinder-
garten, the impact of my disabilities was visible to 
others, as well as to myself. I had difficulty with 
expressive language, including articulation of letters 
and numbers, which included reversal, inversion and 
overall production. At the time, this was attributed to 
a behavioural challenge rather than a developmental 
one. As a consequence, I was often “othered” by peers 
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and teachers. I felt the impact of my disabilities in 
how others responded to me, which affected my self-
esteem, self-efficacy and self-worth.

One of my most devastating math experiences oc-
curred in Grade 4. I had experienced much under-
achievement and failure in math up to then. I often 
felt frustrated in math class because of the amount of 
time I needed to attend to the lesson, write down the 
instructions and notes, process the instructions and 
notes, apply new knowledge, and ask questions and 
problem solve. As a consequence, I would often 
disengage and cry. I felt humiliated and stupid.

The specific incident took place following a sum-
mative assessment on long division. The teacher 
walked around the classroom, returning our tests. The 
silence as she passed my desk was deafening. She 
offered praise or encouragement to other students, 
but she had no words for me. Her silence felt like a 
punishment, a reinforcement of my inadequacy and 
inability. I felt shame. I turned my paper over. Red 
ink everywhere. Circles and lines scarred my worth-
less work. Every answer was wrong. On the bus ride 
home, I cried so much that the red turned to pink, and 
all that remained of my work were faint pencil lines.

My turning point in mathematics happened a few 
years later. After continued failure and underachieve-
ment, I was incredibly anxious about an upcoming 
test on fractions. I couldn’t keep up in class—every-
thing was moving too fast. Thankfully, an empathetic, 
patient and skilled substitute teacher changed the 
course of my achievement in math forever.

She sat with me for an entire morning, teaching 
me the fundamentals of fractions and the order of 
operations involved in solving problems. She helped 
me identify my challenges and areas of need, and 
asked me insightful questions that forced me to con-
struct my own strategies to mitigate the impact of my 
disabilities in math. She took the time to respond to 
my questions, soothed my anxiety and was sensitive 
to my frustration. She also helped me construct a code 
book of sorts that outlined the steps involved in solv-
ing problems in multiple modalities (diagram, text, 
orally) that made sense to me—a key reference that 
would enable me to study outside of class to reinforce 
concepts (see Figure 1). Following this, I was moti-
vated and committed to showing both myself and my 
teacher that I could be successful, that I was capable 
and that I did understand. The result was my first A 
ever in math!

That teacher helped me develop academic self-
efficacy, which improved my self-esteem. As a result, 
I was more willing to take risks, advocate for myself 

and accept the impact of my disabilities as specific 
rather than global.

Story 3: Miscommunication When 
Asking Questions

In math class, I had a lot of trouble. Certain expec-
tations in math were perhaps a bit beyond what I was 
capable of at the time—for example, times tables. I 
still don’t know my sixes, sevens and eights, and I 
am not keen to learn them now. My experiences with 
word problems in math were less than ideal. I strug-
gled with decoding the words, especially in terms of 
what aspects of the question were relevant. The lack 
of empathetic support led me to believe that my teach-
ers were eager to fail me. They did not seem eager to 
support my learning needs in their classrooms.

Aside from all this, a major factor contributing to 
my poor performance in math class was miscom-
munication. I felt like my teachers couldn’t under-
stand me and the questions I asked. Oral language 
difficulties, such as problems conveying my ideas, 
often hindered my performance in math class, espe-
cially when I was required to explain my work. While 
I enjoyed math, math class itself was often a trying 
time for me.

I imagine that most people have had an experience 
like this: you say something you think is intelligible 
and receive in return a blank stare or, worse, a hesitant 
answer to a question you did not ask. In elementary 
school math class, this happened to me regularly, and 
it was the height of embarrassment.

Sometimes I would press on, trying to find a new 
way to phrase my question. After all, maybe my 
wording was the problem. This strategy worked 
maybe twice, and when it did, I felt like the teacher 
appreciated what I was bringing to the classroom and 
recognized that I was capable of understanding the 
material at hand. When it didn’t work—which was 
most of the time—I was mortified, because now my 
peers were frustrated with my persistence and appar-
ent lack of understanding.

I learned that it was easier to pretend the teacher 
had answered my question. I spent a lot of time in 
elementary and middle school pretending I had asked 
questions I had not asked. This saved me some embar-
rassment, but I felt largely on my own when it came 
to learning math. Often, it felt like teachers assumed 
what I was going to ask, and that was the question 
they would then answer, regardless of what I had actu-
ally intended. Challenges with oral language com-
munication had an impact on my math performance, 
as I did not feel that I was on the same page with my 
teachers.
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But to say that I was bad at math would be a mis-
take. I was rather good at math. I understood how 
math could be helpful in many contexts and, thus, 
why it was important to learn.

As I struggled to communicate in math class, I 
turned to a different place to learn math: art class. 
Through art, I could explore math in all kinds of ways. 
Multiplication, division, fractions, algebra, geome-
try—everything mathematical related to art in really 
fun and interesting ways. And the art teachers had 
fewer expectations as to what kinds of questions I 

would ask—miscommunication rarely happened dur-
ing art class for me. My words worked there, even to 
sort out math. Because of this, I sincerely believe I 
learned more math in art class than I did in math class. 
Art allowed for visual exploration of concepts and 
ideas, an area of self-expression at which I felt adept. 
Art provided the freedom to explore how math was 
important to my goals. What is more, I was good at 
art, and thus I needed to be good at math. So I devel-
oped my math skills as they related to art.

FIGURE 1. Sample code book page for adding fractions.
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The lesson in this story is that, as educators, we 
must try to really understand what a student is asking. 
Miscommunication is quite natural, but it takes two 
people to recognize that it is happening in order to 
then address it. Based on my own experiences with 
dyslexia, I would say that the root of the diagnosis is 
miscommunication—in my case, miscommunication 
that was exacerbated in math class but mitigated in 
art class.

Learning from These 
Misadventures

The stories of these three students highlight how 
students do not leave their dyslexia at the door of the 
math classroom. Dyslexia has major implications for 
math learning, performance and motivation. From 
these stories, we can extract important considerations 
for a responsive and inclusive math classroom that 
would align with Alberta’s vision and advocacy for 
an inclusive education system.2

Universal Design for Learning
Universal design for learning (UDL) allows for the 

development of flexible learning environments that 
can accommodate individual learning (Edmunds and 
Edmunds 2018). The challenges described by the 
three students with dyslexia could have been miti-
gated with the application of UDL to math class.

The Center for Applied Special Technology 
(CAST) outlines three UDL guidelines: multiple 
means of representation, multiple means of action 
and expression, and multiple means of engagement.3 
Next, we describe how these guidelines could have 
improved the experiences of the three students.

Multiple Means of Representation
The first UDL guideline recommends providing 

students with multiple means of representation.
The first and second stories highlight how having 

access to multiple means of representation is vital for 
learners with disabilities. It gives them different ways 
to communicate and access information. For example, 
both stories underscore how providing alternatives to 
written information can contribute to better under-
standing. In the second story, offering ways to cus-
tomize the display of information could have sup-
ported the student’s understanding of the mathematical 
concepts to be learned.

As evidenced in all three stories, not all students 
learn best from reading, particularly those who have 
difficulty with breaking down the sounds in words, 
or those who have below-grade-level reading abilities. 

Furthermore, clarifying new vocabulary or words 
needed to complete the task can help reduce students’ 
challenges with comprehension of word problems. 
Students must have equitable access to the content of 
questions so that they can meaningfully contribute to 
in-class activities in a timely manner. That is, time 
should be spent on comprehension and the develop-
ment of requisite skills (such as problem solving) 
rather than on decoding. Knowing the words in a 
question is central to being able to answer that 
question.

Also, highlighting critical features and big ideas 
in a lesson can be instrumental in supporting those 
who have challenges with working memory or pro-
cessing speed. A big idea is a place where all students 
can start, and they can build their knowledge from 
there. Using big ideas is particularly helpful for those 
with dyslexia because it gives them structure on which 
to build their learning.

Multiple Means of Action and Expression
The second guideline for UDL is multiple means 

of action and expression. Action and expression refer 
to the how of learning.

Indeed, in the second story, the teacher probed the 
student’s learning by using questioning to help the 
student develop strategies for future challenges in 
math. This can serve as a think-aloud approach to 
better understand the gaps in a student’s learning and 
how the student is making sense of the content. This 
approach allows the teacher to understand where the 
student is and to build from there, and it allows the 
student to be active in the learning process.

Furthermore, developing a code book with a check-
list or template gives students an excellent reference 
for when they encounter similar problems in the fu-
ture. This allows them to manage information and 
resources in a format that is accessible and that sup-
ports their learning needs. All students can develop 
a code book related to how they learn best. One 
student might write out the concepts, one might draw, 
and one might use different colours. Students can use 
a format consistent with how they learn.

This guideline could also be a consideration for 
word problems. Is there another way that word prob-
lems can be presented to show learning of math 
concepts? Indeed, in the first story, using a medieval 
setting for word problems required that students 
understood more concepts and terms than just those 
presented in math. This situation can be particularly 
challenging for students with dyslexia, who may 
struggle with vocabulary as a result of below-grade-
level reading skills. While teaching across curricula 
can have benefits, using real-life scenarios in word 
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problems might be more helpful for students who 
struggle with words. Building from that, acting out a 
word problem to ensure that students understand the 
content before they attempt to answer the math com-
ponent can assist students with dyslexia.

Multiple Means of Engagement
The third guideline for UDL—and an important 

component of learning—is multiple means of 
engagement.

All three stories describe students who sat in class 
disengaged, uninspired, frustrated or even in tears. A 
teacher’s use of a red pen was mentioned in two of 
the stories as a practice that the students experienced 
as punitive and unsupportive of their learning, as well 
as one that undermined their sense of self-efficacy 
and self-worth. Teachers must ensure that the learning 
environment is supportive and that it is a place where 
mistakes can happen and are, in fact, encouraged.

Teachers can support student engagement by creat-
ing opportunities for cooperation and collaboration 
in class and by facilitating a community environment. 
For example, in the first story, the student who 
struggled with the reading aspects of the word prob-
lem could have been paired with a student who had 
challenges with the numbers. Using their strengths 
to offset their challenges and to support each other 
can help students see that everyone has both strengths 
and areas of need. Furthermore, this can allow for 
meaningful peer interaction and the development of 
friendships, which is particularly important for those 
with learning disabilities, as they often have difficul-
ties with social skills (Wiener and Schneider 2002).

Additionally, when it comes to engagement, help-
ing students develop personal coping skills and strate-
gies is imperative. As seen in the second story, stu-
dents who have challenges in the classroom can 
experience high levels of anxiety and frustration. 
Having resources to manage that frustration and to 
develop coping strategies when challenges arise is 
important for students’ engagement, achievement and 
continued motivation. In the third story, miscommu-
nication was discussed as presenting obstacles to the 
learner in math class, but it was not an issue in art 
class. Math teachers must be as willing as teachers 
in other subjects to be patient, to understand the 
learner and to engage in meaningful dialogue.

Motivation Matters Most
In a video about UDL, David Rose, cofounder of 

CAST, notes that engagement is perhaps the most 
important component of UDL: “If we don’t engage 
students in learning, don’t make it important to them, 
make them motivated for it, then none of the other 

forms of representation or expression will be that 
important” (National Center on Universal Design for 
Learning at CAST 2010, 4:30). Therefore, we want 
to highlight the importance of supporting student 
motivation in the classroom.

Researchers at the Alberta Consortium for Motiva-
tion and Emotion (ACME), a research group that 
supports graduate students from programs across the 
Department of Educational Psychology at the Uni-
versity of Alberta, have been examining motivation 
design principles (Linnenbrink-Garcia, Patall and 
Pekrun 2016; Radil 2017). The five principles are as 
follows:

•	 Supporting student competence
•	 Enhancing autonomy
•	 Designing personally relevant and active tasks
•	 Modelling learning
•	 Encouraging relatedness

Next, we discuss how these five principles are relevant 
to students with dyslexia in math classes.

Supporting Student Competence
The first motivation design principle involves sup-

porting student competence through well-designed 
instruction or encouraging feedback (Linnenbrink-
Garcia, Patall and Pekrun 2016).

The three stories from students with dyslexia de-
scribe how hard it is to maintain motivation in math 
class when the words in word problems prevent 
students from accessing the numbers; when their ef-
forts are met with red ink, large Xs and silence from 
teachers; and when their questions go unanswered. 
In contrast, well-designed instruction that embraces 
multiple modalities of presenting information or that 
provides multiple avenues for working with the in-
formation helps students learn and apply new knowl-
edge and skills. When teachers ensure that students 
can get through the words to reach the math and then 
experience success, students’ motivation increases.

Enhancing Autonomy
The second motivation design principle is autono-

my. This involves allowing students to make decisions 
about or exercise control over aspects of their learning 
(Linnenbrink-Garcia, Patall and Pekrun 2016).

The students in the three stories experienced almost 
no control over their own learning; rather, they pas-
sively tried to meet the requirements set out by their 
teachers. However, the example of creating a code 
book that the student could access outside the class-
room shows how empowering students not only 
sustains their motivation but can also bring about 
success.
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Designing Personally Relevant and Active Tasks
The third motivation design principle is task de-

sign, which involves selecting relevant and interesting 
activities in order to facilitate active involvement 
(Linnenbrink-Garcia, Patall and Pekrun 2016).

Again, the three stories of students with dyslexia 
do not mention class activities or assignments linked 
to the students’ interests. Rather, the stories describe 
the students’ challenges with the tasks teachers pre-
sented to them and the challenge of completing those 
tasks with interest largely absent.

Student interest is an important consideration—not 
only with students with dyslexia but with all students 
in the classroom.

Modelling Learning
The fourth motivation design principle is model-

ling learning, which includes demonstrating a good 
attitude toward students and teaching with enthusiasm 
and energy (Radil 2017).

The importance of this principle can be seen most 
clearly in the second story. The first teacher men-
tioned by the student was not seen as having a positive 
attitude toward the student’s learning challenges, and 
the teacher’s silence when returning tests is a salient 
memory for the student decades later. However, the 
second teacher, who sat and worked with the student, 
had a positive effect on how the student thought and 
felt about him- or herself, transforming the student’s 
frustration and feelings of inferiority into a sense of 
possibility.

Teachers can make all the difference through their 
own attitudes and enacted forms of those attitudes. 
Positivity and possibility are contagious (Frenzel et 
al 2018). Teachers set the tone through their modelled 
and enacted attitudes and behaviours.

The value of modelling learning is also discussed 
in the third story. The lack of enthusiasm and energy 
in the math classroom, which arose from a sense of 
generalized miscommunication, inhibited the stu-
dent’s active participation in classroom activities. 
Conversely, exciting and creatively engaging activi-
ties in art class fostered the student’s enthusiasm for 
math as a means to achieve personal goals and ambi-
tions, which in turn improved the student’s math skills 
markedly.

Encouraging Relatedness
The fifth motivation design principle is relatedness, 

which means that students feel supported and have a 
sense of belonging among other students and their 
teachers (Linnenbrink-Garcia, Patall and Pekrun 
2016). This can include developing genuine and car-
ing relationships and a sense of community, which is 

critical to facilitating an environment where diversity 
is celebrated.

This sense of community was markedly absent in 
the third story. The student was uncomfortable with 
rephrasing a question that the teacher had misunder-
stood the first time, and the student felt a sense of 
impatience and pressure to remain quiet from peers. 
Developing a sense of relatedness helps students feel 
comfortable with asking questions and making 
mistakes.

On the other hand, a sense of relatedness was pres-
ent in the second story, in the form of the teacher’s 
enacted empathy and genuine investment. The student 
was able to articulate and identify this relatedness 
based on the behaviour of the teacher. Teachers who 
take the time to show genuine investment and caring 
are able and willing to develop positive relationships 
with students (Noddings 1991).

Starting a New Adventure
The math class misadventures experienced by the 

three students with dyslexia have allowed us to ex-
plore UDL guidelines and motivation design princi-
ples for students with diverse learning needs in the 
classroom. We hope that the students’ accounts gener-
ate reflection and meaningful discourse about current 
pedagogy and teacher practice. If nothing else, these 
stories highlight that dyslexia is not a concern only 
in English language arts class. It also affects students’ 
ability to access math concepts, as well as their con-
fidence in expressing themselves more generally.

Notes
1. See www.alberta.ca/curriculum-development.aspx (ac-

cessed August 8, 2019).

2. See www.alberta.ca/inclusive-education.aspx (accessed 
August 8, 2019).

3. See http://udlguidelines.cast.org (accessed August 8, 2019).
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Teaching Ideas_ ____________________________________

Inscribing Squares in Triangles
Timothy Sibbald

Through considering the problem of finding four 
points on the sides of a triangle that form a square, 
teachers can explore a variety of teaching possibili-
ties. This article begins with an approach for inter-
mediate math students and develops further methods 
suited to senior math students.

I conjecture that every triangle has four points on 
its sides that form a square. Whether this conjecture 
is true or not, the instructional value lies in having 
students determine where the square is for various 
triangles and whether the conjecture is true. The ap-
proach taken here is tiered in order to allow teachers 
to assess the suitability of the task for different grade 
levels.

Teachers can make this question accessible to in-
termediate students by looking at special triangles. 
To begin, consider an equilateral triangle. The geom-
etry is shown in Figure 1 and has been augmented 
with various properties explained below. For students, 
constructing diagrams using dynamic geometry soft-
ware provides a starting point for thinking about the 
location of the square.

For this diagram, the equilateral triangle,  ABC, 
was constructed in GeoGebra as a regular polygon, 
and then two points, D and E, were placed in arbitrary 
positions on side AB. Line segments perpendicular 
to AB were extended up from D and E to G and F, 
respectively, and a line segment, GF, was added to 
make the quadrilateral DEFG. The points D and E 
were moved along AB until the quadrilateral DEFG 
appeared, by visual inspection, to be a square. This 
process is not exact, but it is sufficient to provide a 
circumstance suitable for talking about properties in 
intermediate grades. The conjecture that an equilateral 
triangle can have an inscribed square now seems quite 
plausible, albeit unproven.

Suppose DEFG is a square in the equilateral tri-
angle  ABC and that they share an axis of symmetry. 
This means that AD has an equal length to BE. Since 
DEFG is a square, DE = GF = DG = EF. Since DEFG 
is a square, DE is parallel to GF. The geometry is 
quite good for students to prepare a formal explana-
tion that  ADG is congruent to  BEF. In addition, 
although it is more challenging, students can deter-
mine that  CFG is an equilateral triangle (hint: add 
the line of symmetry to make two congruent 
triangles).

Last, notice that  ABC has rotational symmetry, 
and any of the three sides could be selected as the 
side with two vertices. This implies that there are 
three possible squares, and adding the other two 
squares generates Figure 2. This facilitates a variety 
of classroom questions: Can you find a rhombus? 
How many kite shapes can you find? What is the 
relationship between the areas of a hexagon, three 
kites and an equilateral triangle? And, of course, there 
is the classic question of how many triangles appear 
in Figure 2.

FIGURE 1. A square with vertices on an equilateral triangle.
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An isosceles triangle has an inscribed square when 
there are two vertices on the side with the unique 
length (Figure 3). This case is similar to the equilateral 
case because the square shares its axes of symmetry 
with the triangle. The isosceles case allows for dif-
ferentiation of instruction where students can explore 
whether there are any squares with only one vertex 
on the side of unique length. This scenario is shown 
in Figure 4.

In Figure 4, ∠ A and ∠ B are equal, and ∠ AEF is 
a right angle, so ∠ AFE is the complement of ∠ A. 
However, ∠ AFE is also the complement of ∠ BFG 
(since ∠ EFG is a right angle). That means that ∠ BFG 
is equal to ∠ B, and therefore  FBG is an isosceles 
triangle. This can be a teachable moment in which 
similar triangles are introduced.

The discovery that  FBG is isosceles leads to 
looking for other characteristics and making conjec-
tures. Students may suggest that  CDG is isosceles, 
but it isn’t generally—only when ∠ C is 45°. Explor-
ing such ideas is an important activity in the develop-
ment of geometrical thinking in the intermediate 
grades.

High school, particularly analytic geometry, is well 
suited to addressing this problem more generally. 
Suppose two vertices of the triangle are A(0, 0) and 
B(1, 0). Let the third vertex be C(p, q). There is a 
need to discuss the domain for this point. All triangles 
can be formed with 0 ≤ p < 1. In particular, when q 
is small, ∠ C will be obtuse.

This set-up also permits one to choose side AB as 
the side with two vertices of the square—without loss 
of generality. Considering these choices as an ap-
proach to simplify the interpretation is an important 
instructional moment in analytic geometry teaching. 
The set-up is shown in Figure 5, with a rectangle that 
is explained below.

FIGURE 2. The three squares in an equilateral triangle.

FIGURE 3. Inscribed square in an isosceles triangle.

FIGURE 4. Isosceles triangle with inscribed square with only 
one vertex on the side of unique length.
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In Figure 5, the approach to finding the square is 
to add a point X at (x, 0) that generates a rectangle. 
First, XD is perpendicular to the x-axis; then, DE is 
perpendicular to XD; and, finally, EF is perpendicular 
to DE. The intersection points can be found, and a 
rectangle must arise. This explanation is well suited 
to instruction because it simply says that a rectangle 
can be made without providing the instructional de-
tails. Having students write down a recipe of calcula-
tion steps, with no actual calculations, helps organize 
their thinking and serves to put the organizational 
steps into place before focusing on the details. For 
example,

A method for finding the square is to determine 
the equation of line AC so that both components 
of coordinate D can be written algebraically in 
terms of x. Then, by determining the equation of 
line BC, we can write the components of point E 
algebraically in terms of x. The distance XF can 
then be determined algebraically, as well as the 
distance XD. Setting these two distances equal to 
each other will provide an equation that is solved 
for x. That value of x will define the square inside 
the triangle (for the general values of p and q).

The specific steps are as follows:

Step 1. Find the equation of line AC.
This is direct variation with a y-intercept of 0. The 

equation is y = (q/p)x.

Step 2. Write out both coordinates of point D.

D(𝑥𝑥,𝑦𝑦) = �𝑥𝑥,
𝑞𝑞𝑞𝑞
𝑝𝑝
� 

Step 3. Find the equation of line BC.
This can be done in various ways. I will use slope-

point form. Also, x is already in use, so I need to use 
a different letter. In the equation, I use t, which will 
ultimately depend on x:

𝑦𝑦 = �
𝑞𝑞

𝑝𝑝 − 1
� (𝑡𝑡 − 1). 

Step 4. Write out both coordinates of point E.

E(𝑡𝑡, 𝑦𝑦) =  �𝑡𝑡,
𝑞𝑞(𝑡𝑡 − 1)
𝑝𝑝 − 1

� 

Step 5. Determine distance XF.
Since x is the left x-coordinate of the rectangle and 

t is the right x-coordinate, the distance is t − x.

Step 6. Determine distance XD.
This is the y-coordinate of point D, which is qx/p.

Step 7. Set distance XF equal to XD, and solve for t 
(in terms of p and q).

𝑡𝑡 − 𝑥𝑥 =
𝑞𝑞𝑞𝑞
𝑝𝑝

 ⇒  𝑡𝑡 = �
𝑝𝑝 + 𝑞𝑞
𝑝𝑝

� 𝑥𝑥 

FIGURE 5. Analytic geometry set-up.
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FIGURE 6. Validating the formulas by plotting the algebraic versions of the points.

This is major progress, but the use of two variables, 
x and t, lacks clarity. Hidden information is lurking, 
and students can be encouraged to problem solve the 
detail.

The resolution is that the y-coordinates of points 
D and E have to be equal. This fact was lost when t 
was introduced in order to avoid confusion over using 
x with two different meanings. Setting the y-coordi-
nates of D and E equal and substituting for t using 
step 7 goes like this:

𝑞𝑞𝑞𝑞
𝑝𝑝

=
𝑞𝑞(𝑡𝑡 − 1)
𝑝𝑝 − 1

 ⇒  
(𝑝𝑝 − 1)𝑥𝑥

𝑝𝑝
+ 1 = 𝑡𝑡 

      
=

(𝑝𝑝 + 𝑞𝑞)𝑥𝑥
𝑝𝑝

 ⇒  (𝑝𝑝 − 1)𝑥𝑥 + 𝑝𝑝 = (𝑝𝑝 + 𝑞𝑞)𝑥𝑥  

      
⇒ 𝑝𝑝 = (𝑝𝑝 + 𝑞𝑞 − 𝑝𝑝 + 1)𝑥𝑥 ⇒ 𝑥𝑥 =

𝑝𝑝
𝑞𝑞 + 1

. 

This can then be substituted into D in step 2:

D = �
𝑝𝑝

𝑞𝑞 + 1
,
𝑞𝑞

𝑞𝑞 + 1
�. 

This determines t in step 7:

𝑡𝑡 =
𝑝𝑝 + 𝑞𝑞
𝑞𝑞 + 1

. 

Then, it determines E in step 4:

𝑡𝑡 − 1 =
𝑝𝑝 + 𝑞𝑞
𝑞𝑞 + 1

− 1 =
𝑝𝑝 − 1
𝑞𝑞 + 1

 ⇒ 𝐸𝐸 = �
𝑝𝑝 + 𝑞𝑞
𝑞𝑞 + 1

,
𝑞𝑞

𝑞𝑞 + 1
�. 

Clearly, this will take far longer than one class. 
However, keep in mind that I have provided this solu-
tion in full generality. Students can choose point C 
and problem solve with specific values. I have pro-
vided the general form here to facilitate using a 
spreadsheet to verify student work. It can also be used 
for students to problem solve their own work. To do 
this, the teacher can provide the formulas, and stu-
dents can substitute their own values of p and q.

An alternative approach, and the one I prefer, is to 
have students graph the points they determine so that 
they can verify graphically if their points make sense. 
This is shown in Figure 6 for the specific triangle 
shown in Figure 5.

Students who need enrichment can be asked to 
determine the area of the square. The simplest way 
to do so is to use the side length that is the y-coordi-
nate of D and E. The area is

�
𝑞𝑞

𝑞𝑞 + 1
�

2
. 

Students can be challenged to explain why this 
doesn’t depend on p. Given that analytic geometry is 
relatively new to students, this will help them place 
a familiar result in a new context. Hints can be given, 
such as determining whether the base or the height 
of the square depends on p.

Over the years, I have found that activities like this 
are beneficial for students. The activity is tiered and 
allows for different entry points for different students. 
At the same time, students find that the strategy of 
mapping out strategic steps separately from complet-
ing the calculations in each step is quite effective and 
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useful. When the process of calculating is combined 
with the use of dynamic software for checking, stu-
dents are less apprehensive about the number of steps. 
As they progress and see themselves achieving agree-
ment between the algebra and the dynamic software, 
they become increasingly invested in achieving all 
the steps.

It may interest readers that the inspiration for this 
particular activity was an unsolved problem in geom-
etry. The inscribed square problem asks whether every 
closed loop that does not intersect itself has four 
points that are the vertices of a square. Clearly, this 

is true for triangles and, in fact, true for many curves, 
but it has not been proven for allowable curves.

Timothy Sibbald is an Ontario certified teacher (OCT) 
and an associate professor in the Schulich School of 
Education at Nipissing University, in North Bay, 
Ontario. He teaches in the preservice program and 
the graduate programs, with a focus on mathematics 
instruction. He is also the editor of the Ontario Math-
ematics Gazette, a publication of the Ontario Associa-
tion for Mathematics Education.
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Wacky Quadrilaterals
David Martin

What happens when you draw a quadrilateral (a 
four-sided figure) and connect the midpoints of each 
side? What if you did this over and over again?

Here is an activity that investigates that!

Activity
Have students draw any quadrilateral that takes up 

most of the page. They will then measure the interior 
angles, add them all together and record the measure-
ment. Next, they will measure and record the perim-
eter. (A recording sheet has been included on pages 
43–44.)

Then, have students measure each side and deter-
mine the midpoint. They will then connect the mid-
points and make a new quadrilateral (iteration 1). 
They will then measure and record the interior angles 
and the perimeter of this new quadrilateral. Have them 
repeat this step for two more iterations.

Ask students what they notice or wonder about. 
What would be the sum of the interior angles of itera-
tion 10? What about the perimeter? Have students 
estimate the sum of the interior angles and the perim-
eter for the 10th iteration. (Do not have them actually 
create this 10th iteration. Simply have them estimate 
the measurements based on the pattern.)

Students then colour in the shape to make a creative 
design.

Figure 1 shows what the final drawing might look 
like.

Extensions
•	 Show students the animation on exterior angles of 

a polygon at www.mathwarehouse.com/animated 
-gifs/#exterior-angle-polygon. Ask, “What is this 
visually proving?”

•	 Show students Paul Lockhart’s video “The World 
of Mathematical Reality” (https://youtu.be/
V1gT2f3Fe44).

FIGURE 1. Wacky quadrilaterals drawing.

David Martin has a master’s degree in mathematics, 
a bachelor’s degree in education and, most important, 
a love of learning. Throughout his career, he has 
challenged many traditional educational practices, 
such as homework, tests and even grading. As a divi-
sion math/science lead teacher, he has the opportunity 
to learn with teachers and students from pre-K to 
Grade 12. He is also president of MCATA. You will 
often find him tinkering with code, playing with math-
ematics or counting by prime numbers.
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Wacky Quadrilaterals Recording Sheet
1.	Draw any quadrilateral (a four-sided figure) that takes up most of the page. Measure the interior angles and 

add them all together and record this sum. Measure and record the perimeter.

2.	Measure each side and determine the midpoint. Connect the midpoints and make a new quadrilateral (itera-
tion 1). Measure the interior angles and the perimeter of this new quadrilateral.

3.	Repeat step 2 for two more iterations. Record the sum of the interior angles and the perimeter.

4.	What do you notice? Wonder about? Estimate what the sum of the angles and the perimeter will be for the 
10th iteration. (Do not draw this 10th iteration. Simply estimate based on the pattern.)

5.	What do you notice about the sum of the interior angles? Did you notice anything else about the angles?

6.	What do you notice about the perimeter of each iteration? Did you notice anything else about the 
perimeter?

7.	Colour in your shape to make a creative design.

Iteration Sum of interior angles Perimeter
0

Determine the midpoint of each side and connect all four midpoints to make another quadrilateral.
1
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Iteration Sum of interior angles Perimeter
Determine the midpoint of each side and connect all four midpoints to make another quadrilateral.

2

Determine the midpoint of each side and connect all four midpoints to make another quadrilateral.
3

What if you did this seven more times? Can you guess what the measurements might be?
10

(estimate the 
measurements 
—do not 
create the 
quadrilateral)



delta-K, Volume 55, Number 3, November 2019	 45

Do We Have Time for This? Analog Clocks
Sandi Berg

You may have seen articles claiming that schools 
are taking analog clocks off the walls because students 
can’t read them. This has caused some controversy.

Let’s look at some of the arguments from both 
sides:

•	 Students always have their phones with them, and 
the phones display digital clocks. This is often 
true—but not always. Some students (and adults) 
don’t have cellphones. Also, though most phones 
display a digital clock, you can set up your phone 
to display an analog clock. Therefore, we should 
say that many (not all) students have a phone that 
displays a digital clock.

•	 Learning how to read an analog clock teaches 
students how to skip count. Yes, reading an analog 
clock certainly helps build the skill of skip count-
ing. Even better would be if teachers focused on 
multiplication rather than adding—one five, two 

fives, three fives—as that aligns better with the 
numerals on the clock.

•	 Learning how to read an analog clock teaches 
students about base 60. True—if a teacher has 
talked about that concept. It also teaches students 
about base 13—think about a 24-hour clock.

•	 If students can read an analog clock, they will be 
able to read airline tickets. Yes, students should 
know how to read a 24-hour clock and be able to 
convert between the two systems. However, neither 
a digital clock nor an analog clock necessarily 
teaches that skill (unless the clock displays 13:00, 
14:00 and so on).

These are just a few of the arguments for and 
against teaching students how to read an analog clock. 
I don’t know how much of a role they play in analog 
clocks being removed. Many of the clocks have been 
replaced simply because of old age. However, it is 
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possible that some have been taken down because 
students can’t read them. I haven’t had an opportunity 
to delve deeper into the stories, and they don’t influ-
ence me at all. My goal here is not to convince you 
either way.

The bottom line is that I will keep teaching students 
how to read both digital clocks and analog clocks. 
Why? Because it’s in the curriculum. In Alberta, 
reading clocks is addressed specifically in Grade 4. 
I am required to teach the topic. What type of clock 
students choose to display on their phone or to wear 
on their wrist is up to them.

So how do I teach students how to read clocks? 
The same way I teach everything—by starting slowly 
and using visuals. This is not a separate unit that you 
dedicate a week to in January. Start right away, in 
September, but go slow—very slow.

Activity 1
You can start this activity with students at the 

beginning of the school year.
First, find a clock from which you can remove the 

inside circle (the part the numbers are written on) 
(Figure 1).

FIGURE 1

Remove the inside circle. You can either do the 
next step on that same circle or trace the circle to 
create a new circle and write only the numbers 1–12 
on it. I prefer to use a fresh circle so that the other 
numbers, which are not needed yet, are not 
displayed.

Draw a line from the centre of the circle to each 
of the numbers (1–12). This will create pie shapes. 
Shade the sections in three different colours. Write 
-ish next to each number (Figure 2).

FIGURE 2

Now, if possible, remove the minute hand and the 
second hand from the clock. If you can’t do that or 
don’t want to, colour the hour hand so that it stands 
out (Figure 3).

FIGURE 3
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You may even want to draw arrows between the 
numbers (Figure 4).

FIGURE 4

Give students a mini-lesson on how to read this 
clock. The clock shows that it’s 10ish. Go through a 
few different times. What would 4ish look like?

Yes, it’s not very specific. After a while, you can say 
something like, “It’s 2ish—almost 3.”

Do this for two weeks, three weeks, four weeks—
however long it takes. Do not rush through. You have 
all year to teach students how to read a clock. Once 
they are comfortable, you can move on to the next 
activity.

Activity 2
Did you know that you can tell what time it is within 

about five minutes even without the minute hand? Want 
to try it out? Go ahead and order the clocks in the im-
age below (Figure 5).

FIGURE 5

You’ll notice that one clock is at the bottom, by it-
self. During the activity with students, this clock is 
sorted with the others. While you are doing the activity, 
feel free to consider this clock either while sorting the 
rest of the clocks or afterward. Later, I’ll talk about 
how I address the clock with students.

Now, match the following times with the clocks:

A little after 5 4 o’clock A little before 7

Noon/midnight 3 o’clock About 3:30

About 4:30 A little after 3 A little before 4

Now, I’ll explain the process I use with students. 
The materials for this activity are in Appendix A.

I hand out pictures of nine clocks on which only the 
hour hand and hour numbers (1–12) are displayed (see 
page 50). These are the same clocks as in Figure 5. 
They are separated so that students can move them 
around.

In pairs, students sort the clocks into the correct 
order by time.

Once they are done, the pairs meet with other pairs 
and compare their answers, share their reasoning and 
move the clocks around some more (if they choose).

I then open up my Google Slides version and display 
slide 2 (not in presentation mode).1 This slide shows 
eight clocks at the top and one at the bottom (as in 
Figure 5). I have one student come up and move a clock 
into the grey box. Then, another student comes up and 
places a clock either before or after the first clock. The 
students then explain how they know where each clock 
goes.

We repeat this process for all the clocks until we 
finally get to the clock at the bottom. Where does this 
clock go? I ask a student to come up and place it. I then 
ask, “Who else placed that clock here?” and “Who 
placed it in a different spot?” If a student chose a dif-
ferent spot, I have him or her come up and show us 
where. Then I say, “Interesting. We have two different 
answers. Talk to your partner. Which do you agree with 
and why?” The discussion then focuses on the question 
of where the clock displaying 12 o’clock goes. Both 
spots!

Now, I distribute the time statements (see page 51). 
Students then match these with the clocks. They com-
pare their answers with those of a different group, and 
then we discuss the answers as a class.

The handout on page 52 is for an activity that stu-
dents will complete individually. Use this activity as a 
formative assessment to inform your teaching 
practices.
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When you are talking about time with students, 
use the type of phrasing that is used in the time state-
ments provided here. Again, don’t rush this. Don’t 
worry about using precise times yet (for example, 
you’ll notice that none of the examples refer to times 
like 3:15).

Activity 3
Moving on to minutes? Don’t refer to minutes at 

first. Instead, give students a picture of a clock with 
the hour numbers displayed and tick marks for min-
utes. Have them count the tick marks around the 
clock. What patterns do they notice?

Do they notice that the tick marks are in groups of 
five? Have students re-count around the circle, and 
talk them through the process: “One, two, three, four, 
five. That’s one group of five. Notice that we’re now 
at the 1 on the clock. One, two, three, four, five. That’s 
two groups of five. Notice that we’re at the 2. How 
many minutes is that? Ten minutes. Interesting. Does 
that always work? Keep checking. One, two, three, 
four, five. That’s three fives. Fifteen minutes.” Stu-
dents then figure out the rest. Now you’re making a 
connection to multiplication.

Spend time working with students on naming 
regular times (for example, 3:15, not quarter after).

Activity 4
Have students draw a circle and break it into quar-

ters. What do they notice about how this relates to the 
clock? If they imagine the lines going from 12 to 6 
and from 9 to 3, they can make the connection to 
quarter after.

Make sure to talk about the concept of 15 minutes 
out of 60 minutes (15/60) and so on.

Activity 5
Ready to add seconds? Have students figure out 

how high they can count in one minute. Time it ac-
cording to just the minute hand. (If possible, use a 
clock that doesn’t have a second hand and that has a 
really obvious shift from minute to minute.) Students 
count in their head and then share their results. Some 
will count really fast, and others, really slow. That’s 
OK. Talk about how we have decided to set a standard 
counting speed for time to help us be consistent. (It 
was humans who decided that there are 60 seconds 
in a minute.) Show students a clock with a second 
hand and tick marks indicating minutes. Then have 

them count again. As they count, have students focus 
on the second hand as it passes each tick mark. When 
they share their results, they will probably be more 
consistent now.

Now that the students have done this activity, give 
them their own clock with tick marks to look at. What 
relationships can they find between the second hand, 
the minute hand and the hour hand? They might say 
that the hour hand is shorter and the second hand is 
longer. The longer the hand, the faster it moves—60 
seconds in a minute and 60 minutes in an hour.

Give students a puzzle: “If I count to 60, that’s one 
minute. How would you figure out how many minutes 
it would take me to count to 180?” Some students 
may argue that it will take longer than three minutes. 
Why? Because it takes longer to say one hundred 
seventy-nine than it takes to say one. Don’t discount 
those arguments—they are absolutely correct!

I cannot stress this enough—when teaching stu-
dents how to read a clock, go slow. Build understand-
ing. Don’t move on until students understand what’s 
going on. You have all year.

Question for Self-Reflection
How do you help students understand the concept 

of time? That is, how do you help them with not just 
reading a clock but with actually understanding what 
time is?

Appendix A: Reading Clocks 
Activity

Materials
•	 Clock printouts (one page per group of two 

students)
•	 Time statements (one set per group of two 

students—each page has three sets)
•	 Blank clocks worksheet (one worksheet per 

student—each page has two worksheets)
•	 Smart Notebook file (available at https://

educationaljourneyofatechnobabe.blogspot 
.com/2019/03/do-we-have-time-for-this-analog-
clocks.html)

Instructions
•	 Print out the page of clocks and cut out the clocks 

so that each group of two students has nine indi-
vidual clocks.
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•	 Print out the time statements and cut the statements 
apart so that each group of two students has nine 
individual time statements. (The page contains 
three sets of time statements. Each group needs 
only one set.)

•	 Print off the worksheet and cut it so that each 
student gets half a page.

•	 Hand out the clock cut-outs.
•	 Ask students to order the clocks based on the times 

shown. Give them time to work. This is an oppor-
tunity for you to see what they understand about 
time. Do they understand that the placement of the 
hour hand can help them make a decent guess about 
the time? Where did they put the clock displaying 
12 o’clock—at the start or at the end? Do not guide 
students. Watch them work, but do not interfere.

•	 Ask students to share how they decided to order 
the clocks. What was their process? Students can 
use page 1 of the Smart Notebook file to help.

•	 After discussion, hand out the time statements. 
Have students match the statements with the 
clocks.

•	 Ask students to share how they did their sorting. 
They can use the Smart Notebook file to help them 
explain.

•	 After discussion, hand out the worksheets. Ask 
students to choose four activities they do at differ-
ent times throughout the day. They must use each 
of the phrases a little before, a little after, about 
and at __ o’clock exactly once. Have them draw 
the time on the clock, using only the hour hand. 
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3 o’clock A little after 3 About 3:30

A little before 4 4 o’clock About 4:30

A little after 5 A little before 7 Noon/midnight

3 o’clock A little after 3 About 3:30

A little before 4 4 o’clock About 4:30

A little after 5 A little before 7 Noon/midnight

3 o’clock A little after 3 About 3:30

A little before 4 4 o’clock About 4:30

A little after 5 A little before 7 Noon/midnight
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Choose four activities you do at different times throughout the 
day. Use each of the phrases a little before, a little after, about 
and at __ o’clock exactly once. Draw the time on the clock 
using only the hour hand. Describe the activity using the time.

I wake up at about 6:30.

Choose four activities you do at different times throughout the 
day. Use each of the phrases a little before, a little after, about 
and at __ o’clock exactly once. Draw the time on the clock 
using only the hour hand. Describe the activity using the time.

I wake up at about 6:30.
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Note
1. The Google Slides presentation (as well as instructions, 

handouts and a Smart Notebook file) is available at https://
educationaljourneyofatechnobabe.blogspot.com/2019/03/do-
we-have-time-for-this-analog-clocks.html (accessed August 13, 
2019).

Sandi Berg, a dedicated math junkie, loves finding, 
creating and sharing ideas and activities that build 

conceptual understanding of K–12 math outcomes. 
She is currently a learning services coordinator with 
Chinook’s Edge School Division.

A version of this article was originally posted at 
https://educationaljourneyofatechnobabe.blogspot 
.com/2019/03/do-we-have-time-for-this-analog-
clocks.html on March 30, 2019.
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Math Competitions __________________________________

Alberta High School Mathematics 
Competition 2017/18

The Alberta High School Mathematics Competition 
is a two-part competition that takes place in Novem-
ber and February of each school year. Book prizes 
are awarded for Part I, and cash prizes and scholar-
ships for Part II. Presented here are the problems and 
solutions from the 2017/18 competition.

Part I
November 21, 2017

1.	 Peppa has twice as many apples as pears. After 
she eats 50 pears, she now has four times as many 
apples as pears. How many apples does Peppa 
have?
(a) 0  (b) 100  (c) 200  (d) 400   
(e) none of these

2.	 A math teacher is given a big bag of 300 candies 
by a grateful parent. The teacher distributes as 
many of the candies as possible to her students 
so that each student gets the same number of 
candies. There are 14 candies left over. How 
many students are there in her class, if each class 
in the school has at most 30 students?
(a) 20  (b) 22  (c) 24  (d) 26   
(e) not uniquely determined

3.	 A vertical pole is 12 m from a straight road. Mark 
is currently on the road, 37 m from the pole. 

D road Mark 

pole 
 

How many metres does Mark have to walk on 
the road before he is 20 m from the pole?
(a) 17  (b) 19  (c) 20  (d) 21  (e) 22

4.	 Some n ≥ 3 different positive real numbers are 
arranged on a circle such that each number is 
equal to the product of its two neighbours. The 
value of n is
(a) 4  (b) 5  (c) 6  (d) 8  (e) none of these

5.	 How many pairs (n, p) are such that n is a posi-
tive integer, p is a prime number and n + p/n is 
a square of a positive integer?
(a) 0  (b) 1  (c) 2  (d) 3  (e) none of these

6.	 Ben and Cleo can paint a fence in four days. 
Anna and Ben can do it in two days, and Anna 
and Cleo can do it in three days. How many days, 
as a fraction, does it take all of them working if 
Cleo gets injured at the end of the first day and 
can’t come back to work?
(a) 11/6  (b) 45/24  (c) 23/12  (d) 47/24   
(e) none of these

7.	 The number of ways to walk from (0, 0) to  
(20, 2) by using only up and right unit steps and 
such that the walk never visits the lines y = x and 
y = x − 18, except at the beginning and end, is
(a) 151  (b) 153  (c) 189  (d) 190  (e) 195

8.	 Lan likes red or blue chopsticks, while Dan likes 
orange or green chopsticks. A drawer in a dark 
room contains n chopsticks of each colour, where 
n > 1 is an integer. Lan goes into the room to get 
chopsticks for both her and Dan. What is the 
smallest number of these 4n chopsticks that Lan 
must pick in order to be sure that both people 
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will get a matched (that is, the same colour) pair 
that they like?
(a) 2n + 1  (b) 2n + 3  (c) 3n − 3   
(d) 3n − 1  (e) none of these

9.	 Let x, y and z be any real numbers such that  
3x + y + 2z ≥ 3 and 2y − x + 4z ≥ 5. The minimum 
possible value of 7x + 5y + 10z is
(a) 96/7  (b) 97/7  (c) 14  (d) 99/7  (e) 100/7

10.	 In the trapezoid ABCD, with AD parallel to BC, 
the diagonals intersect at O. If the area of  AOD 
is 9/16 of the area of the trapezoid, then the ratio 
of the area of  AOD to the area of  BOC is 
equal to
(a) 4  (b) 6  (c) 9  (d) 12  (e) none of these

11.	 The area of the quadrilateral bounded by the graphs 
of the functions y = |x − a|, with 0 < a < 4 and y = 
2 − |x − 2|, is 15/8. The smallest value of a is
(a) 2/5  (b) 2/3  (c) 1  (d) 3/2  (e) 5/2

12.	 Let a and b be positive integers. The number of 
quadratic equations x2 − ax − b = 0 having the 
positive root less than 10 is
(a) 391  (b) 392  (c) 441  (d) 450   
(e) none of these

13.	 Let S be a subset of non-negative integers that 
contains 0, and such that for any number x in S, 
3x and 3x + 1 are also in S. The least possible 
number of elements of S less than 2,017 is
(a) 64  (b) 128  (c) 256  (d) 300   
(e) none of these

14.	 Let a be a real number so that the equation  
x4 − 2ax2 − x − a + a2 = 0 has four different real 
solutions. Then which of the following must be 
true?
(a) a < 1/4  (b) 1/4 < a < 3/4  (c) 3/4 < a < 1  
(d) 1 < a  (e) none of these

15.	 A positive integer is called a palindrome if it 
remains unchanged when written backward. Find 
the number of five-digit palindromes that are 
divisible by 55.
(a) 5  (b) 8  (c) 10  (d) 12  (e) none of these

16.	 How many positive integers n can be found such 
that the product of all divisors of n, including n, 
is 24240?
(a) 0  (b) 1  (c) 2  (d) 3  (e) none of these

Solutions
1.	 Peppa initially has x apples and x/2 pears. Then 

4(x/2 − 50) = x and, thus, x = 200. The answer 
is (c).

2.	 If x represents the number of students in the class 
and c the number of candies received by each 
student, then 14 < x ≤ 30 and x ∙ c = 300 − 14 = 
286 = 2 ∙ 11 ∙ 13. There are two possible 
solutions, x = 22 or x = 26. The answer is (e).

3.	 Let D be the point on the road closest to the pole. 
Then the distance between the pole and D is 
12 m. At first, Mark is

�372 − 122 = �1,369− 144 = �1,225 = 35 m 

from D. When he is 20 m from the pole, Mark is

�202 − 122 = √400− 144 = √256 = 16 m 

from D. Hence, Mark walked 35 − 16 = 19 m. 
The answer is (b). (Notice that Mark can pass 
point D when he is 20 m from the pole. In this 
case, Mark has to walk 35 + 16 = 51 m.)

4.	 If a and b are the first two numbers in the 
sequence, then the third number in the sequence 
must be b/a (because a × b/a = b). Similarly, we 
can find that the sequence of numbers around 
the circle must be a, b, b/a, 1/a, 1/b, a/b, a, b, 
. . . . Thus, the sequence repeats after six terms. 
If there were a shorter sequence of at least three 
different terms starting with a, b, its length must 
divide into 6, so it must have length 3. This would 
mean that the fourth term, 1/a, would equal the 
first term, a, which means that a = 1, but then 
the second and the third terms (b and b/a) of the 
sequence are equal —a contradiction. So the only 
possible length is 6. The answer is (c).

5.	 Since p/n is an integer, n | p. Hence, n = 1 or n 
= p. It follows that p + 1 is a perfect square. Thus, 
there is a positive integer m such that p + 1 = m2 

or p = (m − 1)(m + 1). Hence, 1 = m − 1 and  
p = m + 1 (that is, m = 2, p = 3). Therefore,  
p = 3 and n = 1 or n = 3. The answer is (c). 

6.	 If a is the portion of the work done per day by 
Anna, b by Ben and c by Cleo, then b + c = 1/4, 
a + b = 1/2, and a + c = 1/3. Hence, a + b + c = 
13/24. Thus, 11/24 of the work has to be 
completed by Anna and Ben. They need for this  
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11/24 ÷ 1/2 = 11/12 days, for a total of 23/12 
days. The answer is (c).

7.	 The first two steps must be to the right from  
(0, 0) to (2, 0), and the last two steps must be to 
the right from (18, 2) to (20, 2). The number of 
ways of walking from (2, 0) to (18, 2) is

�18
2 � = 153. 

We have to subtract one way that contains  
(2, 2) and the one that contains (18, 0). Hence, 
the number of admissible ways is 151. The an-
swer is (a).

8.	 If Lan picks 2n + 2 chopsticks consisting of n 
orange, n green, one red and one blue, she does 
not get a pair she likes. Hence, she needs to pick 
at least 2n + 3 chopsticks to be sure that she gets 
a pair she likes. On the other hand, any choice 
of 2n + 3 chopsticks will contain at least three 
red/blue chopsticks and at least three orange/
green chopsticks, so both people will get a pair 
they like. The answer is (b).

9.	 Let A and B be real positive numbers. Then

A(3x + y + 2z) + B(2y − x + 4z)  
≥ 3A + 5B ⇔ (3A − B)x + (A + 2B)y + (2A + 4B)z  

≥ 3A + 5B. 

If we take 3A − B = 7, A + 2B = 5, 2A + 4B = 10, 
which is equivalent to A = 19/7, B = 8/7, the 
above inequality can be written as

7x + 5y + 10z ≥ 97/7. 

Hence, the minimum value of 7x + 5y + 10z is 
97/7. We may take x = 1/7, y = 18/7 and z = 0 to 
justify that the minimum value is attainable. The 
answer is (b).

10.	 Let area(AOD) = a, area(BOC) = b and 
area(AOB) = area(COD) = c. If a/b = x, then a/c 
= AO/OC = c/b, so a/c = c/b = √𝑥𝑥 . Hence,

area(AOD)
area(ABCD)

=
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 + 2𝑐𝑐
=

𝑎𝑎
𝑏𝑏

2 𝑐𝑐𝑏𝑏 + 𝑎𝑎
𝑏𝑏 + 1

=
𝑥𝑥

(√𝑥𝑥 + 1)2
=

9
16

. 

Solving for x, one obtains x = 9. The answer is 
(c).

11.	 Graphing the functions, we conclude that two of 
the vertices of the quadrilateral are A = (2, 2) 
and C = (a, 0). The other two vertices,

B = �𝑎𝑎
2
∙ 𝑎𝑎

2
� and D = �4+𝑎𝑎

2
, 4−𝑎𝑎

2
�, 

are at the intersection of the lines y = x, y =  
a − x and, respectively, y = 4 − x, y = x − a. The 
area of the quadrilateral ABCD is

4 −
𝑎𝑎2

4
−

(4 − 𝑎𝑎)2

4
=

4𝑎𝑎 − 𝑎𝑎2

2
. 

Solving the equation

4𝑎𝑎 − 𝑎𝑎2

2
=

15
8

, 

one obtains a = 3/2, a = 5/2. The answer is (d).

12.	 The positive root of the equation is

𝑎𝑎 + √𝑎𝑎2 + 4𝑏𝑏
2

. 

The condition

𝑎𝑎 + √𝑎𝑎2 + 4𝑏𝑏
2

< 10 

is equivalent to 10a + b < 100 and a ≤ 20. There 
are 9 + 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 
= 4 × 98 + 49 = 441 ordered pairs (a, b) such 
that 10a + b < 100. The answer is (c).

13.	 If the elements of S are written in base 3, then 
the conditions of the problem translate to if

𝑎𝑎1𝑎𝑎2 ⋯𝑎𝑎𝑛𝑛�������������(3) ∈ 𝑆𝑆, 

then 
𝑎𝑎1𝑎𝑎2 ⋯𝑎𝑎𝑛𝑛0���������������(3) ∈ 𝑆𝑆 

and
 

𝑎𝑎1𝑎𝑎2 ⋯𝑎𝑎𝑛𝑛1���������������(3) ∈ 𝑆𝑆. 

Hence, S should contain all the numbers that can 
be written in base 3 only by using 0 or 1. Since 
2 ∙ 36 < 2,017 < 37, we conclude that the largest 
element in S that is less than 2,017 is 1111111

(3)
. 

There will be a total of 27 = 128 numbers in S 
having the requested property. The answer is (b).
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14.	 The given equation can be written as
a2 − (2x2 + 1)a − x + x4 = 0, 

which has the solutions a = x2 − x and a =  
x2 + x + 1. The solutions of the equation x2 − x 
− a = 0 are different real numbers if 1 + 4a > 0 
or, equivalently, a > −1/4. The equation x2 + x + 
1 − a  = 0 has different  real  roots if  
1 − 4(1 − a) > 0 or, equivalently, a > 3/4. The 
above two equations cannot have common roots. 
Indeed, if for x

0
 ∈  ℝ ,

𝑥𝑥0
2 − 𝑥𝑥0 − 𝑎𝑎 = 0 

and
𝑥𝑥0

2 + 𝑥𝑥0 + 1 − 𝑎𝑎 = 0, 

then x0 = −1/2 and a = 3/4, which is not 
convenient. Therefore, the solutions of the given 
equation are al l  real  and different  i f  
a > 3/4. The answer is (e).

15.	 A five-digit palindrome has the form abcba = 
10,001a + 1,010b + 100c, with a ≠ 0. In order 
for the number to be divisible by 5, we must have 
a = 5. Therefore, the number is 50,005 + 1,010b 
+ 100c.

Since 50,005 + 1,010b + 100c = 11(4,546 + 92b 
+ 9c) − 1 − 2b + c, we then need to have  
c − 2b − 1 divisible by 11. Since −19 ≤ c − 2b 
− 1 ≤ 8, we must have c − 2b − 1 = 0 or c − 2b 
− 1 = −11.

If c − 2b − 1 = 0, then c = 2b + 1, which leads 
to five pairs (b, c) ∈  {(0, 1), (1, 3), (2, 5), (3, 7), 
(4, 9)}.

If c − 2b − 1 = −11, then 2b = c + 10 and, hence, 
b  ≥  5 .  Then we get  (b ,  c )  ∈  {(5,0) ,  
(6, 2), (7, 4), (8, 6), (9, 8)}.

Therefore, we have 10 possibilities. The answer 
is (c).

16.	 We have n | 24240. Then n = 2a3b, with a and b 
integers. Thus, n has (a + 1)(b + 1) divisors. 
Pairing them in pairs of the form (d, n/d), we 
obtain that their product is

𝑛𝑛
(𝑎𝑎+1)(𝑏𝑏+1)

2 . 

Therefore,

24240 = 𝑛𝑛
(𝑎𝑎+1)(𝑏𝑏+1)

2 . 
Hence,

23∙240 3240 = 2𝑎𝑎
(𝑎𝑎+1)(𝑏𝑏+1)

2 3𝑏𝑏
(𝑎𝑎+1)(𝑏𝑏+1)

2 . 

From this equation, one obtains
 

240 = 𝑏𝑏
(𝑎𝑎 + 1)(𝑏𝑏 + 1)

2
 

3 ∙ 240 = 𝑎𝑎
(𝑎𝑎 + 1)(𝑏𝑏 + 1)

2
 

from which, taking the ratio, we get a = 3b and, 
hence,

480 = b(b + 1)(3b + 1). 
Since the right-hand side is increasing, this equa-
tion has at most one positive integer solution. 
Moreover, we have

480 = b(b + 1)(3b + 1) > 3b3 ⇒ 160 > b3 

and, hence, b ≤ 5. By testing, b = 5 gives
b(b + 1)(3b + 1) = 5 ∙ 6 ∙ 16 = 10 ∙ 6 ∙ 8 = 480. 
Hence, b = 5, a = 15, and n = 25315. The answer 
is (b).

Part II
February 7, 2018

1.	 The difference between two positive integers is 
18. When we divide the larger of the two positive 
integers by the smaller, the quotient and the re-
mainder are equal. Find all the possible pairs of 
positive integers.

2.	 Let ℤ  be the set of integers and f : ℤ   ℤ  a func-
tion such that

  f(f(x) + y) = x + f(y) 
for any integers x and y.

Show that f(x + y) = f(x) + f(y) for any integers 
x and y.

3.	 Prove that the numbers 26n and 26n + 2n have 
the same number of digits, for any non-negative 
integer n.
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4.	 A collection of items weighing 3, 4 or 5 kg has 
a total weight of 120 kg. Prove that there is a 
subcollection of the items weighing exactly 
60 kg.

5.	 The  ABC has ∠ BAC = 80° and ∠ ACB = 40°. 
D is a point on the ray BC beyond C so that CD 
= AB + BC + CA. Find ∠ ADB.

Solutions
1.	 Let x be the smaller of the two numbers. The 

larger number is x + 18. If q denotes the quotient 
of the division, then the remainder is also q. The 
long division of x + 18 by x gives

x + 18 = qx + q ⇒ qx + q − x − 18 = 0. 
Then

qx + q − x − 1 = 17 ⇒ (q − 1)(x + 1) = 17. 
Since 17 is prime and q < x (as the remainder is 
smaller than the quotient), we have

q − 1 = 1, x + 1 = 17. 
Thus, x = 16. Hence, there is only one pair of 
positive integers having the requested property, 
16 and 34.

2.	 Setting y = 0 in the given relation, we get that 
f(f(x)) = x + f(0) for any x ∈  ℤ . Therefore, if f(0) 
= a, we have f(f(x)) = x + a. Then,

f(x + f(y)) = f(f(f(x) + y)) = f(x) + y + a. 
Interchanging x, y in the given relation, we also 
have

 f(x + f(y)) = f(x) + y. 
The last two relations give a = 0, and therefore 
f(f(x)) = x. Next, replacing x by f(x) in the given 
relation and using f(f(x)) = x, we get

f(x + y) = f(x) + f(y). 

3.	 Assume by contradiction that 26n and 26n + 2n 
do not have the same number of digits. If 26n 
has m digits, then 26n < 10m ≤ 26n + 2n, with m 
> n and, hence, 13n < 2m−n5m ≤ 13n + 1. Hence, 
2m−n5m = 13n + 1, and since 13n + 1 ≡  2 (mod 4), 
one obtains m − n = 1. Therefore, n should be a 
solution of the equation 2 ∙ 5n+1 = 13n + 1 ⇔  10 
= (1/5)n + (13/5)n. It is clear that n = 0, 1, 2 are 
not solutions of this equation and also any n ≥ 3 
either, since (13/5)n ≥ (13/5)3 > 10 for n ≥ 3.

Notice: We may justify that the remainder ob-
tained when 13n + 1 is divided by 4 is 2, without 
using congruences. Indeed, since 13, 132, 133 
and in general 13n are all of the form 4k + 1, 
where k is a positive integer, 13n + 1 is of the 
form 4k + 2.

4.	 We have non-negative integers a, b and c so that 
3a + 4b + 5c = 120. We wish to find a triple (a

1
, 

b
1
, c

1
) of non-negative integers satisfying a

1
 ≤ 

a, b
1
 ≤ b, c

1
 ≤ c so that 3a

1
 + 4b

1
 + 5c

1
 = 60.

First note: If a ≥ 20, then we can use a
1
 = 20,  

b
1
 = c

1
 = 0. Thus, we can assume from now on 

that a ≤ 19. Similarly, we can assume that b ≤ 14 
and c ≤ 11. Thus, we get

𝑎𝑎 =
120− 4𝑏𝑏 − 5𝑐𝑐

3
≥

120 − 56 − 55
3

= 3, 

𝑏𝑏 =
120 − 3𝑎𝑎 − 5𝑐𝑐

4
≥

120 − 57− 55
4

= 2 and 

𝑐𝑐 =
120− 3𝑎𝑎 − 4𝑏𝑏

5
≥

120 − 57 − 56
5

=
7
5

, 

and since c is an integer, we get c ≥ 2.

From 3a + 4b + 5c = 120, we know that a and c 
have the same parity. Thus, we have four 
cases.

Case 1. If a, b and c are all even, then we 
choose a

1
 = a/2, b

1
 = b/2, c

1
 = c/2.

Case 2. If a and c are even while b is odd, then 
we claim that

(𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1) = �
𝑎𝑎 + 4

2
,
𝑏𝑏 − 3

2
,
𝑐𝑐
2
� 

works. These choices are all integers, and

3𝑎𝑎1 + 4𝑏𝑏1 + 5𝑐𝑐1 =
3(𝑎𝑎 + 4)

2
+

4(𝑏𝑏 − 3)
2

+
5𝑐𝑐
2

= 60, 

so we need only observe that (i) since a is even 
and a ≥ 3, we know that a ≥ 4, and thus (a + 4)/2 
≤ a; (ii) since b is odd and b ≥ 2, we know that 
b ≥ 3 and thus (b − 3)/2 ≥ 0.

Case 3. If a and c are odd while b is even, we 
use

(𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1) = �
𝑎𝑎 − 1

2
,
𝑏𝑏 + 2

2
,
𝑐𝑐 − 1

2
�. 
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Again, these are non-negative integers, and  
3a

1
 + 4b

1
 + 5c

1
 = 60, and b ≥ 2 implies that b

1
 ≤ b.

Case 4. If a, b and c are all odd, we use

(𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1) = �
𝑎𝑎 + 3

2
,
𝑏𝑏 − 1

2
,
𝑐𝑐 − 1

2
�. 

Again, these are non-negative integers, and  
3a

1
 + 4b

1
 + 5c

1
 = 60, and a ≥ 3 implies that a

1
 ≤ a.

This finishes the proof.

5.	
A 

80◦ G 

40◦ 

Let E be on CD such that AC = CE. Since  
 ACE is isosceles,  CAE�   = CEA�    = 20°. Take G 
on AE such that AG = AB. Since  ABG is 
isosceles,

AGB� =
180° − (80° + 20°)

2
= 40°. 

Now, the quadrilateral ABCG is cyclic (AGB�   = 
ACB�    = 40°) and, hence, BGC�    = BAC�   = 80° and 
ACG�    = ABG�  =  = 40°, so BCG�   = 40° + 40° = 80°. 
Thus,  GBC is isosceles. Also, since GBC�    = GAC�   
= 20°,  BGE is isosceles. Therefore, BC = BG 
= GE, and AE = AB + BC = ED. Thus,  AED 
is isosceles, with ADB�   = 1/2CEA�    = 10°.

B C E D
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Edmonton Junior High  
Math Contest 2018

Part A: Multiple Choice
1.	 In a triangle, all angles are integer values. The 

measure of the smallest angle is 20°. What is the 
measure of the largest possible angle?

(a) 80°  (b) 89°  (c) 139°  (d) 140°  (e) 160°

2.	 The original price of an item is reduced by 20%, 
and the new price is further reduced by 20%. 
The final sale price is the same as a single reduc-
tion of what percentage of the original price?

(a) 30%  (b) 36%  (c) 40%  (d) 60%  (e) 64%

3.	 The first three terms of a geometric sequence are 
16, 24, 36, . . . . With the exception of the first 
term, each term thereafter is the product of the 
previous term and a constant.

The first three terms of an arithmetic sequence 
are 30, 45, 60, . . . . With the exception of the 
first term, each term thereafter is the sum of the 
previous term and a constant.

If both sequences are to continue, for which n 
does the nth term of the geometric sequence {16, 
24, 36, . . .} first become larger than the nth term 
of the arithmetic sequence {30, 45, 60, . . .}?

(a) 4  (b) 5  (c) 6  (d) 7  (e) 8

4.	 Solve for x.

𝑥𝑥
2,018

+
2,017(2,019)

2,018
− 2,019 = −1 

(a) −2,018  (b) 2,018  (c) 0  (d) −1  (e) 1

5.	 Midpoints of each side are connected to one of 
the vertices of a square. What percentage of the 
square is shaded?

(a) 20%  (b) 25%  (c) 30%  (d) 35%  (e) 15%

6.	 In the sequence of numbers 1, 3, 2, −1, . . . , each 
term after the first two is equal to the term pre-
ceding it minus the term preceding that:  
t
n
 = t

n−1
 − t

n−2
. What is the sum of the first 100 

terms of the sequence?

(a) 0  (b) −1  (c) 21  (d) 16  (e) 5

7.	 A woman, her brother, her son and her daughter 
(all relations by birth) are chess players. The 
worst player’s twin (who is one of the four play-
ers) and the best player are of opposite sex. The 
worst player and the best player are the same 
age. Who is the worst player?

(a) woman  (b) son  (c) brother   
(d) daughter  (e) insufficient information to 
determine

Solutions
1.	 The two remaining angles have a sum of 160°. 

Since the measurements of the angles are inte-
gers, the next smallest angle should be 21°. Thus, 
the largest angle would be 180 − 20 − 21, or 
139°. The answer is (c).
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2.	 If the item is priced at $100, a 20% reduction 
results in a reduced price of $100 × 0.8 = $80. 
A 20% reduction of the reduced price is  
$80 × 0.8 = $64. The twice-reduced price is 64% 
of the original, or 100 − 64 = 36, a single reduc-
tion of 36% of the original. The answer is (b).

3.	 Each term of the geometric sequence is multi-
plied by the constant 1.5. Each term of the 
arithmetic sequence is added to by the con-
stant  15. We can simply list out the next few 
terms of each sequence.

Geometric 
sequence 16  24  36  54  81  121.5

Arithmetic 
sequence 30  45  60  75  90  105

We can see that the geometric sequence is larger 
starting from the sixth term. The answer is (c).

4.		  x = (2,018)2 − (2,017)(2,019) = 1

The answer is (e).

5.	 The diagram can be subdivided into congruent 
triangles, as follows.

 
The entire square is made up of 20 congruent 
triangles. The shaded part has four pieces out 
of 20. This means that the shaded part covers 
20% of the square. The answer is (a).

6.	 Writing out the sequence, we have 1, 3, 2, −1, 
−3, 2, 5, 3, −2, −5, −3, 2, 5, 3, −2, −5 , −3, 2, 5, 
3, −2, −5 . . . . After the first four numbers in the 

sequence, there is a repetition of these six terms: 
−3, 2, 5, 3, −2, −5. The remaining 96 terms are 
grouped six terms at a time, and each group has 
a sum of 0. The sum is 

1 + 3 + 2 + −1 + (96/6)(0) = 5.

The sum of the first 100 terms is 5. The an-
swer is (e).

7.	 If the son is the worst player, the daughter must 
be his twin. The best player must then be the 
brother. This is consistent with the given infor-
mation, since the brother and the son could be 
the same age. The assumption that any of the 
other players is  the worst  leads to a 
contradiction.

If the woman is the worst player, her brother 
must be her twin and her daughter must be the 
best player. But the woman and her daughter 
cannot be the same age.

If the brother is the worst player, the woman 
must be his twin. The best player is then the son. 
But the woman and her son cannot be the same 
age, and the woman’s twin, her brother, cannot 
be the same age as the son.

If the daughter is the worst player, the son must 
be the daughter’s twin. The best player must then 
be the woman. But the woman and her daughter 
cannot be the same age.

The answer is (b).

Part B: Short Answer
8.	 A large cube is assembled together with 125 

smaller identical cubes. This large cube is placed 
on a tabletop and spray-painted on five of the 
faces. After drying, the large cube is disassem-
bled, with all the smaller cubes placed in a bag. 
How many cubes have exactly two faces 
painted?

9.	 Juice cans are sold in a pack of six or twelve. 
There are 12,448 cans in the warehouse waiting 
to be put into different packs. If the cans are 
placed in any combination of six- and twelve-
packs, how many cans will be left over?
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10.	 Below is a picture of an ancient Chinese puzzle, 
called a tangram. The seven pieces are arranged 
to form a large square. If the edge of the large 
square is one unit, find the perimeter of the 
smaller square in the picture. Leave the answer 
in simplest radical form.

11.	 Sally places four knights on a 4 × 4 board.

Knights can only attack a square that is 2 × 3 
away.

If any square is attacked by at least two differ-
ent knights, Sally colours the square black. 
What is the maximum number of black 
squares possible?

12.	 The  ABC is an equilateral triangle with a 
height of 2√3 . E is the midpoint of the altitude 
CD. Find distance AE . Leave the answer in radi-
cal form.

C 

 
A D B 

E 

13.	 In  ABC, ∡ CAB = 108° and AB = AC. The 
bisector of ∡ ABC meets CA at E, and the 
perpendicular to BE at E meets BC at D. 
Determine ∡ ADE.

Solutions
8.	 Of the twelve edges, only eight edges have cubes 

that have exactly two faces painted. Each edge 
has three such cubes, giving a total of 8 × 3 = 24 
cubes. The answer is 24.

9.	 Let n represent the number of six-packs, and let 
m represent the number of twelve-packs. Then

6n + 12m = 12,448
6(n + 2m) = 12,448

12,448 ÷ 6 = 2,074, with a remainder of 4.

Four cans would not fit into six- or twelve-
packs. The answer is four.

10.	 All the triangular pieces (small, medium and 
large sizes) are isosceles right triangles. This 
means that they are all similar. The largest 
triangle measures √2/2 × √2/2 × 1 . The smallest 
triangle is a reduction with scale factor of 1/2; 
it measures √2/4 × √2/4 × 1/2 . The side of the 
small square is the same as one of the legs of the 
small isosceles triangle, √2/4. . The perimeter of 
the small square is 4(√2/4. ) = √2/4. . The answer is 
√𝟐𝟐  or 1.414.
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11.

Where knights will doubly attack all the 
blackened squares. In total, there are seven 
black squares. To prove that this is the 
maximum, we note that any knight in one of 
the centre squares will attack four squares, and 
any knight on an edge will attack three 
squares. Note that the above configuration 
maximizes the number of black squares, given 
that two knights are on an edge and two 
knights are in the centre. We only have four 
knights, so the only way for Sally to colour 
eight squares is if all knights are attacking four 
squares or, in other words, if they are all in the 
centre.

Clearly, this does not result in eight blackened 
squares. The answer is seven.

12.	 The  ABC is an equilateral triangle with interior 
angles at 60° each. The  CBD is a 30° − 60° 
− 90° triangle with side lengths in the ratio of 
1 − √3 − 2 . Since CD  is 2√3 , we must have CB  
= CA  = AB  = 4. It follows that

�AE�
2

= �AD�
2

+ �DE�
2
 

AE = �(2)2 + �√3�
2

= √7. 

The answer is √𝟕𝟕 or 2.646.

13.	 Extend BA and DE to meet at F. By symmetry, 
BED and BEF are congruent right triangles. Now 
∡ EFB = ∡ EDB = 90° − ∡ EBC = 72° while  
∡ EAF = 180° − ∡ CAB = 72° also. Hence, EA 
= EF = ED. Note that we have ∡ BEA = 180° −  
∡ CAB − ∡ ABC = 54° and ∡ DEA = ∡ BED +  
∡ BEA = 144°. It follows that ∡ ADE = 1/2(180° 
− ∡ DEA) = 18°. The answer is 18°.

Part C: Short Answer
14.	 Each of the digits 0–9 is written on a card. You 

can select any number of cards from the group. 
The digits can then be rearranged in any order 
to form a number. What is the minimum number 
of cards from which a multiple of 3 with up to 
three digits can always be formed?

15.	 A class of 31 students invites some students from 
another school to the Valentine’s Day dinner. 
There are 19 tables at which one or two students 
may sit. If each boy has exchanged valentine 
cards with exactly three girls and each girl with 
exactly two boys, how many students have 
attended the dinner?

16.	 How many different five-digit numbers have the 
property that if one digit is removed, reading 
from left to right, the number 2,018 will be 
obtained?

17.	 In the school badminton club, there are 18 boys 
and 18 girls, with 12 in each of Grades 7, 8 and 
9. The school wants to enter as many mixed 
doubles teams as possible in the city 
championship. The partners in each pair must 
be from the same grade. What is the minimum 
number of mixed doubles pairs the school can 
enter?

18.	 Consider a non-negative number boring if it is 
made of only the same digits and cool if it is 
made of only distinct digits. Single digits (1, 4, 
3 and so on) are only cool. Note that digits with 
repeats (such as 21,330) are neither cool nor 
boring. What is the smallest positive integer 
greater than or equal to 11 that cannot be 
represented as the sum of a boring and a cool 
number?

19.	 In  BAD, BD = 3, AD = 4, and AB = 5. C is 
the point on the extension of BD such that DC 
= 1. PQRS is a rectangle with P and S on BC,  
Q on AB, and R on AC. Determine the maximum 
perimeter of PQRS.
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Solutions
14.	 If we have only two cards, the numbers on them 

may be 1 and 4, and none of 1, 4, 11, 14 or 41 
is a multiple of 3. Hence, two cards are not 
enough. We claim that three cards are enough. 
If any of 0, 3, 6 or 9 is on one of them, we have 
a one-digit multiple of 3. Suppose this is not the 
case. If we have all of 1, 4 and 7 or all of 2, 5 
and 8, we have a three-digit multiple of 3, since 
1 + 4 + 7 = 12 and 2 + 5 + 8 = 15 are multiples 
of 3. If this is also not the case, we take one 
number from each triple. Their sum will be a 
multiple of 3, and they will form a two-digit 
multiple of 3. The answer is three.

15.	 The ratio of boys to girls is 2:3. Hence, the total 
number of students is a multiple of 5. It is greater 
than 31 and less than 19 × 2 = 38. Hence, it must 
be 35. The answer is 35.

16.	 If the deleted digit is in the first place, before 2, 
we have exactly nine choices for adding a digit, 
because we cannot add 0. It may appear that we 
have ten choices if the deleted digit is in the 
second place, between 2 and 0. However, 22,018 
has already been counted. So we have only nine 
choices. Suppose the deleted digit is in the third 
place, between 0 and 1. We still have only nine 
choices, since we cannot choose 20,018. Hence, 
the total number of choices is 9 × 5 = 45. The 
answer is 45.

17.	 Suppose that all Grade 7 students are boys and 
all Grade 8 students are girls. Then the school 
can enter exactly six Grade 9 teams. Suppose 
the number of teams that can be entered is less 
than six. Then there are more than 24 students 
with no partners. Such students from each grade 
must be of the same gender. By symmetry, we 
may assume that all students without partners 
from Grade 7 or 8 are boys, and all students 
without partners from Grade 9 are girls. Since 
the total number of boys is equal to the total 
number of girls, we have more than 12 girls with 

no partners, and they are all in Grade 9. This is 
a contradiction since there are only 12 students 
in Grade 9. The answer is six.

18.	 We claim that the smallest positive integer is 
110. Note that the difference between 110 and 
any two-digit boring number will also be a bor-
ing number, so there are no cool numbers that 
can sum with a boring number to obtain 110.

We now prove that this is the minimum. All 
two-digit boring numbers are the sum of the 
given boring number and 0. We know that all 
two-digit boring numbers are separated 10 
numbers, which correspond to adding the cool 
numbers 1, 2, . . . , 10. Thus, any two-digit 
number is the sum of a boring number and a 
cool number less than or equal to 10. For 
three-digit numbers, note that we only need to 
consider numbers greater than 99 + 10 = 109, 
of which there are none that are also less than 
110. Thus, the minimum is proved.

The answer is 110.

19.	 We have

BD
DA

=
BP
PQ

=
3
4

 

and and

CD
DA

=
CS
SR

=
1
4

. 

Note that PQ = SR. Hence,

BP + CS = PQ �
3
4

+
1
4
� = PQ. 

It follows that the perimeter of PQRS is equal to

2(PQ + PS) = 2(BP + CS + PS)  
                = 2BC = 2(3 + 1) = 8.

Since the value is constant, the maximum val-
ue is also 8. The answer is 8.
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cording to Math”
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of Symmetries”

The article that brought me to this website was 
“Mathematicians Discover the Perfect Way to  
Multiply,” by Kevin Hartnett (www.wired.com/story/
mathematicians-discover-the-perfect-way-to- 
multiply/). This article intrigued me. After all our 
multiplying through the ages, there is now a best way 
to multiply for very large numbers. The article dem-
onstrates how this works and explains the mathemat-
ics behind it. Imagine only 2n steps instead of n2 steps, 
and think of the neat classroom applications! The 
article has been reprinted in this issue of delta-K.

A search of “math” at www.wired.com/tag/quanta-
magazine/ brought up 3,673 interesting and curious 
math articles. Adding more descriptors will focus 
your search on one of your particular topics of inter-
est. Many of the articles are linked to science, which 
could further promote STEM (science, technology, 
engineering and mathematics) topics.

“Mathematicians Discover the Perfect Way to 
Multiply” was originally printed in Quanta Magazine 
(www.quantamagazine.org). What a wealth of math-
ematical ideas! Again, put “math” into the search bar 
and see what shows up. I can see many of you math-
ematicians out there enjoying these diverse, interest-
ing and mind-stimulating topics and articles.

Lorelei Boschman received her bachelor of education 
and master of education degrees from the University 
of Lethbridge. She is the education coordinator at 
Medicine Hat College, facilitating the four-year 
bachelor of education program (a collaborative de-
gree program with Mount Royal University) and in-
structing a variety of postsecondary courses with a 
mathematics focus. Previously, she taught K–8 at a 
rural school and spent 21 years teaching high school 
mathematics. Mathematics education is her passion 
and life work, and she has been involved in many 
local and provincial initiatives.
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Mathematicians Discover the  
Perfect Way to Multiply

Kevin Hartnett

Four thousand years ago, the Babylonians invented 
multiplication. Last month, mathematicians perfected 
it.

On March 18, two researchers described the fastest 
method ever discovered for multiplying two very large 
numbers (Harvey and van der Hoeven 2019). The 
paper marks the culmination of a long-running search 
to find the most efficient procedure for performing 
one of the most basic operations in math.

“Everybody thinks basically that the method you 
learn in school is the best one, but in fact it’s an active 
area of research,” said Joris van der Hoeven, a 
mathematician at the French National Center for 
Scientific Research and one of the coauthors.

The complexity of many computational problems, 
from calculating new digits of pi to finding large 
prime numbers, boils down to the speed of 
multiplication. Van der Hoeven describes their result 
as setting a kind of mathematical speed limit for how 
fast many other kinds of problems can be solved.

“In physics you have important constants like the 
speed of light which allow you to describe all kinds 
of phenomena,” van der Hoeven said. “If you want 
to know how fast computers can solve certain 
mathematical problems, then integer multiplication 
pops up as some kind of basic building brick with 
respect to which you can express those kinds of 
speeds.”

Most everyone learns to multiply the same way. 
We stack two numbers, multiply every digit in the 
bottom number by every digit in the top number and 
do addition at the end. If you’re multiplying two two-
digit numbers, you end up performing four smaller 
multiplications to produce a final product.

The grade school or “carrying” method requires 
about n2 steps, where n is the number of digits of each 
of the numbers you’re multiplying. So three-digit 
numbers require nine multiplications, while 100-digit 
numbers require 10,000 multiplications.

The carrying method works well for numbers with 
just a few digits, but it bogs down when we’re 
multiplying numbers with millions or billions of 
digits (which is what computers do to accurately 
calculate pi or as part of the worldwide search for 

large primes).1 To multiply two numbers with one 
billion digits requires one billion squared, or 1018, 
multiplications, which would take a modern computer 
roughly 30 years.

For millennia it was widely assumed that there was 
no faster way to multiply. Then, in 1960, the 23-year-
old Russian mathematician Anatoly Karatsuba took 
a seminar led by Andrey Kolmogorov, one of the great 
mathematicians of the 20th century. Kolmogorov 
asserted that there was no general procedure for doing 
multiplication that required fewer than n2 steps. 
Karatsuba thought there was—and after a week of 
searching, he found it.

Karatsuba’s method involves breaking up the digits 
of a number and recombining them in a novel way 
that allows you to substitute a small number of 
additions and subtractions for a large number of 
multiplications. The method saves time because 
addition takes only 2n steps, as opposed to n2 steps.

“With addition, you do it a year earlier in school 
because it’s much easier, you can do it in linear time, 
almost as fast as reading the numbers from right to 
left,” said Martin Fürer, a mathematician at 
Pennsylvania State University who in 2007 created 
what was at the time the fastest multiplication 
algorithm.

When dealing with large numbers, you can repeat 
the Karatsuba procedure, splitting the original number 
into almost as many parts as it has digits. And with 
each splitting, you replace multiplications that require 
many steps to compute with additions and subtractions 
that require far fewer.

“You can turn some of the multiplications into 
additions, and the idea is additions will be faster for 
computers,” said David Harvey, a mathematician at 
the University of New South Wales and a coauthor 
on the new paper.

Karatsuba’s method made it possible to multiply 
numbers using only n1.58 single-digit multiplications. 
Then, in 1971, Arnold Schönhage and Volker Strassen 
published a method capable of multiplying large 
numbers in n × log n × log(log n) multiplicative steps, 
where log n is the logarithm of n. For two 
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one-billion-digit numbers, Karatsuba’s method would 
require about 165 trillion additional steps.

Schönhage and Strassen’s method, which is how 
computers multiply huge numbers, had two other 
important long-term consequences. First, it intro-
duced the use of a technique from the field of signal 
processing called a fast Fourier transform. The tech-
nique has been the basis for every fast multiplication 
algorithm since.

Second, in that same paper, Schönhage and Stras-
sen conjectured that there should be an even faster 
algorithm than the one they found—a method that 
needs only n × log n single-digit operations—and that 
such an algorithm would be the fastest possible. Their 
conjecture was based on a hunch that an operation as 
fundamental as multiplication must have a limit more 
elegant than n × log n × log(log n).

“It was kind of a general consensus that multiplica-
tion is such an important basic operation that, just 
from an aesthetic point of view, such an important 
operation requires a nice complexity bound,” Fürer 
said. “From general experience the mathematics of 
basic things at the end always turns out to be 
elegant.”

Schönhage and Strassen’s ungainly n × log n × 
log(log n) method held on for 36 years. In 2007, Fürer 
beat it, and the floodgates opened. Over the past de-
cade, mathematicians have found successively faster 
multiplication algorithms, each of which has inched 
closer to n × log n, without quite reaching it. Then, 
last month, Harvey and van der Hoeven got there.

Their method is a refinement of the major work 
that came before them. It splits up digits, uses an 
improved version of the fast Fourier transform and 
takes advantage of other advances made over the past 
40 years. “We use [the fast Fourier transform] in a 
much more violent way, use it several times instead 
of a single time, and replace even more multiplica-
tions with additions and subtractions,” van der  
Hoeven said.

Harvey and van der Hoeven’s algorithm proves 
that multiplication can be done in n × log n steps. 
However, it doesn’t prove that there’s no faster way 
to do it. Establishing that this is the best possible ap-
proach is much more difficult. At the end of February, 
a team of computer scientists at Aarhus University 
posted a paper arguing that if another unproven con-
jecture is also true, this is indeed the fastest way 
multiplication can be done (Afshani et al 2019).

And while the new algorithm is important theoreti-
cally, in practice it won’t change much, since it’s only 
marginally better than the algorithms already being 

used. “The best we can hope for is we’re three times 
faster,” van der Hoeven said. “It won’t be spectacular.”

In addition, the design of computer hardware has 
changed. Two decades ago, computers performed 
addition much faster than multiplication. The speed 
gap between multiplication and addition has narrowed 
considerably over the past 20 years to the point where 
multiplication can be even faster than addition in 
some chip architectures. With some hardware, “you 
could actually do addition faster by telling the com-
puter to do a multiplication problem, which is just 
insane,” Harvey said.

Hardware changes with the times, but best-in-class 
algorithms are eternal. Regardless of what computers 
look like in the future, Harvey and van der Hoeven’s 
algorithm will still be the most efficient way to 
multiply.

Note
1. See www.mersenne.org (accessed August 19, 2019).
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