
So much for a start as to what should be in the curriculum. I have not addressed the 
issue of content for the range of courses at the senior levels, consumer math,. statis­
tics courses, computer science, etc., nor have I addressed the issue of what should 
be omitted. Some people might note certain omissions, such as standard deviation 
and the normal distribution. Such things will, I hope, be considered in the ensuing 
discussion. 
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The history of mathematics education shows that problem-solving has always been 
an issue of concern. Most recently, the National Advisory Committee on Mathema­
tics Education (NACOME) and the National Council of Supervisors of Mathematics 
(NCSM) 1 have indicated that problem-solving is one of the most important basic 
-skills that every student should master in order to survive in our society. The Na­
tional Council of Teachers of Mathematics (NCTM) has also taken a position sup­
porting the infusion of problem-solving into the school mathematics curriculum for 
the 1980s.2 However, there is a great deal of misunderstanding over what problem­
solving is and even what constitutes a problem. Jeremy Kilpatrick3

, in his article 
entitled "Stop the Bandwagon, I Want Off," decries the "use of 'problem-solving' as 
an empty vessel that we can fill with our own meanings." In many cases, mathema­
tics teachers teach solving problems with the mistaken idea that they are teaching 
problem-solving. 

This article has basically two purposes: to illuminate and reflect on problem-solving 
and to illustrate, by way of an example, how to teach problem-solving skills in a 
classroom. 

What is a problem? 

One common concept of a problem is that of a question proposed for an answer or 
solution. The teacher has this concept in mind when he/she says to a mathematics 
class, "Your assignment for tomorrow is to work problems one to ten on page 164." 
The question that may be either explicit or implicit in each problem is, "What is the 
answer?" 

A second concept of a problem considers the existence of a question to be neces­
sary, but, unlike the first concept, existence of the question is not regarded as suf­
ficient. The additional conditions pertain to the individual who is considering the 
questions. What may be a problem for one individual may not be a problem for 
another. A problem for a particular individual today may not be a problem tomor­
row. 

The necessary conditions for the existence of a problem for a particular individual 
are:4 

24 

. 

I 



l. The individual has a clearly defined goal of which he/she is consciously aware 
and whose attainment he/she desires. 

2. Blocking of the path toward the goal occurs, and the individual's fixed patterns 
of behavior or habitual responses are not sufficient for removing the block. 

3. Deliberation takes place. The individual becomes aware of the problem, de­
fines it more or less clearly, identifies various possible hypotheses (solutions), 
and tests them for feasibility. 

This concept of "problem" holds that when these three necessary conditions are 
met, a problem exists for the particular individual. Moreover, Cronbach5 points out, 
" .. .it is not posing the question that makes the problem, but the person's accepting 
it as something he must try to solve." The second concept of a problem appears to 
be the more useful concept in most educational contexts. 

Problem-solving and problem-solving skills 
Problem-solving is a process. it is the means by which an individual uses previously 
acquired knowledge, skills, and understanding to satisfy the demands of an unfamil­
iar situation. When students solve various "types" of textbook problems (age prob­
lems, coin problems, motion problems, etc.), they are simply applying a previously 
learned algorithm or model to a familiar situation-they are merely solving problems. 
Only when a student synthesizes what he/she knows and applies it to a NEW situa­
tion is the student problem-solving. 

Problem-solving is more than a single skill-it is a set of skills that includes the ability 
to: 

Read and understand. 
Explore. (That is, play around with a problem, trying different approaches.) 
Select an appropriate strategy. 
Carry through the strategy. 
Look back and extend. 

Skills are the building blocks used in solving a problem. Some of the skills are unique 
to mathematics; others are interdisciplinary. The categories used by the Lane Coun­
ty Mathematics Project (LCMP) are: 6 

l. Problem discovery, formulation 
2. Seeking information 
3. Analyzing information 
4. Solving-putting it together-synthesis 
5. Looking back-consolidating the gains 
6. Looking ahead-formulating new problems 

These categories are further broken down into 46 different skills. 

According to Polya 7 
, the process of problem-solving has four phases. First, we have 

to understand the problem; we have to see clearly what is required. Second, we have 
to see how the various items are connected, how the unknown is linked to the data, 
in order to obtain the idea of the solution, to make a plan. Third, we have to carry 
out our plan. Fourth. we have to look back at the completed solution. review and 
discuss it. An awareness of these skills being used to solve a problem is probably the 
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most important step in the development of a pupil's problem-solving abilities. 

George Polya contends that the technique for teaching problem-solving has two 
aspects: abundant experience in solving problems and serious study of the solution 
process. He expresses the need for the first in this way: "Solving problems is a prac­
tical art, like swimming or skiing or playing the piano; you can learn it only by 
imitation and practice." However, he warns that imitation and practice are not 
sufficient. Not only must problems be solved, but the learner's attention must be 
directed to the methods used. These must be general enough so that they become 
available for use in solving similar problems in the future. Polya uses the term 
heuristics to describe this way of teaching problem-solving in mathematics. 

Implications for mathematics education 
Solving problems is human nature itself. We may characterize humans as "problem­
solving animals." If education fails to contribute to the development of the intelli­
gence, it is obviously incomplete. Yet intelligence is essentially the ability to solve 
problems in everyday life. The student develops his/her intelligence by using it, he/ 
she learns to do problems by doing them. Which kind of problems should a secon­
dary school student do to develop his/her ability to solve problems? What is the 
teacher's role in teaching problem-solving? George Polya8 in his article originally 
published in l 949 and later appearing in NCTM 1980 Yearbook sums up the 
thoughts as follows: 

"A boy or girl of high school age and average ability can solve on a scientific level mathematical 

problems, but no other kind of problems. An average boy of fifteen can obviously not acquire the 

technique or knowledge or judgment needed in treating on a scientific level a problem of biology 

or history or physics. Yet, if he has a good teacher, he can, after a while, solve a problem of geo­

metric construction or invent by himself the proof of a simple theorem on the level of Euclid, and 

Euclid's level is fully scientific. 

"This is the great opportunity of mathematics: mathematics is the only high school subject in 

which the teacher can propose and the students can solve problems on a scientific level. This is so 

because mathematics is so much simpler than the other sciences. Because of this simplicity, the 

individual, just as the human race, can arrive so much earlier to a clear view in mathematics than 

in the other sciences. 

"In my opinion, the first duty of a teacher of mathematics is to use this great opportunity: he 

should do everything in his power to develop his students' ability to solve problems. 

"First, he should set his students the right kind of problems: not too difficult and not too easy, 

natural and interesting, challenging their curiosity, proportionate to their knowledge. He should 

also allow himself some time for presenting the problem appropriately, so that it appears in the 

pro per I ight. 

"Then, the teacher should help his students properly. Not too little, or else there is no progress. 

Not too much, or else the student has nothing to do. Not ostentatiously, or else the students get 

disgusted with the problem in the solution of which the teacher had the lion's share. Yet, if the 

teacher helps his students just enough and unobtrusively, leaving them some independence or at 

least some illusion of independence, they may experience the tension and enjoy the triumph of 

discovery. Such experiences may contribute decisively to the mental development of the students." 
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However, here Polya reiterates the first condition for discovery: No teacher can 
impart to his/her students the experience of discovery if he/she has not got it. 
Therefore, future teacher-education programs should capitalize on discovery ap­
proaches much more than they have in the past with emphasis on the practical 
ability to solve not too advanced problems and the methods of solution.9 

How to teach problem-solving skills-an illustration 
This problem is designed �o help teachers teach specific problem-solving skills. Four 
common but powerful problem-solving skills 10 are: 

1. Guess, check, and refine. 
2. Look for and/or use a pattern. 
3. Make a systematic list. 
4. Make and use a drawing or model. 

Pupils might use other skills to solve the problems (for example, working backwards, 
etc.). They can be praised for their insight, but it is usually a good idea to limit the 
emphasized list of skills directly taught during the first few lessons. 

Aim. Looking for pattern. 
Level. Grades 7-12. 
Problem. Ten people are at a party. Each person shakes hands with each of the 
others. What is the total number of handshakes? 
Heuristics. Start with easier cases. Complete the table. Look for patterns. 

Number of 
people 

2 

3 

4 

5 

6 

7 

8 

9 

10 

n 

Can you generalize the problem? 

Variations of the problem 

1. 

1 3 

Number of 
handshakes 

l 
3 

6 

6 
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Notice that: 
The first drawing contains one rectangle. 
The second drawing contains three rectangles. 
The third drawing contains six rectangles. 

How many rectangles are in the fourth drawing? 

If we continued the pattern, how many rectangles would be in: 
The fifth drawing? 
The sixth drawing? 
The tenth drawing? 

Complete the following table. 

Drawing 
first 
second 
third 
fourth 
fifth 
etc. 

Can you generalize the problem? 

Number of 
rectangles 
one 
three 
six 

2. Two points determine at most one line segment. 
Three points determine at most three line segments. 
Four points determine at most six line segments. 
Five points determine at most ten line segments. 
Six ... 
Seven .. . 
Eight .. . 

n 

2 

Generalize and check. 

3. Detect the regularity: 
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1 = 1 

1+2 =3 

1+2+3 =6 

1 + 2 + 3 + 4 = 10 

1 + 2 + 3 + 4 + 5 = 15 

Generalize and check. 
1+2+3+ ... +n 

3 4 5 6 



Extension of the problem 
Find the maximum number of parts into which the interior of a circle can be divided 
by a given number of lines in the plane. 

Complete the following table: 

Number of 
lines in plane (n) 

0 

1 

2 

3 

4 

n 

Can you generalize the problem? 

Drawing 

Can you check to see that the formula works? 

Footnotes 

Maximum number of 
regions (n) 

1 

2 
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