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One of the problems of problem solving is finding good problems to solve.
A good problem is one that does not yield an obvious solution. A good problem
can be modeled or sclved by analogy. A good problem can be studied
empirically. The solution of a good problem may be arrived at from several
directions. A good problem will result in the solver gaining new mathematical
insights. A good problem should be an enriching experience for students with
wide ranges of mathematical maturity. A good problem is hard to find.

We all have our favorite problems. I don't recall where I first came
across one of my favorite problems, but I've seen it in many forms. The form
I like best is found in the Indiana materials (LeBlanc, Kerr, and Thompson,
1976). 1t concerns a fixture found in many schools in North America. You
see, we have this problem with the hall lockers.

Imagine a school with 1000 hall lockers along one side of a hallway. All
the locker doors are open. Imagine 1000 children coming in from recess
approaching the open lockers. The first child in line, a devilish tyke, can
not resist slamming the locker doors shut.

The second child in line wishes to be involved so he starts opening the
locker doors. But he cannot cpen them as fast as they were closed. He is
only able to open every other locker starting with the second locker.

The third child in line wants to get into the act. She does so by
changing the state of every third locker starting with locker number three.
That is, if a locker is open she closes it, and if a locker is closed she
opens it.

The rest of the children pick up the pattern. The nth studeant will
change the state of every nth locker. When the thousandth child has passed
the thousandth locker, which ones will be open and which ones will be closed?

Far be it from me to deprive the reader of the joy of solving a problem
or making a discovery. Therefore, this article will occasionally be

interrupted by the symbol (*) to let the reader know that this is a good place
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to put down the monograph and pick up a pencil and try to solve a

problem.

* * *

The locker problem has been presented to classes of students
fourth graders to college undergraduates.
problem did so by first modeling the problem and then looking for

the modeled solution.
English textbooks along the chalk tray.
class coming in from recess, and walked past the books turning them to
represent open or closed locker doors.
represented an open locker and a book with its back cover facing front

represented a clesed locker door.
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become obvious to the solver.

numbered lockers are perfect squares;

divisors of the locker number.
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proposed

ranging from

Those who were able to sglve the

patterns in

A fourth-grade class in Sparta, Michigan lined 36 .

5

F

17

F

29

F

6 7
F F
18 19
F F
30 3l
F F

The class then lined up, like

the

A book with its cover facing front

The following pattern emerged.

8 9 10 11 12
F B F F F
20 21 22 23 24
F F F F F
32 33 34 35 36
F F F F B

When the above sequence is studied, one of two (or maybe both) patterns
What are they?

* * *

®

* *

* * * * *

The more mathematically sophisticated solver recognizes that the closed
=1, 2 =4, ¥ =9, etc. Younger
children, because they are less at home with their multiplication facts,

notice the following sequential pattern.

locker open
locker open
locker open
locker open

— e —

- -

2 lockers
4 lockers
6 lockers
8 lockers

»~ A

12

closed
closed
closed
closed

In either case, a solution to the locker problem has been found.
solution i1s not mathematically satisfying. Why are the closed numbered

* * *

_ . lockers_all perfect squares?

*

But the -

The numbered children wheo stop at any given numbered locker will be
The 1st, 2nd, 3rd, 4cth, 6th, and 12th child



will stop at locker 12. Notice that all numbers, except perfect squares, have
even numbers of divisors. The divisors occur in pairs.

12 ] 16 2
1 "1 — 1 —1
———2 —3 —2 Cs
3 —s5 Ct ——25
— 4 L—15 —s
6 16
12

Any locker that has an even number of vigitors will be left in the
initial state because what one visitor does, the next will undo. Only those
lockers with an odd number of visitors will be left in a changed state.

Generally fourth graders will stop at this point. However, the problem
can be pursued a little further with fifth and sixth graders. Look again at
the pattern created by the book model. Notice that the closed lockers
(perfect squares) can be determined by the following sequence.

1 =1
1+ 3=24
4+ 5=29
9+ 7 =16

16 + 9 = 25

Use a set of children's blocks (or a pencil and paper if your children's
blocks are not at hand) to give a geometric interpretation to the above
observation.

* * * * * * * * * * *

Later elementary school children have little difficulty showing that the
addition of consecutive odd numbers of blocks will form a sequence of squares,
with the length of a side one more than the preceding square.
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Add 1 Add 3 Add 5 Add 7

* :]* * K| Kk * Kk k[ %
12 * % * k| * * k k| %
22 * k * * * x| *

32 * Kk Kk ok
42

We leave it to the ninth-grade algebra student to show that the
succeeding terms of the above sequence can be algebraically expressed as

nth square + next odd number = (n + 1)st square
ar
n2+ (2n +1) = (o0 + 1)2

* * * * * * * * * * * *

A mathematical investigation that has fascinated students over the
centuries is the finding of pythagorean triples. Pythagorean triples are
positive integers (a, b, ¢) such that a2+ b2 = ¢2 ., For example, 3, 4, and 5
make up a Pythaporean triple. The multiples of the triple (3,4,5) are alsa
Pythagorian triples: (6,8,10), (9,12,15), etc. Pythagorean triples are said
to be primative if a and b are relatively prime; i.e., if the greatest common
divisor of a and b is 1.

Study the geometric succeeding-square model above and devise a scheme for
finding infinitely many primative triples.

* * * * * * * * * * * *

A general form of the geometric model for the sequence of squares is the
following.
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If in the formula a2+ b2 = ¢c2, we let a =n and ¢ = (n + 1), then
whenever b =4f2n + 1 is a positive integer the triple (a, b, ¢) will be
Pythagorean. Since 2n + 1l will yield all odd numbers, it will also yield all
odd perfect squares of which there are infinitely many. It can then be
shawn that n? and 2n + 1 are relatively prime.

* * * * * * * * * * * *

Can the idea of Pythagorean triples be extended? For example, can we find
triples (a, b, c¢) such that a’ + b3 = ¢32 The Fermat con jecture states that
such triples do not exist for afl + b = cD where n 2 3. The conjecture has
been verified for all values of n 4 2500 plus many more. The futility of the
sedrch can be demonstrated when one tries to extend the sequence model to the
cube. Try it.

* * * * * * * * * * *x *

To extend a3 to (a + 1)3, 3a? + 3a + 1 must be added to a3. This is easy
to verify algebraically. The following figure shows the geometric
interpretation of the extension.
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1f the extended Pythagorean triple is to hold for n = 3, then 3a2 + 3a + 1
must be a perfect cube. The following table shows the first ten perfect cubes
and the values of 3n2 + 3n + 1 closest to the listed cube. The investigator
will not be encouraged by what is shown.

n 3n® + 3n + 1 closest perfect cube
1

1 7 B

2 19 27

3 37

4 61 64

5 91

6 127 125

7 169

8 217 216

9 271

10 331 343

11 397

12 469

13 547 512

14 631

15 721 729

16 817

17 919

18 1027 1000

Thus we come to the end of a problem trail that started with some
mischievous children and school hall lockers to an unsolved problem on the
frontier of mathematics. Granted there were a number of side trails that could
also be investigated such as the investigation of n-gon arrays and geometric
numbers. Nonetheless, the trail we followed carried us through a number
of problem-soclving skills including modeling, emperical data collection,
generalization, and logical thought.
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