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There have been major changes i n maChemaCics educaCion research over che 
pasC decade. Research i n educacion i s now highly inCerdisciplinary, wich 
conCributions from cognitive psychologiscs, workers i n a r t i f i c i a l 
i n t e l l i g e n c e , etc. There are new people, new perspectives, new methodologies 
— and most important, new r e s u l t s . Taken as a whole, chese resulcs promise 
Co re-shape our undersCanding of che learning and ceaching processes. In Chis 
paper I w i l l discuss one aspece of recenC work, and iCs implicacions. 

The Chree examples I'm going Co discuss in chis paper seem on che surface 
Co have l i c c l e Co do wich each other. John Seely Brown and Richard R. Burton 
have done a detailed analysis of Che way elementary school children perform 
certain simple arithmetic operations- John Clement, Jack Lochhead, and E l l i o t 
Soloway have studied the way that people translate sentences l i k e "There are 
six times as many studenCs as professors aC chis college" into mathematical 
symbolism- My work consists of an attempt Co model "experc" maChemacical 
problem solving, and to teach college freshman to "solve problems l i k e 
experts-" Yet a l l chree of chese scudies share a common premise, and cheir 
resulCs cend to subsCanCiaCe i t - That premise i s the following: 

There i s a remarkable degree of consistency i n both correct and 
incorrect mathemacical behavior on che parC of boch experCs and 
novices. This consiscency i s so strong that i t may often be 
possible to model or simulate that behavior, at a very substantive 
level of d e t a i l . 

The implications of this assumption for both the teaching and learning 
processes are enormous- FirsC, consider che nocion ChaC much of our sCudenCs ' 
incorrecC behavior can be simulaCed — and hence predicCed. This means chac 
many of Cheir miscakes are noC random, as we often assume, but the result of a 
consistently applied and incorrectly understood procedure- In consequence, 
the student does not need to be " t o l d the right procedure"; he needs to be 
"debugged." This idea l i e s at che hearC of Che Brown and BurCon work. Ic is 
also cenCral Co Lochhead and ClemenC's work, where we w i l l see chaC the simple 
process of translating a sentence into algebraic symbols i s far more complex 
than i t at f i r s t appears. The other side of the coin has to do with the 
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consistency of expert behavior. That, of course, is the assumption made i n 
a r t i f i c i a l i n t e l l i g e n c e — where the attempt i s made to model expert behavior 
in enough d e t a i l so that i t can be simulaCed on a compuCer. I f ChaC seems 
plausible, Chen another step should seem equally plausible: model expert 
behavior so that humans, rather Chan machines, can simulate i t . That i s , 
teach students to "solve problems l i k e experts" by t r a i n i n g them to follow a 
detailed model of experC problem solving. ThaC is the idea behind my own 
work. 

1. A Close Look aC Arithmetic. 

In chis seccion I o f f e r a d i s c i l l a t i o n of Brown and Burton's paper 
"Diagnostic Models for Procedural Bugs i n Basic Mathematical S k i l l s . " There 
is much more in that paper than I can summarize here, and i t is well worth 
reading i n i t s e n t i r e t y . 

The key word i n the t i t l e of their paper i s "bug." I t i s , of course, 
borrowed from programming 'terminology — and i s f u l l y intended to have a l l of 
Che connotations that i t usually does. While a seriously flawed program may 
f a i l to run, a program with only one or two minor bugs may run a l l the time. 
I t may even produce correcC answers mosc of che time. Only under certain 
circumstances w i l l ic produce Che wrong answer — and Chen ic w i l l produce 
that wrong answer consistently. 

Often one discovers a bug i n a computer program when i t produces the 
wrong answer on a test computation. One might hope to find the bug by reading 
over the l i s t i n g of the program and catching a typographical error or 
something s i m i l a r . I t i s usually easier, however, Co Crace Chrough che 
program and see when i t makes a computational error. At that point, one knows 
where che source of d i f f i c u l C y i s and can hope co remedy i c . I f che basic 
algorichm were simple enough, i t mighc be possible Co guess che source of 
error by noticing a paCCern i n Che series of misCakes i t produced. Thus one 
mighc be able to fi n d the bugs i n a program — without even having a l i s t i n g 
of i t . For example, see i f you can discover che bug i n Che following addicion 
program from Che f i v e sample problems. 

41 328 989 66 216 
+9 +917 +52 +887 + 12 
50 1345 1141 1053 229 

Of course, i f you don'c have a l i s c i n g of che program, you can never be 
certain that you have che rigbc bug. However, you can subscantiate your guess 
by predicting i n advance the mistakes that the program would make on other 
problems. For example, i f you have i d e n t i f i e d the bug which resulted in the 
answers in the previous f i v e problems, you might want to predict the answers 
to the following two: 

- -446 - — 2 0 1 — 
+815 +399 

This p a r t i c u l a r bug i s rather straightforward. We can get Che same answers as 
the program for each of the f i v e sample problems by " f o r g e t t i n g " to reset che 
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"carry regiscer" Co zero: afcer doing an addicion which creaCes a carry in a 
column, simply add che carry to each column to the l e f t of i t . For example, 
in the second problem, 8 + 7 = 15, so we carry 1 into the second column. That 
gives us a sum of 4. I f the 1 is s t i l l carried Co Che t h i r d column, that 
gives us 1 + 3 + 9 = 13. The same d i f f i c u l t i e s arise a l l the way across Che 
board. Using Chis bug, one would predict answers of 1361 and 700 to the two 
extra problems. 

A student might have chis "bug" i n his own arichmecic procedure, jusC as 
the computer program might. In fact, a child might well use his fingers to 
remember the carry, and simply forget to bend che fingers back after each 
carry is added. This would produce exactly the bug above. 

The finding of bugs i s far more than an exercise i n cleverness: i t has 
Cremendous implicacions for che way we ceach. The naive view of Ceaching is 
that the teacher's obligation is to present the correct procedure coherently 
and w e l l , and that i f anything goes wrong, i t i s simply because thje students 
have not yet succeeded i n learning that procedure. The above example (and 
many more in the t e x t ) suggest that something very d i f f e r e n t i s happening. 
Suppose a student i s making consisCenC misCakes. The ceacher who can diagnose 
such a bug i n Chat scudenC sCands a decenC chance of being able Co remedy i t . 
The teacher who looks at the student's mistakes and concludes from them simply 
that the student has not yet learned the correct procedure, is condemned 
simply to repeat the correct procedure — with much less likelihood that che 
SCudenC w i l l perceive his own mistakes and begin to appropriately use the 
correct procedure. 

If^ one makes the assumption that a sCudenc's behavior is consisCenc when 
i t is wrong, then the issue appears to be cheorecically simple. You begin 
wich the correct procedure, and then at each step generate what might be 
considered plausible bugs. Next, you create a series of test problems so Chac 
che sCudent's answers CO Chose problems indicaCe his bugs. F i n a l l y , after 
i d e n t i f y i n g the bugs, you intervene d i r e c t l y to remedy them. 

While t h i s theory may sound remarkably simple, the implementation i s 
actually quite complex. FirsC, ic is a surprisingly complicaced task to wrice 
down a l l the operations ChaC one has Co do Co add or subCracC Cwo - three 
d i g i t numbers. Primitive operations involved i n subtraction, for example, 
include knowing the difference between any two single d i g i t s , being able to 
compare two d i g i t s , knowing when i t is appropriate to borrow, being able to 
borrow, knowing to perform operations on the columns i n sequence from r i g h t to 
l e f t , and many, many more primi t i v e operations- Any flaw in one of these 
procedures causes a bug which needs to be diagnosed; flaws in more than one 
procedure cause compound bugs which may be even more d i f f i c u l t to diagnose. 
Brown and Burton hypothesized the following l i s t of nine common procedural 
miscakes in Che simple subtraction algorithm. When one considers possible 
combinations of chese, Chings sCart Co get out of hand very rapidly. 

143 The student subCracCs Che smaller dlgic i n each column 
-28 from che larger digic regardless of which is on cop. 
125 
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143 
-28 
125 

1300 
-522 
878 

140 
-21 
121 

140 
-21 
120 

1300 
-522 
788 

321 
-89 
221 

662 
-357 
205 

662 
-357 
215 

When the student needs to borrow, he adds 10 to the top 
digic of the current column without subtracting 1 from 
the next column to Che l e f t -

When borrowing from a column whose top d i g i t is 0, the 
student wrices 9 buC does noc continue borrowing from 
the column to the lef c of the 0-

Whenever the top d i g i t i n a column is 0, the sCudenc 
wrices che boccom digic i n Che answer; i.e., 0-N = N-

Whenever the top d i g i t i n a column is 0, the student 
writes 0 i n the answer; i - e , , 0-N = 0-

When borrowing from a column where the top d i g i t is 0, 
the student borrows from the next column to the l e f t 
c o r r e c t l y but writes 10 instead of 9 in this column. 

When borrowing into a column whose Cop digic is 1, Che 
SCudent gets 10 instead of 11-

Once the atudenC needs to borrow from a column, he 
continues to borrow from every column whether he 
needs to or not. 

The student subtracts a l l borrows from the left-most 
d i g i t i n the top number-

Based on the premise chaC sCudents do indeed follow cerCain consistent 
procedures, Brown and Burton tested th i s l i s t empirically with the scores of 
1325 students on a 15-item subtraction t e s t . Their data indicates that more 
than 40 percent of the errors made on the CesC could be aCCribuCed Co "buggy" 
behavior. In parcicular, more Chan 20 percenc of che solucion sheets were 
e n t i r e l y consistent with one of their hypothesized bugs. (That i s , a l l of che 
answers were exactly what that particular f a u l t y algorithm would produce.) 
Another 20 percent of the solution sheets indicated behavior which was 
strongly consistent but not idenCical wich such a bug. 

Furcher, the analysis of the students' performance on this test, led to 
the i d e n t i f i c a t i o n of new "bugs." Of the 1325 students cested, 107 students 
had a bug in th e i r "borrow from zero" procedure. In consequence, they had . . 
missed a l l 6 ot the_lj_pr^blems-OP—the—test—wh4:ch-~cal'l^"d~foi^or row ing from 
-zero. IfrncKe'original i n t e r p r e t a t i o n of che daCa, chose 107 SCudencs were 
simply idencified as sCudencs who scored 60 percenC. LaCer chey were 
idenCified as sCudenCs who have noC yet mastered the technique of borrowing 
from zero. 
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2. A Look at "Simple" Word Problems. 

For a number of years, a group at the UniversiCy of MassachusecCs ac 
Amhersc has been sCudying a variecy of sCudents' misconcepcions i n 
college-level physics and maChemacics. This discussion i s based primarily on 
Cwo of their working papers, "Translating Between Synlbol Systems: I s o l a t i n g a 
Common DifficulCy i n Solving Algebra Word Problems" by John Clement, Jack 
Lochhead and E l l i o t Soloway, and "Solving Algebra Word Problems: Analysis of 
a C l i n i c a l Interview" by John Clement. These papers deal with college-level 
students, and (at least at f i r s c ) wiCh subjecC maccer "appropriate" for 
studencs at this l e v e l . Yet, there are two very strong s i m i l a r i t i e s between 
this work and the work described i n section 1. F i r s t , a process which is 
"simple" to do correctly may be a ric h source of potential errors. Second, 
there is an almost remarkably perverse consistency i n the way that students 
make mistakes — to the poinc where remediation is rather d i f f i c u l t , even i f 
one understand whac Che student i s doing. • F i n a l l y , there is an interesting 
contrast between the " s t a t i c " nature of mathemacical language and che 
"dynamic" naCure of a programming language. 

Since Clement, Lochhead, and Soloway were dealing with college-level 
students, the authors began with problems of some complexity. One problem, 
for example, asked the student to determine whac price, P, Co charge adults 
who ride a ferry boat, i n order to have an income on a t r i p of D dol l a r s . The 
students were given the following information: There were a t o t a l of L people 
(adults and children) on the f e r r y , with 1 child for each 2 adults; children's 
eickecs were half price. The sCudenCs were asked Co wrice cheir equaCion for 
P i n Cerms of che variables D and L. When fewer Chan 5 percenC of che 
SCudencs given the problem solved i t correctly, the authors began to use 
simpler and simpler problems. After a sequence of increasingly easier 
problems, they wound up using problems l i k e the ones given in Table 1. 

Table 1 

1. Write an equation using the variables S and P to represent che 
following statement: "There are six times as many students as professors at 
this University." Use S for the number of students and P for the number of 
professors. 

2. Write an equation using the variables C and S to represent the 
following statement: "At Mindy's restaurant, for every four people who 
ordered cheesecake, there are five people who ordered strudel." Let C 
represent Che number of cheesecakes and S represenC Che number of strudels 
ordered. 

3. Write a senCence i n English chat gives the same informacion as the 
following equation: A = 7S. A is che number of assemblers i n a factory. S 
is the number of solderers i n a factory. 

4. Spies f l y over the Norun Airplane Manufacturers and return with an 
aerial photograph of the new planes in the yard. 
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R R R R B B B 

R R R R B B 

They are f a i r l y certain that they have photographed a f a i r sample of one 
week's production- Write an equation using the l e t t e r s R and B that describes 
the relationship between the number of red airplanes and the number of blue 
planes produced- The equation should allow you to calculate the number of 
blue planes produced i n a month i f you know the number of red planes produced 
in a month. 

The correct answers for these four problems are (1) S = 6P, (2) 5C = 4S, 
(3) "There are 7 assemblers for every solderer," and (4) 5R = 8B- The success 
rates for these four problems were 63, 27, 29, and 32 percent, respectively. 

I t might seem at f i r s t that the researchers had simply found a bunch of 
studencs who were extremely defective i n their algebraic s k i l l s . However, che 
SCudents had been given che following six quescions: 

1. Solve for x: 5x = 50 

2. Solve for x: 6 = 30 
4 X 

3. Solve for x i n cerms of a: 9a = lOx 

4. There are 8 cimes as many men as women aC a parcicular school. 50 
women go Co che school- How many men go Co Che school? 

5- Jones somecimes goes Co visiC his friend Lubhoft d r i v i n g 6 miles and 
using 3 gallons of gas. When he visiCs his friend SchwarCz, he 
drives 90 miles and used_2. gallons of gas- (Assume the same driving 
conditions in both cases.) 

6- At a Red Sox game there are 3 hotdog sellers for every 2 Coke 
se l l e r s . There are 40 Coke sellers i n a l l . How many hotdog 
sell e r s are there at this game? 

On average, more than 95 percenC of these problems were solved correctly. 
Therefore, the d i f f i c u l c i e s of these college sCudenCs were noC i n simple 
algebraic manipulations. The d i f f i c u l t i e s were i n translating a statement 
from a sentence into a suitable algebraic form. Actually, the students were 
very competent i n courses beyond algebra- Clement's paper provides a detailed 
analysis of the transcript of a problem-solving session with one student who 
was doing B+ work i n a standard calculus course at the time of the interview, 
and had been able to d i f f e r e n t i a t e the function f ( x ) = ̂ _x̂ »̂;||j_xapidiy-,—using— 
the chain r u l e , _wi-Chout̂ dl£f-icul-tyr—Yecr; cK̂ e~sCud'enC was unable Co solve any 

"of cFe'problems in Table 1. 

As in Che Brown and BurCon work, Che studenCs' errors were remarkably 
consistent for a l l of the problems i n Table 1. More than f o u r - f i f t h s of the 
incorrect solucions Co Che problems were of Che form 6S = P, 4C = 5C, "Seven 



solderers for every assembler", and 8R = 5B, respecCively. In ocher words, 
Chere was a consisCenc reversal of che symbols and cheir role i n che 
equaeions. 

Through an analysis of c l i n i c a l inCerviews, the authors idencified cwo 
major causes for Che reversal. The firsC explanation for the reversal was 
that the students made a "syntactic" translation of a sentence into algebraic 
form; i . e . , the student reads along Che sencence, replacing words where 
appropriate by algebraic symbols- Thus, "six times as many students" becomes 
6S; "as" becomes equals, and "professors" becomes P. The resulting equaCion 
is 6S « P. 

The second explanacion for che reversal was chac alchough Che sCudenCs 
recognized ChaC an equacion does scand for a relacionship becween two 
quantities, the way that the students represented that relationship to 
themseIves resulted in a reversal. Many of Che sCudenCs, for example, drew 
picCures such as: 

© © © © © © D © . 
On one side of che desk i s che professor; on Che oCher side are Che 6 
SCudenCs. Thus che equaliCy i s 6S ~ P. 

To Che machemacician, an equacion for che "students and professor's" 
problem is a device which allows him to calculate the number of students given 
the number of professors, or vice-versa. Since Chere are 6 cimes as many 
SCudencs as professors, one musC mulciply the number of professors by 6 to get 
the number of students ( f o r example, 10 professors yield 60 students). Thus, 
S = 6P. Obviously, students do not have this perspective. 

In another experiment, the authors provide some dramatic evidence of Che 
difference becween Che sCaCic and dynamic inCerpreCacions of an equacion. 
Their "subjeccs" were 17 professional engineers who had becween 10 and 30 
years of experience each. The engineers had come Co cake a course i n the 
BASIC programming language. On the f i r s t day of the course, the engineers 
were asked Co wrice an equacion for che following sCacemenc: 

At the last f o o t b a l l game, for every four people who bought 
sandwiches, there were f i v e who bought hamburgers. 

Only 9 out of 17 of the engineers solved the problem correctly. The following 
day, without any discussion of the previous problem and the solucion Co i c , 
the engineers were asked to write a computer program for the following: 

At the last company cocktail party, for every 6 people who drank 
hard liq u o r , there were 11 people who drank beer. Write a program 
in BASIC which w i l l output the number of beer drinkers when supplied 
with Che number of hard liquor drinkers. 

A l l 17 of che engineers solved che problem correccly. The anchors 
further substantiated these results with a study of some college students in a 
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programming course. The notion of programming suggests a possible means of 
remediation: I f we crain students to think of an equation as a "program" wich 
inputs and outputs, we may increase the likelihood of their getting the 
correct answers, 

3. A Look aC Problem Solving. 

ApparenCly random problem-solving behavior can acCually be quiCe 
consiscent. In the work with BUGGY and with elementary word problems, the 
focus was on consistent paCCerns of mistakes, for purposes of diagnosis and 
remediation. In t h i s section.we look at the f l i p side of Che coin. JusC as a 
look beneath the surface discloses consistency i n novices' incorrecC behavior, 
a look beneaCh Che surface w i l l also disclose greac consisCency i n che 
problem-solving behavior of experts. To make the point that experts and 
novices approach problems i n dramatically d i f f e r e n t ways, consider the 
following three problems — a l l of which are ostensibly accessible to high 
school students. 

Problem 1: Let a, b, c, and d be given numbers between 0 and 1. 
Prove thac (1-a)(1-b)(1-c)(1-d) > 1-a-b-c-d. 

Problem 2: DeCermine Che sum 1 + 2 + ... + n 
2! 3! (n+1)!. 

Problem 3: Prove ChaC i f 2^ - 1 is a prime, then n is a prime-

On problem 1 most students w i l l laboriously multiply the four factors on 
the l e f t , subtract the terms on the r i g h t , and then t r y to prove that 
(ab+ac+ad+bc+bd+cd-abc-acd-bcd+abcd) > 0 — usually without success. 
V i r t u a l l y a l l the mathematicians I've watched solving i t , begin by proving che 
inequality ( l - a ) ( ] - b ) > 1-a-b. Then they multiply chis inequaliCy in Curn by 
(1-c) and (1-d) to prove the three-and four-variable versions of i t . 

Likewise i n problem 2, most students begin by doing the addition and 
placing a l l che terms over a common denominator. A typical expert, on che 
other hand, begins wich che observaCion, "ThaC looks messy. Let me calculate a 
few cases," The inductive pattern i s clear and easy to prove. 

The expert who read problem 3 and said "That's goc Co be done by 
contradiction" was typ i c a l (given the structure of the problem, one r e a l l y has 
no a l t e r n a t i v e ) . Yet this almost automatic observation by experts was alien 
to students. A large number of the students to whom I have given che problems 
eicher responded wich commenCs l i k e " I have no idea where Co begin" or cried a 
few calculations to see whether the result is plausible and then reached a 
dead end. 

Of course these are special probJ^ms^^foj^whiHih—ex^erC^andHiovi 
.perXoxinaJice—are-each-iTT^thelf^^owiT way remarkably consistent. While che 
experCs did noC consciously follow any strategies, their behavior was at least 
consistent with these " h e u r i s t i c " suggestions: 
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a. For complex problems with many variables, consider solving 
an analogous problem with fewer variables. Then try to 
exploit either the method or the resulc of that soluCion. 

b. Given a problem wich an inCeger paramecer n, calculace 
special cases for small n and look for a pactern-

c. Consider argument by contradiction, especially when extra 
" a r t i l l e r y " for solving che problem, i s gained by negating 
the desired conclusion. 

Many of the novices were unaware of these strategies, and many others "knew of 
them" (that i s , upon seeing the solution they acknowledged having seen similar 
solutions), but hadn't thought to use them. Expert and novice problem solving 
are clearly differenC. The c r i c i c a l quescion i s : Can we crain novices Co 
solve che problems as experCs do? 

There are a number of obsCacles. FirsC, we have Co facCor ouC simple 
subjecC maCCer knowledge: There i s no way ChaC one can hope to give the 
studencs experience before they have i t , or Co compensace for iC. Racher, we 
would l i k e Co provide che sCudencs wiCh sCraCegies for approaching problems 
wich f l e x i b i l i c y , resourcefulness, and e f f i c i e n c y . 

Second, we musC realize ChaC che heuri s t i c strategies described by Polya 
are far more complex Chan cheir descripcions would ac f i r s c have us believe. 
Consider Che following scracegy and a few problems. 

"To solve a complicaCed problem, ic ofcen helps Co examine and solve a 
simpler analogous problem. Then exploic your solucion." 

Problem 4: Two poincs on che surface of Che unit sphere ( i n 3-space) 
are connected by an arc A which passes through the i n t e r i o r 
of the sphere. Prove that i f the length of A is less than 2, 
then there is a hemisphere H which does not intersect A. 

Problem 5: Lec a, b, and c be positive real numbers. Show ChaC noC a l l 
chree of che cerms a ( l - b ) , b ( l - c ) , and c ( l - a ) can exceed 1/4. 

Problem 6: Find che volume of Che unic sphere in 4-space. 

Problem 7: Prove ChaC i f a + b + c + d = ab+bc+cd+da, Chen a=b=c=d. 

These four problems, l i k e problem 1, can be solved by che "analogous 
problem" sCraCegy. YeC, ic is unlikely ChaC a sCudenc untrained in using the 
strategy would be able to apply i t successfully to many of these. Part of the 
reason is ChaC che sCracegy needs Co be used d i f f e r e n c l y i n che solucion of 
each problem. 

In solving problem I , we builc up an induceive solution from Che 
cwo-variable case, using che resulc of che analogous problem as a stepping 
stone i n the solution of the o r i g i n a l . 
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In contrast, analogy is used i n problem 4 Co furnish the idea for an 
argument. The problem is hard to visualize i n 3-space but easy to see in che 
plane: We wane co conscruce a diameCer of a uniC c i r c l e which does noC 
incersece an arc of lengCh 2 whose endpoincs are on Che c i r c l e . Observing 
chac Che diameCer p a r a l l e l Co the straight l i n e becween che endpoinCs has Chis 
properCy enables us Co recurn Co 3-space and Co consCruct the analogous plane. 

Problem 5 i s curious. I t looks as chough che two-variable analogy should 
be useful, but 1 haven'e found an easy way Co solve i c . Ac f i r s c the 
one-variable version looks i r r e l e v a n t , but i t ' s not. I f you solve i t , and 
think to take the product of the three given terms, you can solve che given 
problem. So again we exploic a resulc, buC chis cime a differenC resulc in a 
differenC way. 

Problem 6 exploics boch the methods and results of the lower-dimensional 
problems- We integrate cross-sections, using the same method; che measures of 
che cross-seccions are che resulCs we exploic. 

In problem 7 iC would seem apparenc ChaC Che Cwo-variable problem is the 
appropriate one to consider- However, "which two-variable problem" is not at 
a l l clear to students, A large number of Chose I have wacched Cried to solve 

Problem 7': Prove that a^ + b^ = ab implies that a = b, instead of 
Problem 7": Prove ChaC a^ + b^ = ab + ba implies a * b. 

The descripcion "exploicing simpler analogous problems" is re a l l y a 
convenienC label for a colleccion of similar, but not i d e n t i c a l , strategies. 
To solve a problem using t h i s strategy, one must (a) chink to use the strategy 
( t h i s i s n o n - c r i v i a l ! ) , (b) be able Co generaCe analogous problems which are 
appropriaCe Co look aC, (c) selecc from among che analogies, che appropriate 
one, (d) solve the analogous problem, and (e) be able to exploic eicher the 
mechod or resulc of che analogous problem appropriacely. 

I f we assume now that we can actually describe the SCraCegies in enough 
d e t a i l so that people can use them, we run ri g h t into another problem. That 
i s : a l i s t of a l l the strategies i n d e t a i l would be so long that the studencs 
could never use i c ! Knowing how Co use Che sCraCegy isn ' t enough: The 
student must think to use i t when i t is appropriate. 

Consider techniques of integration in elementary calculus. There are 
fewer than a dozen important techniques, a l l of them algorithmic and 
r e l a t i v e l y easy to learn. Most students can learn integration by pares, or 
subsCiCucion, or parcial fraccions, as individual Cechniques and use chem 
reasonably w e l l , as long as Chey know which Cechniques Chey are supposed co 
use. (Imagine a Cesc on which che appropriaCe cechnique is suggested for each 
problem. The students would probably do very well.) When they have to fele.cc_ 
t h e i r own techiUqueSj_h^we_ve.rL,—thinga^^f t-en ̂ ^-awry For "example, , a 
^ g i f C " ~ f T r s t problem on a t e s t , caused numerous students trouble when they 
Cried CO solve i t by p a r t i a l fractions or, even worse, by a trigonometric 
s u b s t i t u t i o n ! 
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In "Presenting a Strategy for I n d e f i n i t e Integration" (The American 
Mathematical Monthly, 1978) I discuss an experiment i n which half the students 
in a calculus class (not mine) were given a strategy for selecting techniques 
of integration, based on a model of "expert" performance. The other students 
were told to study as usual — using the miscellaneous exercises in the text 
Co develop their own approaches Co problem solving. Average sCudy Cime for 
members of che "scracegy" group was 7.1 hours, while for Che ochers iC was 8.8 
hours; yee che "sCraCegy" group significanCly ouCperformed Che oChers on a 
Cesc of incegracion s k i l l s — i n spite of che facC ChaC Chey were noc given 
craining i n inCegraCion, jusc i n seleccing the techniques of integration. 

The "moral" to the experiment is ChaC sCudenCs who cannoC choose che 
"righc" approach Co a problem — even in an area where chere are only a few 
useful scraighcforward Cechniques — do noC perform nearly as well as chey 
"should," I f we leap from cechniques of incegracion Co general maChemacical 
problem solving, che number of p o t e n t i a l l y useful Cechniques increases 
substantially, as does the d i f f i c u l t y and subtlety i n applying the techniques. 
An e f f i c i e n t means for selecting approaches to problems, for avoiding "blind 
alleys," and for allocating problem-solving resources i n general thus becomes 
much more c r i t i c a l . Without i t , the benefits of trai n i n g i n individual 
heuristics may be l o s t . 

In consequence of the above, an aCCempC co teach general mathematical 
problem solving would need these two components: f i r s t , a detailed 
description of individual strategies, and second, a global framework for 
selecting these strategies and using them e f f i c i e n t l y . One way of presenting 
such a framework is with a "model" of expert problem solving. That model 
takes a semester Co unfold, so chere is no sense i n my accempCing Co summarize 
i t here. What I have done is simply to give the outline of the model (see 
Figure 1), and a description of the most important heuristic strategies which 
f a l l within each of the major blocks of that strategy (see Figure 2). 

Of course, documenting improved problem-solving a b i l i t y is rather 
d i f f i c u l t . I am slowly amassing evidence, i n a variety of d i f f e r e n t ways, 
that i n s t r u c t i o n i n problem solving actually can have an impact on students' 
problem-solving performance. The material on integration provided some 
evidence of t h i s . A "laboracory sCudy" demonsCraCed ChaC "problem-solving 
experience" i n and of i c s e l f i s noc enough: In Che experimenc, two groups of 
students worked on the same problems for the same amount of time and saw the 
same solutions, but one saw i n addition heuristic explanations of Che 
solucions. The differences i n their performancea were dramatic. (See 
" E x p l i c i t Heuristic Training as a Variable i n Problem-Solving Performance.") 
Third, there is a large amount of "before and a f t e r " data on the students in 
the problem-solving course. These data indicate both an improved 
problem-solving performance on the-part of the students and an improved 
a b i l i t y to generate plausible approaches to problems, as opposed to a control 
group. There i s much data to be analyzed by a variety of d i f f e r e n t means — 
means which were unavailable jus t a few years ago, and which come from a 
variety of disparate sources. As one such example, l e t me discuss b r i e f l y the 
notion of "hierarchical cluster analysis," Consider the following three 
problems. 
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Figure 1. SCHEMATIC OUTLINE OF THE PROBLEM-SOLVING STRATEGY 
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VERIFICATION 
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More Accessible 
Related Problem 
or 
New Information 

EXPLORATION 
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Figure 2. SOME IMPORTANT HEURISTICS IN PROBLEM SOLVING 

For Analyzing and Understanding a Problem: 

1. Draw a Diagram i f at a l l possible 
2. Examine Special Cases 

(a) to exemplify the problem, 
(b) Co explore che range of po s s i b i l i c i e s chrough 

limicing cases, 
(c) Co find induccive paccerns by seccing inccger 

parameCers equal Co 1,2,3,.-. in sequence. 
3. Try Co simplify i c , by using symmeCry or "without loss 

of generality." 

For the Design and Planning of a Solution: 

1. Plan solutions h i e r a r c h i c a l l y . 
2. Be able to explain, at any point in a solution, what you 

are doing and why; what you w i l l do with the result of 
this operation. 

For Exploring Solutions to D i f f i c u l t Problems: 

1. Consider a variety of equivalent problems 
(a) replacing conditions by equivalent ones, 
(b) recombining elements of the problem i n d i f f e r e n t ways, 
(c) introducing a u x i l i a r y elements, 
(d) reformulacing the problem by (1) a change of 

perspective or noCaClon, (11) arguing by contra­
d i c t i o n or contrapositive, or ( i i i ) assuming a 
solution and determining properties i t must have. 

2. Consider s l i g h t modifications of the o r i g i n a l problem: 
(a) choose subgoals and t r y Co aCCain Chem. 
(b) relax a condicion and Cry to re-impose i t . 
(c) decompose Che problem and work on ic case by case. 

3. Consider broad modificaCions of Che o r i g i n a l problem: 
(a) examine analogous problems wich less complexity 

(fewer variables). 
(b) explore the role of j u s t one variable or condition, 

the rest fixed. 
(c) exploit any problem with a similar form, "givens," 

or conclusions; t r y to exploit both the result 
and the method. 

?0T Verifying a Solution: 

1, Use these specific tests: Does i t use a l l the data, 
conform to reasonable estimates, stand up to tests of 
symmeCry, dimension analysis, scaling? 

2, Use these general tests: Can i t be obtained d i f f e r e n t l y , 
substantiated by special cases, reduced to known resu l t s , 
generate something you know? 
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Problem 8: Given that lines intersect i f and only i f they are not 
p a r a l l e l , and that any two points in the plane determine a 
unique 1ine between them, prove ChaC any Cwo disCinct 
nonparallel lines must intersect in a unique point. 

Problem 9: Given 22 points on the plane, no three of which l i e on the 
same straight l i n e , how many straight lines can be drawn, 
each of which passes through two of chose poinCs? 

Problem 10: I f a funccion has an inverse, prove Chat i t has only one 
inverse, 

Let us Cake an excreme case. The sCudenC who undersCands virCually 
noching of chese problems may chink ChaC problems 8 and 9 are relaCed because 
Chey boch deal wich lines i n che plane. On Che other hand, the mathematician 
sees that both problems 8 and 10 deal with the uniqueness, and are l i k e l y to 
be proved by contradiction. Therefore he may perceive of those problems as 
being s i m i l a r . 

Suppose 100 students were given these 3 problems, and asked to group 
together those problems which they thought were related. (They might decide 
that none of che problems was relaced or ChaC Cwo of Chem were, or that three 
of them were.) One could then create a 3 by 3 matrix, where the i , j - t h entry 
represented the number of students who considered the i - t h and j - t h problems Co 
be relaCed. A comparison of Chese maCrices before and afcer i n s t r u c t i o n , for 
both experimental and controlled groups, could indicate changes in Che 
SCudenCs' percepcions of che way chese problems were scructured mathematically. 

In f a c t , my cluster analysis used 32 problems, with a 32 x 32 matrix for 
analysis. There were clear differences between experimental pre- and post-test 
scores, and controlled pre- and post-test scores. Further comparison with 
"expert" sorting of the problems i s also planned. The f u l l t a l l y is yet to 
come, but the preliminary results are encouraging. 
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