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There have been major changes in mathematics education research over the
past decade. Research in education is now highly interdisciplinary, with
contributions from cognitive psychologists, workers in artificial
intelligence, etc. There are new people, new perspectives, new methodologies
-- and most important, new results. Taken as a whole, these results promise
to re-shape our understanding of the learning and teaching processes. In this
paper I will discuss one aspect of recent work, and its implications.

The three examples I'm going to discuss in this paper seem on the surface
to have little to do with each other. John Seely Brown and Richard R. Burton
have done a detailed analysis of the way elementary school children perform
certain simple arithmetic operations. John Clement, Jack Lochhead, and Elliot
Soloway have studied the way that people translate sentences like "There are
six times as many students as professors at this college" into mathematical
symbolism. My work consists of an attempt to model "expert' mathematical
problem solving, and to teach college freshman te "solve problems like
experts."” Yet all three of these studies share a common premise, and their
results tend to substantiate it. That premise is the following:

There is a remarkable degree of consistency in both correct and
incorrect mathematical behavior on the part of both experts and
novices. This consistency is so strong that it may often be
possible to model or simulate that behavior, at a very substantive
level of detail.

The implications of this assumption for both the teaching and learning
processes are enormous. First, consider the notion that much of ocur students'
incorrect behavior can be simulated -- and hence predicted. This means that
many of their mistakes are not random, as we often assume, but the result of a
consistently applied and incorrectly understood procedure. In consequence,
the student does not need to be "told the right procedure”; he needs to be
"debugged." This idea lies at the heart of the Brown and Burton work. It is
also central to Lochhead and Clement's work, where we will see that the simple
process of translating a sentence into algebraic symbols is far more complex
than it at first appears. The other side of the coin has to do with the
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consistency of expert behavior. That, of course, is the assumption made in
artificial intelligence -~ where the attempt is made to model expert behavior
in enough detail so that it can be simulated on a computer. If that seems
plausible, then another step should seem equally plausible: model expert
behavior so that humans, rather than machines, can simulate it. That is,
teach students to "solve problems like experts" by training them to follow a
detailed model of expert problem solving. That is the idea behind my own
work.

1. A Close Look at Arithmetic.

In this section 1 offer a distillation of Brown and Burton's paper
"Diagnostic Models for Procedural Bugs in Basic Mathematical Skills." There
i5 much more in that paper than I can summarize here, and it is well worth
reading in its entirety.

The key word in the title of their paper is "bug." It is, of course,
borrowed from programming terminology -- and is fully intended to have all of
the connotations that it usually does. While a sericusly flawed program may
fail to run, a program with only one or two minor bugs may run all the time.
It may even produce correct answers most of the time. Only under certain
circumstances will it produce the wrong answer -- and then it will produce
that wrong answer consistently.

Often one discovers a bug in a computer program when it produces the
wIrong answer on a test computation. One might hope to find the bug by reading
over the listing of the program and catching a typographical error or
something similar. It is usually easier, however, to trace through the
program and see when it makes a computational error. At that point, one knows
where the source of difficulty is and can hope to remedy it. 1f the basic
algorithm were simple enough, it might be possible to guess the source of
error by noticing a pattern in the series of mistakes it produced. Thus one
might be able to find the bugs in a program -—- without even having a listing
of it. For example, see if you can discover the bug in the following addition
program from the five sample problems.

41 328 989 66 216
+9  +917 +52  +387 +12
50 1345 1141 1053 229

Of course, if you don't have a listing of the program, you can never be
certain that you have the right bug. However, you can substantiate your guess
by predicting in advance the mistakes that the program would make on other
problems. For example, if you have identified the bug which resulted in the
answers in the previous five problems, you might want to predict the answers
to the following two:

e — - kA6 20T T
+815  +399

This particular bug is rather straightforward. We can get the same answers as
the program for each of the five sample problems by "forgetting'" to reset the
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"carry register" to zero: after doing an addition which creates a carry in a
column, simply add the carry to each column to the left of it. For example,
in the second problem, 8 + 7 = 15 so we carry 1 into the second column. That
gives us a sum of 4. If the 1 is still carried to the third column, that
gives ug 1 + 3 + 9 = 13, The same difficulties arise all the way across the
board. Using this bug, one would predict answers of 1361 and 700 to the two
extra problems.

A student might have cthis "bug" in his own arithmetic procedure, just as
the computer program might. In fact, a child might well use his fingers to
remember the carry, and simply forget to bend the fingers back after each
carry is added. This would produce exactly the bug above.

The finding of bugs is far more than an exercise in cleverness: it has
tremendous implications for the way we teach. The naive view of teaching is
that the teacher's obligation is to present the correct procedure coherently
and well, and that if anything goes wrong, it is simply because the students
have not yet succeeded in learning that procedure. The above example (and
many more in the text) suggest that something very different is happening.
Suppose a student is making consistent mistakes. The teacher who can diagnose
such a bug in that student stands a decent chance of being able to remedy it.
The teacher who looks at the student's mistakes and concludes from them simply
that the student has not yet learned the correct procedure, is condemned
simply to repeat the correct procedure -= with much less likelihood that the
student will perceive his own mistakes and begin to appropriately use the
correct procedure.

I1f one makes the assumption that a student's behavior is consistent when
it is wrong, then the issue appears to be theoretically simple. You begin
with the correct procedure, and then at each step genmerate what might be
considered plausible bugs. Next, you create a series of test problems so that
the student's answers to those problems indicate his bugs. Finally, after
identifying the bugs, you intervene directly to remedy them.

While this theory may sound remarkably simple, the implementation is
actually quite complex. First, it is a surprisingly complicated task to write
down all the operations that one has to do to add or subtract two - three
digit numbers. Primitive operations involved in subtraction, for example,
include knowing the difference between any two single digits, being able to
compare two digits, knowing when it is appropriate to borrow, being able to
borrow, knowing to perform operations on the columns in sequence from right to
lefr, and many, many more primitive operations. Any flaw in one of these
procedures causes a bug which needs to be diagnosed; flaws in more than one
procedure cause compound bugs which may be even more difficult to diagnose.
Brown and Burton hypothesized the following list of nine common procedural
mistakes in the simple subtraction algorithm. When one considers possible
combinations of these, things start to get out of hand very rapidly.

143 The student subtracts the smaller digit in each column
-28 from the larger digit regardless of which is on top.

1

wn
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143 When the student needs to borrow, he adds 10 to the top
-28 digit of the current column without subtracting 1 from
125 the next column to the left.

1300 When borrowing from a column whose top digit is 0, the
=322 student writes 9 but does not continue borrowing from
878 the column to the lefr of the O.

140 Whenever the top digit in & column is 0, the student
=21 writes the bottom digit in the answer; i.e., O0-N = N.
121

140 Whenever the top digit in a column is 0, the student
=21 writes 0 in the answer; i.e., 0-N = 0.

120
1300 When borrowing from a column where the top digit is 0,
=522 the student borrows from the next column to the left
788 correctly but writes 10 instead of 9 in this column.
321 When borrowing into a column whaose top digit is 1, the
=89 student gets 10 instead of 1l.

221

662 Once the student needs to borrow from a column, he
-357 continues to borrow from every column whether he

205 needs to or not.

662 The student subtracts all borrows from the left-most
=357 digit in the top number.

215

Based on the premise that students do indeed follow certain consistent
procedures, Brown and Burton tested this list empirically with the scores of
1325 students on a l5-item subtraction test. Their data indicates that more
than 40 percent of the errors made on the test could be attributed to "buggy"
behavior. 1In particular, more than 20 percent of the solution sheets were
entirely consistent with one of their hypothesized bugs. (That is, all of the
answers were exactly what that particular faulty algorithm would produce.)
Another 20 percent of the sclution sheets indicated behavior which was
strongly consistent but not identical with such a bug.

Further, the analysis of the students' performance on this test, led to
the identification of new "bugs.” Of the 1325 students tested, 107 students
had a bug in their "borrow from zero" procedure. In consequence, they had
missed all 6 of the 15 problems on the test—whichcalled £oTr borrowing from

_ — — — —zero. Inthe original interpretation of the data, those 107 students were
simply identified as students who scored 60 percent. Later they were
identified as students who have not yet mastered the technique of borrowing
from zero.

130



2. A Look at "Simple™ hord Problems.

For a number of years, a group at the University of Massachusetts at
Amherst has been studying a variety of students' misconceptions in
college-level physics and mathematics. This discussion is based primarily on
two of their working papers, "Translating Between Symbol Systems: Isolating a
Common Difficulty in Solving Algebra Word Problems'" by John Clement, Jack
Lochhead and Elliot Soloway, and "Solving Algebra Word Problems: Analysis of
a Clinical Interview" by John Clement. These papers deal with college-level
students, and {at least at first) with subject matter "appropriate" for
students at this level. Yet, there are two very strong similarities between
this work and the work described in section 1. First, a process which is
"simple" to do correctly may be a rich source of potential errors. Second,
there ig an almost remarkably perverse caonsistency in the way that students
make mistakes —- to the point where remediation is rather difficult, even if
one understand what the student is doing. - Finally, there is an interesting
contrast between the "static" nature of mathematical language and the
"dynamic" nature of a programming language.

Since Clement, Lochhead, and Soloway were dealing with college-level
students, the authors began with problems of some complexity. One problem,
for example, asked the student to determine what price, P, to charge adults
who ride a ferry boat, in order to have an income on a trip of D dollars. The
students were given the following information: There were a total of L people
(adults and children) on the ferry, with 1 child for each 2 adults; children's
tickets were half price. The students were asked to write their equation for
P in terms of the variables D and L. When fewer than 5 percent of the
students given the problem solved it correctly, the authors began to use
simpler and simpler problems. After a sequence of increasingly easier
problems, they wound up using problems like the ones given in Table 1.

Table 1

1. Write an equation using the variables S and P to represent the
following statement: "There are six times as many students as professors at
this University." Use S for the number of students and P for the number of
professors.

2. Write an equation using the variables C and S to represent the
following statement: "Ar Mindy's restaurant, for every four people who
ordered cheesecake, there are five people who ordered strudel." Let C
represent the number of cheesecakes and § represent the number of strudels
ordered.

3. VWrite a sentence in English that gives the same information as the
following equation: A = 75. A is the number of assemblers in a factory. €&
is the number of solderers in a factory.

4. Spies fly over the Norun Airplane Manufacturers and return with an
ﬁerial photograph of the new planes in the yard.
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They are fairly certain that they have photographed a fair sample of one
week's production. Write an equation using the letters R and B that describes
the relationship between the number of red airplanes and the number of blue
planes produced. The equation should allow you to calculate the number of
blue planes produced in a month if you know the number of red planes produced
in a month.

The correct answers for these four problems are (1) S = 6P, (2) 5C = 48§, .
(3) "There are 7 assemblers for every solderer,"” and (4) SR = 8B. The success
rates for these four problems were 63, 27, 29, and 32 percent, respectively.

It might seem at first that the researchers had simply found a bunch of
students who were extremely defective in their algebraic skills. However, the
students had been given the following six questions:

1. Solve for x: 5x = 50

£ =3
4 X

2. Solve for =

3. Solve for x in terms of a: 9a = 10x

4. There are 8§ times as many men as women at a particular school. 50
women g0 to the school. How many men go to the school?

5. Jones sometimes goes to visit his friend Lubhoft driving 6 miles and
using 3 gallons of gas. When he visits his friend Schwartz, he
drives 90 miles and used _] gallons of gas. (Assume the same driving
conditions in both cases.)

6. At a Red Sox game there are 3 hotdog sellers for every 2 Coke
sellers. There are 40 Coke sellers in all. How many hotdog
sellers are there at this game?

On average, more than 95 percent of these problems were solved correctly.

Therefore, the difficulties of these college students were not in simple

algebraic manipulations. The difficulties were in translating a statement

from a sentence into a suitable algebraic form. Actually, the students were

very competent in courses beyond algebra. Clement's paper provides a detailed

analysis of the transcript of a problem-solving session with one student who

was doing B+ work in a standard calculus course at the time of the interview,

and had been able to differentiate the function f(x) =-ifjii_L_gapidlyrﬁusingf——--—*——“——*
the chain rule, without difficulty-—Yet,The §fudent was unable to solve any

—— — — - »f the problems in Table 1. -

As in the Brown and Burton work, the students' errors were remarkably
consistent for all of the problems in Table 1. More than four-fifths of the
incorrect solutions to the problems were of the form 68 = P, 4C = 5C, "Seven



solderers for every assembler", and 8R = 5B, respectively. In other words,
there was a consistent reversal of the symbols and their role in the
equations.

Through an analysis of clinical interviews, the authors identified two
major causes for the reversal. The first explanation for the reversal was
that the students made a "syntactic" tramslation of a sentence into algebraic
form; i.e., the student reads along the sentence, replacing words where
appropriate by algebraic symbols. Thus, "six times as many students'" becomes
65; "as" becomes equals, and "professors" becomes P. The resulting equation
is 65 = P.

The second explanation for the reversal was that although the students
recognized that an equation does stand for a relationship between two
quantities, the way that the students represented that relationship to
themselves resulted in a reversal. Many of the students, for example, drew
pictures such as:

© 660 ©60 606

On one gide of the desk is the professor; on the other side are the 6
students. Thus the equality is 6§ = P.

To the mathematician, an equation for the "students and professor's"
problem is a device which allows him to calculate the number of students given
the number of professors, or vice-versa. Since there are 6 times as many
students as professors, one must multiply the number of professors by 6 to get
the number of students (for example, 10 professors yield 60 students). Thus,
§ = 6P. Qbvicusly, students do not have this perspective.

In another experiment, the authors provide some dramatic evidence of the
difference between the static and dynamic interpretations of an equation.
Their "subjects" were 17 professional engineers who had between 10 and 30
years of experience each. The engineers had come to take a course in the
BASIC programming language. On the Eirst day of the course, the engineers
were asked to write an equation for the following statement:

At the last football game, for every four people who bought
sandwiches, there were five who bought hamburgers.

Only 9 out of 17 of the engineers solved the problem correctly. The follawing
day, without any discussion of the previous problem and the solution to it,
the engineers were asked to write a computer program for the following:

At the last company cocktail party, for every 6 people who drank
hard liquor, there were 1l people who drank beer. Write a program
in BASIC which will output the number of beer drinkers when supplied
with the number of hard liquor drinkers.

All 17 of the engineers solved the problem correctly. The authors
further substantiated these results with a study of some college students in a
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programming course. The notion of programming suggests a possible means of
remediation: If we trein students to think of an equation as a "program' with
inputs and outputs, we may increase the likelihood of their getting the
correct answers.

3. A Look at Problem Solving.

Apparently random problem-solving behavior can actually be quite
consistent. In the work with BUGGY and with elementary word problems, the
focus was on consistent patterns of mistakes, for purposes of diagnosis and
remediation. 1In this section we look at the flip side of the coin. Just as a
look beneath the surface discloses consistency in novices' incorrect behavior, -
a look beneath the surface will alsc disclose great consistency in the
prablem-sclving behavior of experts. To wmake the point that experts and
novices approach problems in dramatically different ways, consider the
following three problems -- all of which are ostensibly accessible to high
school students.

Problem i: Let a, b, ¢, and d be given numbers between U and 1!.
Prove that {(l1-a)(l-b)(l-c}(i-d) > l-a-b-c-d.
+

Problem 2: Determine the sum + ... *

1+2
21 31

.
{n+l)!.
Problem 3: Prove that if 2" - 1 is a prime, then n is a prime-

On problem ] most students will laboriously multiply the four factors on
the left, subtract the terms on the right, and then try to prove that
(ab+ac+ad+bc+bd+cd-abc~acd-bcd+abed) > 0 ~- usually without success.

Virtually all the mathematicians I've watched solving it, begin by proving the
inequality (l-a)(l-b) > l-a-b. Then they multiply this inequality in turn by
(l=-¢) and (1-d) to prove the three-and four-variable versions of it.

Likewise in problem 2, most students begin by doing the addition and
placing all the terms over a common denominator. A typlcal expert, on the
other hand, begins with the observation, "That looks messy. Let me calculate a
few cases.” The inductive pattern is clear and easy to prove.

The expert who read problem 3 and said "That's got to be done by
contradiction" was typical (given the structure of the problem, one really has
no alternative). Yet this almost automatic observation by experts was alien
to students. A large number of the students to whom I have given the probliems
either responded with comments like "I have no idea where to begin" or tried a
few talculations to see whether the result is plausible and then reached a
dead end.

[ ——

[

Of course these are special R;ob1em§4_£ﬂz_uhich—expert‘hﬁa—BEVIEE—
_performance are—each—im théir own way remarkably consistent. While che -
" experts did not consciocusly follow any strategies, their behavior was at least
consistent with these "heuristic" suggestions:
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a. For complex problems with many variables, consider solving
an analogous problem with fewer variables. Then try to
exploit either the method or the result of that solution.

b. Given a problem with an integer parameter mn, calculate
special cases for small n and look for a pattern.

¢. Consider argument by contradiction, especially when extra
"artillery" for solving the problem is gained by negating
the desired conclusion.

Many of the novices were unaware of these strategies, and many others "knew of
them" (that is, upon seeing the solutien they acknowledged having seen similar
solutions)}, but hadn't thought to use them. Expert and novice problem solving
are clearly different. The critical question is: Can we train novices to
solve the problems as experts do?

There are a number of obstacles. First, we have to factor ‘out simple
subject matter knowledge: There is no way that one can hope to give the
students experience before they have it, or to compensate for it. Rather, we
would like to provide the students with strategies for approaching problems
with flexibility, resourcefulness, and efficiency.

Second, we must realize that the heuristic strategies described by Palya
are far more complex than their descriptions would at first have us believe.
Consider the following strategy and a few problems.

"To solve a complicated problem, it often helps to examine and solve a
simpler analogous problem. Then exploit your solution."

Problem 4: Two points on the surface of the unit sphere {(in 3-space)
are connected by an arc A which passes through the interior
of the sphere. Prove that if the length of A is less than 2,
then there is a hemisphere H which does not intersect A.

Problem 5: Let a, b, and ¢ be positive real numbers. Show that not all
three of the terms a(l-b), b{(l-c), and c(l-a) can exceed 1/4.

Problem 6: Find the volume of the unit sphere in 4-space.
Problem 7: Prove that if a +b + ¢ + d = ab+bectcd+da, then a=b=c=d.

These four problems, like problem 1, can be sclved by the "analogous
problem'" strategy. Yet, it is unlikely that a student untrained in using the
strategy would be able to apply it successfully to many of these. Part of che
reason is that the strategy needs to be used differently in the solution of
each problem.

In solving problem 1, we built up an inductive solution from the

two-variable case, using the result of the analogous problem as a stepping
stone in the solution of the original.
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In contrast, analogy is used in problem 4 to furnish the idea for an
argument. The problem is hard to visualize in 3-space but easy to see in the
plane: We want to construct a diameter of a unit circle which does not
intersect an arc of length 2 whose endpoints are on the circle. Observing
that the diameter parallel to the straight line between the endpoints has this
property enables us to return to 3-space and to construct the analsagous plane.

Problem 5 is curious. It looks as though the two-variable analogy should
be useful, but I haven't found an easy way to solve it. At first the
one-variable version looks irrelevant, but it's not. If you solve it, and
think to take the product of the three given terms, you can solve the given
problem. So again we exploit a result, but this time a different result in a -
different way.

Problem 6 exploits both the methods and results of the lower-dimensional
problems. We integrate cross-sections, using the same method; the measures of
the cross-sections are the results we exploit.

In problem 7 it would seem apparent that the two-variable problem is the
appropriate one to consider. However, "which two-variable problem" is not at
all clear to students. A large number of those I have watched tried to solve

Problem 7': Prove that a2

+ b% = ab implies that a = b, instead of
Problem 7": Prove that a2 + b

= ab + ba implies a = b.

The description "exploiting simpler analogous problems" is really a
convenient label for a collection of similar, but not identical, strategies.
To solve a problem using this strategy, one must (a) think to use the strategy
(this is non-trivial!), (b) be able to generate analogous problems which are
appropriate to look at, {c) select from among the analogies, the appropriate
one, (d) solve the analogous problem, and (e) be able to exploit either the
method or result of the analogous problem appropriately.

If we assume now that we can actually describe the strategies in enough
detail so that people can use them, we run right into another problem. That
is: a list of all the strategies in detail would be so long that the students
could never use it! Knowing how to use the strategy isn't enough: The
student must think to use it when it is appropriate.

Consider techniques of integration in elementary calculus. There are
fewer than a dozen important techniques, all of them algorithmic and
relatively easy to learn. Most students can learn integration by parts, or
substitution, or partial fractions, as individual techniques and use them
reasonably well, as long as they know which techniques they are supposed to
use. (Imagine a test on which the appropriate technique is suggested for each
problem. The students would probably do very well.) When they have to gelect__.-__.‘——)—
their own techniques, however, things often go—awry.  Fof eéxampile, 5"‘v‘q:

“Meifr" first problem on a test, caused numercus students trouble when they -
tried to solve it by partial fractlons or, even worse, by a trigonometric
substitution!
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In "Presenting a Strategy for Indefinite Integration' (The American
Mathematical Monthly, 1978) I discuss an experiment in which half the students
in a calculus class (not mine) were given a strategy for selecting techniques
of integration, based on a model of "expert" performance. The other students
were tald to study as usual -- using the miscellaneocus exercises in the text
to develop their own approaches to problem solving. Average study time for
members of the "strategy'" group was 7.1 hours, while for the others it was 8.8
hours; yet the 'strategy" group significantly outperformed the others on a
test of integration skills -- in spite of the fact that they were not given
training in integration, just in selecting the techniques of integration.

The "moral" to the experiment is that students who cannot choose the
"right" approach to a problem —-- even in an area where there are only a few
useful straightforward techniques -- do not perform nearly as well as they
"should." 1If we leap from techniques of integration to general mathematical
problem solving, the number of potentially useful techniques increases
substantially, as does the difficulty and subtlety in applying the techniques.
An efficient means for selecting approaches to problems, for avoiding “blind
alleys," and for allocating problem-sclving resources in general thus becomes
much more critical. Without it, the benefits of training in individual
heuristics wmay be lost.

In consequence of the above, an attempt to teach general mathematical
problem solving would need these two components: first, a detailed
description of individual strategies, and second, a global framework for
selecting these strategies and using them efficiently. One way of presenting
such a framework is with a "model"™ of expert problem solving. That model
takes a semester to unfold, so there is no sense in my attempting to summarize
it here. What I have done is simply to give the outline of the model (see
Figure 1), and a description of the most important heuristic strategies which
fall within each of the major blocks of that strategy (see Figure 2).

Of course, documenting improved problem-solving ability is rather
difficult. I am slowly amassing evidence, in a variety of different ways,
that instruction in problem solving actually can have an impact on students'
problem—-solving performance. The material on integration provided some
evidence of this. A "laboratory study" demonstrated that "problem-solving
experience" in and of itself is not emough: 1In the experiment, two groups of
students worked on the same problems for the same amount of time and saw the
same solutions, but one saw in addition heuristic explanations of the
solutions. The differences in their .performances were dramatic. (S5ee
"Explicit Heuristic Training as a Variable in Problem-Solving Performance.')
Third, there i3 a large amount of "before and after" data on the students in
the problem—solving course. These data indicate both an improved
problem~solving performance on the part of the students and an improved
ability to generate plausible approaches to problems, as opposed to a control
group. There is much data to be analyzed by a variety of different means --
means which were unavailable just a few years ago, and which come from a
variety of disparate sources. As one such example, let me discuss briefly the
notion of "hierarchical cluster analysis." Consider the following three
problems.
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Figure 1. SCHEMATIC OUTLINE OF THE PROBLEM-SOLVING STRATEGY

Given Problem

ANALYSIS
Understanding the Statement More Accessible
Simplifying The Problem Related Problem
Reformulating the Problem : or

New Information

Useful Forwmulation;
Access to Principles
and Mechanisms.

Minor
Difficulties
DESIGN - EXPLORATION
Structuring the Argument Major Essentially Equivalent

ierarchical Decomposition:[Difficulties==3 Problems
global to specific Slightly Modified

' Problems
Broadly Modified

Problems

Schematic Solution

IMPLEMENTATION

Step-by~-Step Execution
lLocal Verification

Tentative Solution

VERIFICATION

-

Specific Tests _ - ——f—
IGeneral Tests

Verified Solution
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Figure 2. SOME IMPORTANT HEURISTICS IN PROBLEM SOLVING

For Analyzing and Understanding a Problem:

1. Draw a2 Diagram if at all possible
2. Examine Special Cases
(a) to exemplify the problenm,
(b) to explore the range of possibilities through
limiting cases,
(c) to find inductive patterms by setting integer
parameters equal to 1,2,3,... in sequence.
3. Try to simplify it, by using symmetry or "without loss
of generality.”

For the Design and Planning of a Solution:

1. Plan solutions hierarchically.

2. Be able to explain, at any point in a solution, what you
are doing and why; what you will do with the result of
this operation. T

fFor Exploring Solutions to Difficult Problems:

1. Consider a variety of equivalent problems

(a) replacing conditions by equivalent ones,

(b) recombining elements of the problem in different ways,

(c) introducing auxiliary elements,

(d) reformulating the problem by (1) a change of
perspective or notatlon, (i1i) arguing by contra-
diction or contrapositive, or (iii) assuming a
solution and determining properties it must have.

2. Consider slight modifications of the original problem:

(a) choose subgoals and try to attain them.

(b) relax a condition and try to re-impose it.

(c) decompose the problem and work on it case by case.

3. Consider broad modifications of the original problem:

(a) examine analogous problems with less complexity
(fewer variables). :

(b) explore the role of just one variable or condition,
the rest fixed.

(¢) exploit any problem with a similar form, 'givens,"
or conclusions; try to exploit both the result
and the method.

For Verifying a Sclution:

1. Use these specific tests: Does it use all the data,
conform to reasonable estimates, stand up to tests of
symmetry, dimension analysis, scaling?

2. Use these general tests: Can it be obtained differently,
substantiated by special cases, reduced to known results,
generate something you know?
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Problem 8: Given that lines intersect if and only if they are not
parallel, and that any two points in the plane determine a
unique line between them, prove that any two distinct
nonparallel lines must intersect in a unique point.

Problem 9: Given 22 points on the plane, no three of which lie on the
same straight line, how many straight lines can be drawn,
each of which passes through two of those points?

Problem 10: If a function has an inverse, prove that it has only one
inverse.

Let us take an extreme case. The student who understands virtually
nothing of these problems may think that problems 8 and 9 are related because
they both deal with lines in the plane. On the other hand, the mathematician
sees that both probliems 8 and 10 deal with the uniqueness, and are likely to
be proved by contradiction. Therefore he may perceive of those problems as
being similar.

Suppose 100 students were given these 3 problems, and asked to group
together those problems which they thought were related. (They might decide
that none of the problems was related or that two of them were, or that three
of them were.) One could then create a 3 by 3 matrix, where the i,j-th entry
represented the number of students who considered the i-th and j-th problems to
be related. A comparison of these matrices before and after instruction, for
both experimental and controlled groups, could indicate changes in the
students' perceptions of the way these problems were structured mathematically.

In fact, my cluster analysis used 32 problems, with a 32 x 32 matrix for
analysis. There were clear differences between experimental pre- and post-test
scores, and controlled pre- and post-test scores. Further comparison with
"expert" sorting of the problems is also planned. The full tally is yet to
come, but the preliminary results are encouraging.
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