History of Numeration Sysfems

K. Allen Neufeld
Associate Professor
Department of Elementary Education
University of Alberta

The basic activities of this paper are adapted from Osborne, Roger et al, Extending Mathematics Understanding (Columbus, Ohio: Charles E. Merrill Publishing Company), 1962, and the paper formed the basis for a talk entitled "A Guided Discovery Approach to the History of Numeration" presented by Dr. Neufeld at the Winnipeg Meeting of the NCTM in October, 1970.

The topic of numeration is receiving increased emphasis in contemporary curricula for elementary school mathematics. Teachers are generally encouraged to use concrete materials in helping children to understand the decimal system of numeration. Some curricula suggest the inclusion of certain non-decimal numeration concepts. The curriculum advocated by Dienes states that children should be introduced to numeration by manipulating concrete materials involving base groupings from two to ten. The study of certain historical systems of numeration, such as the Roman system, has long been included in mathematics curricula. Some contemporary programs extend this coverage to brief treatments of Egyptian and Babylonian systems.

The purpose of this paper is to present a sequence of pencil and paper activities which will integrate four historical systems of numeration. Included in the four systems are examples of both decimal and non-decimal numeration. The activities are written to challenge teachers. This does not mean that upper elementary or junior high school students could not work at the same material. In fact, it is often found that students find activities such as these easier to understand than do teachers. This is probably due to the "unlearning" which adults must do in order to accommodate new ideas. The activities in their present format are designed for teachers who will hopefully revise them to suit the needs of their own classes.

The activities are presented at several cognitive levels. Interpreting the symbols of a particular system is somewhat comparable to Bloom's comprehension level. Constructing new systems parallel to those systems previously presented would correspond to the synthesis level. The last section of the activity requires the participant to work at the evaluation level.

ACTIVITIES

Introduction (Earliest times - conjecture only)

1. symbol (numeral) ì from
(a) 1 finger $\{$ (Likely horizontal)
2. 2 was $=$ or $/ / ; 3 \equiv$ or $/ / /$
3. regarding 4, 5 and so on - WHO KNOWS?
4. development of four systems
(a) Additive
(b) Multiplicative
(c) Ciphered
(d) Positional (place-value - "ours")

Additive Systems

1. Tally idea
 for 12 .
2. Egyptian example
(a) Basic digits

1	$ク$	staff
10	\cap	heel bone
100	ORR	scroll or coiled rope
1000	㐅	lotus flower

3. Roman example (additive with subtractive element)
I IIII I for III eate.

Multiplicative Systems

1. One set of symbols for the basic digits
2. Another set for the powers of the base
3. Synthetic example
kEY
(a) Basic Digits
(1) /
(2). I/
(3) *
(4) \square
(b) 97 is $(3 \times 25+(4 \times 5)+2$

symbolized *T \square F \|

(c) This is a base
(d) Translate

$H / F \quad$ is 505
$\square I$ is 100 .
4. Synthesis - Construct a base three system:
(a) Basic Digits
(b) Prepare examples below as in 3 (b) 36 is $(1 \times 27)+(1 \times 9)$
symbolized $15 / \mathrm{N}$

$$
\begin{array}{r}
\text { Trexalate - IINITI is } \frac{22}{66} \\
\text { IISINITI is }
\end{array}
$$

5. Chinese Multiplicative System

Given the synthetic example (Ba), the following "addition" facts ("addition" symbol is , and the clues, DISCOVER:
(a) the translation of problems 2 to 9.
(number 1 and 3 given)
(b) the notation system (what symbols are used comparable to our 0, 1, 2. . .)
(c) the base

$$
\begin{aligned}
& 1-1==\overline{\overline{3}} \\
& 1+2=3 \\
& \text { 2. }-/ \square=E \\
& 1+4=5 \\
& \left.{ }^{3}\right)(/ \equiv=-\oplus- \\
& 8+3=1 \operatorname{Ten} 1
\end{aligned}
$$

$4-\oplus=/)(==\oplus-\quad 5=\oplus=/)(\oplus=-\square \square$ 1 ten $3+8=2$ tex 1
$6+L /-\oplus-==\oplus$
$9+1$ ten $1=2$ ten
$1=\oplus \equiv /-\Xi \pm \square \square \square \square \square$
2 tex $3+1$ hundred 2 ter $4=1$ hundred 4 tex 7

1 hundred 2 tex $8+1$ handed 4 tex $6=2$ hundred 7 tex 4
$9=\square \square+\square+\square=\square$
2 handed 4 tex +1 hind red 6 tex $=4$ hundred

Answer space
(b) notation system

basic digits

Ciphered Systems

1. A new symbol exists for each multiple of each power of the base.
2. Synthetic example (Ionic Greek model)
(a) symbols

$1-a$	$10-j$	$100-s$
$2-b$	$20-k$	$200-\mathrm{t}$
$3-\mathrm{c}$	$30-1$	$300-\mathrm{u}$
$4-\mathrm{d}$	$40-\mathrm{m}$	$400-\mathrm{v}$
$5-\mathrm{e}$	$50-\mathrm{n}$	$500-\mathrm{w}$
$6-\mathrm{f}$	$60-\mathrm{o}$	$600-\mathrm{x}$
$7-\mathrm{g}$	$70-\mathrm{p}$	$700-\mathrm{y}$
$8-\mathrm{h}$	$80-\mathrm{q}$	$800-\mathrm{z}$
$9-\mathrm{i}$	$90-\mathrm{r}$	$900-$ *

(b) This is a base tex \sim example.
(c) The first power of the base is 10° ~ J;
multiples are

(d) Translate 15 is je

347 is umg
650 is \times m
999 is* ص⿻心㇒
784 is yqd

Positional Systems

1. Place value comes into existence.
2. Zero is needed.
3. Babylonian example (partly positional) (Base 60)
(a) Simple grouping to 60 (eg. 32 is $\lll / /$), positional beyond 60 .
(b) 18,812 is $/ 1 / 1 / \leq 1 / 1 \leq \ll / /$
(c) Translate

58 is <<<<< |II|||||

27,480 is

458
is $/ / / / / / /$ <<< /////////
NOTE: Except for spacing one numeral for three different numbers. The spacing of the answers is purposely identical to point up a basic source of confusion in this particular system.
4. Mayan example (Base 20)(actually 20×18)
(a) $360(20 \times 18)$ corresponds to the number of days in their year.
(b) Vertical positioning (in contrast to our horizontal positioning).
(c) 26,656 was
... $3\left(18 \times 20^{2}\right)=21,600$
.... $14\left(18 \times 20^{\prime}\right)=5,040$
$\longleftrightarrow 0(20)=0$
$\doteq 16 \quad=\ldots 16$

26,656
5. Mayan Positional System

Given Mayan example (4c), the following "addition" facts ("Addition" symbol is /), and the clues, DISCOVER:
(a) the translation of problems 2 to 9 (number 1 and 4 given)
(b) the notation system (What symbols are used comparable to our 0,1 , 2. . .)
(c) the base
"Addition" facts

$$
\begin{aligned}
& \begin{array}{rl}
1 / 1 \cdot=\ldots & 2 \cdot / \ldots .= \\
1+2=3 & 1+4=5
\end{array} \quad \begin{array}{l}
3+3=11
\end{array} \\
& \text { 4. } \frac{\cdots}{13} / \frac{\cdots}{8}=2120+82 \quad \because=\bar{\ldots} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } \frac{\therefore}{128}+\frac{\because}{146}=\xlongequal{\square} 274
\end{aligned}
$$

Answer space
(b) notation system (5, 9, 16, 20 are given as clues)

(c) base twenty
6. Our Positional Sysi....

Symbols of other systems seem strange but our symbols:
(a) are strange in that many have little or no connection to the cardinal value they represent (eg. 5 for \because)
(b) are changing, for example, the development of "2" and "5".
long ago

$$
\begin{array}{llll}
2 & 2 \\
y & 4 & 4------- & 2 \\
\end{array}
$$

(c) are unusual in that they aren't completely standard over the Englishspeaking world:
eg. in North America billion means 1000 million while in England billion means one million million.

omparison of Systems

1. Numeration systelis are man-made. Our system has a long history of development. IS OURS THE BEST? To answer this we must compare. So that our comparison isn't biased, we must use NEW SYMBOLS,

- not 1, 2, 3, 4, . . (Arabic Positional)
- not I, II, III, IV, . . . (Roman Additive)
- not $-\square, \square$ (Chinese Multiplicative)
- not ciphered Greek symbols.

For uniformity, let us use a new set of symbols,
_L L

and a new base. Thus far it looks as if the base is twelve. If powers of the base are needed, let us use the convention of superscripts (Base) ${ }^{1}$ $=$, (Base) ${ }^{2}=$, etc. If multiples of the base are needed (Greek ciphers) use subscripts $2 \times$ (Base $^{3}=\square$, and so on.
2. Questions
(a) Why have any base at all? The number of basic symbols is
(b) If we must choose a base, what qualities should it have?

3. reasochle number of tracie symbled.
(c) Which of the four basic systems utilized a ZERO?

1. Additive? No
2. Multiplicative? No
3. Ciphered? No
4. Positional? Yes
(d) All symbols in any positional system are placeholders. What is the basic function of any symbol (3, for example, in the numeral 4136)? 3 represents the numen of tex
(e) Does the symbol for ZERO have a similar function in the numeral 608? you, the number of then is Zero.
5. Comparison. Now for comparison purposes, let us use our new symbols and new base with all four systems.
(a) Numeration systems.

MULTIPLICATIVE
CIPHERED
POSITIONAL

3. (b) Translations - each of six numbers is symbolized as a numeral in five systems of numeration.

3. (c) Comparison of numeration systems.

Suppose you were able to choose one of the four numeration systems, each utilizing a base of twelve and the "block digit" symbols, to replace the system with which we are most familiar:

1. Indicate your preference by ranking the systems 1, 2, 3, or 4.

Multiplicative -
Ciphered -
Positional -
Additive -
2. What are some advantages of your highest-ranked system?

Invest.- Place value name io symbolized
Ciph. - much information is a single symblel
ad - fuwlot rymalo used
3. What are the disadvantages of the other systems of numeration?

Insult. - sot too conceive (almost as Hulkyon Additive)
Ciph. - Complicated fratividual symbol.
Pos. - place value ut symabliged.
add. - very "Kuelry"
4. What is the value in studying other systems of numeration?

1. Put susselues un the "shes of children." We realize the problems children have in 2. Raving the bic tox proitinal system. 2. Under tax d law other subtend have conctibutid to the development on our systems.
2. Understand the thence idea of these, place value and symbol thy setting then ines applicd to a variety of parceled sypher 4. Realize the "max-inadexeco" If sopetex co that numeral and alsaxgencent can be
3. Arbitrarily, closer. in everyday, ife-clock, ego, computers,
