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My paper on transformation geometry is based on a mixture of ideas from 
a new course of study in Ontario, some topics I taught to a Grade X class last 
year, reading of various European programs, some observation of classes over-
seas and discussion of school. mathematics with overseas teachers during a visit 
to Great Britain and Denmark a year ago. 

In Ontario, we have been working for several years on revisions of our 
program in mathematics for all grades, with possibly the greatest attention 
being given to algebra in the secondary schools, We have introduced what might 
be called a number-structure approach"to mathematics. This involves careful 
attention to the number systems and a much earlier introduction of the concepts 
of relation and function. 

Although geometrical- topics in the Ontario curriculum were not ignored 
in the process of changing the program, the changes in geometry tended to be 
modifications of Euclid's traditional approach; the work in Grades VII and VIII 
stresses ruler and compasses constructions; definitions are based on sets of 
points; also at a time when we were introducing some of the axiomatic-deductive 
approach into algebra, it was assumed by some that the treatment of deduction 
in geometry should be made more rigorous. There was increased emphasis. on the 
style of writing solutions of deductions and the authorities for statements. 
In my opinion, we were mistaken to move in that direction. 

There is no doubt that by the time pupils reach Grades IX and X (ages 
13 - 15) in our schools, they are ready to be shown how proof works, However, 
the recondite nature of mathematics can make the task difficult, particularly 
in geometry. There are so many special properties of geometric figures to be 
investigated that if we try to prove everything, by the time the pupil reaches 
"pons asinorum", he may be bogged down in detail and may have lost interest in 
discovering the main structures of the subject. 

The alternative approach which I propose to describe is called trans-
formation geometry. First, I would like to discuss briefly the background 
leading up to Grade X. For this I will use some details from a new Scottish 
program for 12-year olds to illustrate the background our 13-year olds should 
have for a new program. My discussion of Grades IX and X will include refer-
ences to Danish and English textbooks. Finally, deductions taken from an 
article by Dr. Jeger, a Swiss, will illustrate how proof can work in this 
approach. 

One reason which makes me feel qualified to say something about a new 
approach to geometry is that in the Ontario Five-Year Program (college pre-
paratory) at the Grade X level we have just finished a course of study in which 
we are trying to change the direction of geometry by playing down the emphasis 
on deduction, introduing three-dimensional work, elementary transformations 
and vectors. 
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The unit on geometry will occupy about 12 weeks of the school year. 
Four to five weeks will be on deduction, where there is not to be a formal 
organization of Euclidean geometry but the development of short sequences of 
related theorems. One to two weeks will be spent on three-dimensional topics, 
three weeks on transformations and three weeks on vectors. In all, this 
represents a very radical change from past courses in geometry in our system. 

Perhaps I should define some of the terms. A transformation may be 
defined as a correspondence between geometrical objects. In the simplest cases, 
the definition may be defined by stating that it is a 1:1 matching of sets of 
points. The bringing of transformations into geometry then means that we are 
introducing the concept of relation and function into geometry as a unifying 
theme. I suppose the words transformation and mapping are interchangeable. 
What are the advantages of the transformation approach? 

In geometry we study relationships in space and the significant pro-
perties of geometric figures. "Traditional geometry lacks a methodology which 
is anchored to spacial reality. Logic may stretch through the whole edifice 
like a colored thread, but it is not satisfactory, because it is not typically 
geometrical." I am quoting here from an article written by Dr. Max Jeger of 
the Kantonschule in Lucerne, Switzerland, translated for the magazine Mathematics 
Teaching by Irene Hertz. The article is titled "The Present Conflict in the 
Reform of Geometry Teaching". Dr. Jeger reviews the history of the develop-
ment of the traditional course in Euclid and criticizes its present state. 
He says: "Every generation has absorbed thousands of small details to such an 
extent that new features can hardly penetrate. Everything to the smallest 
detail has been thought out in Euclid's edifice; there is hardly any room left 
for the teacher's contribution in substance or method." 

Such criticisms of the traditional course in Euclid are not new. 
Comparatively new,however,is an attempt to replace Euclid by a workable alterna-
tive, and not just to modify the old approach. 

The transformation approach to geometry is due to a redefining of the 
subject, initiated by Felix Klein, the eminent German mathematician who lived 
from 1849 to 1925. Klein not only criticized Euclid but showed a method of 
moving away from Euclid in his famous "Erlangen" program. 

Klein's method is one of sorting the properties which are important 
from the welter of detail in geometry and making them stand out. His definition 
of geometry is that it is the study of those properties of figures which are 
invariant (unchanged) under certain transformations. Implicit in his definition 
is emphasis on a more constructive approach at the basic levels, with the 
shifting of the axiomatic approach to a higher level. 

The simplest geometrical transformations are reflections, rotations, 
and translations. Each of them preserves distance; they are called isometries, 
or rigid motions. The image is congruent to its pre-image. These three simple 
correspondences have, within them, all of the main structures of introductory 
Euclidean geometry, which is the study of rigid figures. 

I have chosen to talk mainly about Grades IX _and X because of my 
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interest in the secondary field and recent work on a Grade X curriculum. I 
refer to ages 13-15 in the college preparatory course, in a system where mathe-
matics is taken by nearly all of the pupils. However, it seems to me that 
there are some important prerequisites if this approach is to be successful. 
Symmetry has an important role in this kind of geometry. What sort of course 
should be given before Grade X so that the pupil is prepared for transformations? 
I hasten to add that probably some of the topics mentioned above in the new 
Grade X could be started much earlier; however, let us assume that we have just 
been transformed. 

The Scottish experimental program was introduced to first-year secondary 
school pupils (12-year-olds) in September, 1964. A year ago I visited a few 
schools and talked to some of the teachers involved in this experiment. You 
may be interested in some details. In the geometry section of the program, 
the stress is on figures, beginning with the special ones: rectangles, squares, 
cuboids, cubes. Drawings of figures on a grid are used to clarify concepts. 
(Figure 1, page 57). 

A question I heard asked more than once was: "In how many ways may a 
certain figure be fitted back into its hole in the plane, or into its hole in 
space?" This property of the special quadrilaterals and triangles is related 
to their axes and centres of symmetry and the number of ways in which they can 
be folded along these axes. 

Throughout the Scottish work there is stress on "tiling the plane" with 
different figures. A rectangle is defined to be that figure which (a) can be 
used as a tiling agent to cover a flat surface without leaving any gaps, and 
(b) is such that each the can be fitted into the shape of its own outline in 
four different ways. 

Several concepts evolve from the study of rectangles in this manner: 1. 
the right angle; 2. the diagonals of a rectangle have equal lengths; 3. the di-
agonals of a rectangle bisect each other. If we begin with any triangle, we can 
develop the tiling of the plane. This brings out the sum of the angles of a 
triangle and the equality of alternate angles in a Z-diagram (Figure 2, page 
58). Similar ideas can be developed from working with parallelograms of any 
shape. Note also how such a design can be used to discover intuitively the 
equal ratios of the lengths of the segments formed from the sides of a triangle 
by a line segment parallel to one side of the triangle (Figure 3, page 59 ). 

Coordinates are introduced early to assist understanding by locating 
the vertices of figures. The right triangle is derived from the rectangle; 
their areas are related to the grids on which they are drawn. Other figures 
studied in the first year for their symmetries are the isosceles triangle, the 
equilateral triangle, the rhombus and the kite. (The use of the name "kite" 
for an isosceles quadr~i~l~:ateral seems to illustrate accidentally .a pedagogical 
principle of the approach, namely the description of the global qualities of a 
geometric design as opposed to the analysis of its elementary components. 

The very sketchy outline given here is based on the textbooks of the 
Scottish Mathematics Group Modern Mathematics for Schools, published by Blackie 
and Sons in Glasgow and London, and by Chambers. The main features of this 
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program in geometry are emphasis on the physical manipulation of real things, 
apprehended globally, used before analyzed, and often special, rather than 
general. 

Going on from the elementary level, how would you employ symmetries to 
introduce some of the usual geometrical ideas? Let us look at a Danish text-
book for a moment. The Danish school system generally consists of three levels: 
elementary, ages 7-14; real skole, 14-15; and gymnasium 15-18. In a recently 
published textbook for the first year of real skole (age 14), the following 
topics are studied in the order given: 

1. reflection in a straight line, 
2. definition of perpendicular, 
3. definition of parallel line segments in terms of a common perpendicular, 
4. definition of perpendicular bisector in connection with reflection, 
5. reflections of line segments and angles and use of this to define bisector 

of an angle. 

At the end of this particular section the summary states: 

A reflection in a straight line (a) carries a point over into a point, (b) 
carries points on the axis of reflection into themselves, (c) carries a line 
into a line; if a line cuts the axis of reflection in a point, the image also 
passes through this point; if a line is parallel to the axis, its image is also 
parallel to it. Aline segment is carried into a line segment which is con-
gruent to the first; the line segment which joins a point with its image is 
perpendicular to the axis and bisected by it. An angle is carried over into 
an angle which is congruent to the first; an angle is carried over into itself 
by a reflection in the line on which the bisector of the angle lies. 

The next section discusses the circle as a locus and reviews its parts, 
but stresses reflections and symmetries also. For example, one question asked 
is, "Which circles are carried over into themselves by a reflection in a given 
line?" Congruent arcs and chords are developed by reflection in a diameter; 
the properties of intersecting circles and common chords follow very nicely from 
this approach. The measure of an angle is associated with a circle drawn with 
the vertex as centre, and the division of the circle into 360 congruent arcs. 
The rotation idea of angle is associated closely with transformations from the 
beginning; for example, the rotation of 180 degrees is equivalent to reflection 
in the vertex. 

This is a brief sample of the discussion in a Danish textbook which 
includes the three rigid motions and summarizes their properties. The approach 
is constructive and any proofs given are informal, applying the basic assumptions 
for the transformations. 

The congruence motions and other transformations may be used to intro-
duce a study of the main traditional topics of introductory geometry: congruence, 
parallelism, area and similarity. I have tried a little of this with a Grade X 
class before moving into a fairly traditional axiomatic-deductive treatment. I 
got some of my material from Some Lessons in Mathematics and School Mathematics 
Project, Book T published by Cambridge University Press. Here are some samples: 
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Translations 

A translation is movement of the plane in a particular direction with-
out turning. Its basic properties can be illustrated very well on a grid 
(Figure 4). 

If we use a Cartesian coordinate system and represent the translations 
by column vectors in order to distinguish them from vertices of figures, then 
it is easy to show the group properties and extend the concept to three-dimen-
sional cases. 

The mention of group causes me to digress for a moment. By its sim-
plicity and pervasiveness, group is certainly one of the best unifying themes 
in mathematics. Without being too formalistic about it, we can make the char-
acteristics of a group quite clear in the case of translation vectors. 

Reflection 

Reflection in a line is analogous to reflection in a physical mirror. 
The image is on a line through the pre-image perpendicular to the axis, such 
that the axis bisects the line segment joining a point A to its image A' 
(Figure 5). 

For both of these cases we stress the congruence of the image and pre-
image and see the difference between congruence in the direct and opposite 
sense. Have you read Hermann Weyl's beautifully illustrated lectures on 
Symmetry? The first two are included in Newman's The world of Mathematics. 
They are well worth reading. 

Rotation 

This involves rotation of the plane, counter-clockwise about a given 
point (Figure 6). In the special case of a half turn, it is equivalent to 
reflection in a point. 

By using coordinates we may discuss different types of reflection in 
the axes and the origin: 

1. Reflection in 0 X (x,y) ; (s,-y), 

2. Reflection in 0 Y (x,y) (-x,y), 

3. Reflection in 0 (x ,y) (-x,-y). 

In my trial of this material we discussed the positions of vertices of 
squares, rectangles and equilateral triangles when rotated about the origin. 

The case of the 45o rotation of a square made a nice little application 
of the Pythagorean theorem, as well as a test of the pupil's awareness of the 
symmetry of the figure. As with the other transformations, the congruence of 
the image and its pre-image were stressed. 
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One topic which might be discussed is the presence of invariant points. 
For each transformation, are there points which do not move? In the case of 
translation there are none; under reflection, the points on the axis are in-
variant; in rotation, the centre of rotation remains fixed. 

The transformations discussed above can be used to give unity to the 
part of introductory geometry, usually called Book I. The main property ex-
hibited is, of course, the rigidity of the figures. 

We go on now to transformations which give images not congruent to the 
original figures but which do have other invariant properties. 

Shearing 

A shear is a transformation with the following characteristics: 

1. There is a straight line L which does not move. 

2. Every other point P is carried into a point P' such that segment 
P P' ~i L. 

3. P P' = k (P A) where P A is the distance of P from L, measured in 
some suitable direction, .and k is a constant. 

P'

L 

The uniform displacement of the cards in a deck gives a good illustra-
tion of the nature of this transformation. Of course, area is preserved; the 
principle involved is basically the one used in pre-calculus methods of develop-
ing formulae for the volume of various solids, such as the cone and pyramid. 

In the case of rectangle ABCD which maps into parallelogram EBCF under 
a shear: 

1. Suppose that AB = 6 units and AE = 2 units 

20 Then AE _ ~ AB, i.e. k = 
3 

3< For M, the midpoint of AB, M ~ M' 

4, MBI - AB 
due to similar triangles 

5. Hence MM' = 3 MB. 
A 

M M' 

B C 
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Dilatations 

A dilatation (or enlargement) is a transformation with the following 
characteristics: 

1. There is a fixed point 0, called the centre of dilatation; 

2. If P° is the image of P, then P' lies on OP; 

3. For a particular enlargement, 
OP~ 

is constant, where OP and OP' a•re 
directed lengths; the constant ~s known as the scale factor of the 
enlargement. 

A very good introduction to this whole topic of dilatation and similar-
ity can be made by using a graph and coordinates. If one side of the figure 
is made horizontal, it is easy to see by calculation that the ratio of areas 
is not the same as the ratio of sides. The calculation of sides by the Pytha-
gorean theorem gives valuable information, too (Figure 7). The invariant pro-
perty here is, of course, the shape; we see this in the preservation of angle 
size and the equal ratios of the lengths of corresponding sides. 

In summary, these are the transformations which could be best used to 
give life and movement to the introductory geometry. I believe that authors 
of textbooks using imagination could write new courses which would revolutionize 
our teaching of the subject. None of this material is new; it just needs re-
working and simplifying for school use.. For this purpose, a book I found most 
illuminating is Introduction to Geometry, by H.S.M. Coxeter, University of 
Toronto, published by John Wiley and Sons. 

This whole question of the geometry has been bothering us in Ontario a 
great deal. As you may have heard in other sections, the Ontario Mathematics 
Commission has a committee on Geometry (K-13), which has been meeting regularly 
since January with the financial support of the Ontario Curriculum Institute. 
I believe that the line they are taking is similar to some of the ideas in my 
talk. 

In his article in Mathematios Teachin5, Dr. Jeger very strongly makes 
the point that there is not time to do geometry the old way and the new way also. 
On the other hand, if we are to use the transformation approach, we must be 
prepared to set up an axiomatic-deductive system at same stage and teach the 
nature of proof. Jeger states that the axioms in this sytem would be more 
powerful than those we have ordinarily used. I am going to take the liberty 
of using a couple of his proofs to illustrate deductive methods in motion 
geometry. 

Example 1. Required to prove that / ACB = j ADB (Figure 8). Analysis: 
the main feature of this proof will be movement of the %ACB around by a rotation 
of the plane about the centre of the circle so that the arms of the image are 
parallel to the arms of /ADB, 

Let us look briefly at the way arcs and chords are placed in a circle. 
Parallel chords are placed symmetrically with respect to a diameter through 
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their midpoints. Now, if a chord AC is moved to anew position A'C' which is 
parallel to the chord AD, what can we say about the position of C'? It is easy 
to show that C' is at the midpoint of arc CD. 

Now we have a method of proof. Let MN be the perpendicular bisector 
of chord AD, meeting the circle at 0. Rotate /ACB about the centre of the cir-
cle, until C', the image of C, lies at the midpoint of arc CD. Then, referring 
to the lengths of the arcs, we may say arc AA' = arc BB' = arc CC' = arc C'D. 

Since arc AO = arc OD 

and arc A'0 = arc OC' 

then A' is the image of C' under reflection in MN and vice versa. 

Therefore, A'C~ is bisected by MN and is parallel to AD. 

Similarly, by using the perpendicular bisector of DB it may be proved 
that B'C' is parallel to BD. 

Hence /A'C'B' may be mapped onto /ADB by a translation. 

Since /A'C'B' _ /ACB, therefore /ACB = /ADB. 

Example 2. Here is a construction which may have puzzled you at one 
time (Figure 9). 

Given: any four points A, B, C, and D. 

Required: to construct a square with each side passing through one and 
only one of the four points. 

Analysis: I believe that difficulties I experienced with this problem 
were caused by my failure to recognize the symmetry of the figure. The parallel 
sides of the square form two equidistant bands. A rotation of the square (or 
of the points) through 90° would give equivalently placed image points. Let M 
be the centre of the square. If we make a rotation of 90o about M, A, B, C, 
D, maps into A'B'C'D' on the adjacent sides. AC and A'C' will be perpendicular 
segments of equal length due to the symmetry of the "bands". Translate C' to 
C with a vector equal to vector A'B. Then vector BC = vector A'C'. BC is 
perpendicular to segment AC and equal in length to AC. 

This gives us a construction which can be drawn through the given 
point B, determining the side of the square through D. 

Conclusion 

The purpose of my paper has been to show how geometry may be conserved 
as an essential element of the teaching of mathematics by giving it new rele-
vance, life and movement. 
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The use of transformation brings the function concept into geometry 
and, incidently, helps to clarify function and mapping by associating it with 
physical motion. 

I am inclined to agree with Dr. Jeger that it will be successful only 
if we go all the way with it. Will our new crop of teachers see here a method 
they like so well that they use it in its full power? Or will they fail by 
trying to "ride two horses?" 

The rigor of presentation is important. We have had difficulties over 
this before. Often new methods are devised by research mathematicians when they 
are playing the axiomatic game and being quite obtruse.. Then we in the schools, 
mistaking "shadow for substance", condemn the new concept because we saw it 
first when it was couched in abstract terms. The mathematician has a respon-
sibility to make the concept real for the schools. How well this is done will 
determine our teaching success. I hope that some of the examples I have used 
will make the possibilities of transformation geometry more real for you. 
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F~Gure 1 
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Figure 2 - Tiling the plane 

C~unit triangle 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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Figure 9 

D 

D~ 

~' 

C' 

D 


	48 - 64 TRANSFORMATION GEOMETRY IN GRADES IX AND X



