
I SHALL TEACH ARITHMETIC Derek V. Morris 
Supervisor, Division II 
Calgary School Board 

When called before the Tribunal of the French Revolution 
to state what useful thing he would do to deserve 1 ife, 
Legrange answered, 11 I shall teach arithmetic . 11 

Some Basic Questions 

Educational man has long wrestled with the age old prob­
lems of WHAT to teach, WHEN to teach it, HOW to teach it, and 
TO WHOM to teach it. Incidentally, too, he has grappled with the 
concomitant problem of WHO SHOULD DECIDE these major issues. 

As examples of such problems, I draw your attention to the 
following highly controversial issues: 

What? 

When? 

How? 

To Whom? 

1. Should religion be taught in the schools? 

2. At what age in a child's life should instruction 
in reading begin? 

3. Is the enterprise method an effective one for 
teaching social studies? 

4. Should the children in the lowest twenty percent 
on a standard intelligence scale receive the 
same type of instruction in the same form of 
curriculum as the children in the highest twenty 
percent on this scale? 

5. As an example of the concomitant problem of 
WHO SHOULD DECIDE, I urge you to consider the 
present issue of accreditation. 

You and I have been faced with a fait accompli as far as 
the introduction of modern mathematics in the elementary school is 
concerned. That is, decisions have been made as follows: 

What? 

When? 

How? 

1. The STA program embodies the "what" that is 
necessary in arithmetic. 

2. The STA program has an approved sequence of 
learnings. 

3. The STA manuals outline adequate and acceptable 
techniques of instruction. 
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To "Whom? 

Who? 

4. The STA program is for all children, with their 
wide range of indiv idual differences, in our 
elementary schools. 

5. Furthermore, the decision as to WHO DECIDES has 
been taken: the Minister and his Department! 

Before I continue, however, I must interject a note of 
caution that I have neither stated nor implied a value judgment 
as to the rightness or wrongness of the fait accompli of the WHAT, 
WHEN, HOW, TO WHOM and DECIDED BY WHOM questions noted earlier; 
I simply comment that, like the recently elected government, it 
is now with us. 

The Problem of Re-selection of Content --------------------------------------
Emphasis Upon Basic Intellectual Aims. When one looks 

even casually at the STA program , one is struck by the fact that 
there is undoubtedly an emphasis upon intellectual aims. In es­
sence this forms my first postulate: the STA course is essentially 
directed towards intellectual rather than personal, social, 
societal, cultural, or vocational aims; and this is in marked con­
trast to traditional courses. 

That this is in keeping with the express ed desires of 
Albertans is clearly shown by the expression of such wishes as 
revealed in two key studies - the Andrew study, and the Downey 
study, both of which showed that the intellectual aims rank first 
in both public and professional opinion of the task of our schools 
in Alberta. 

Application of Knowledqe of the Processes of Intellectual 
Development in Children. My second postulate is that modern 
courses and their methods of instruction must be and are in keep­
ing with what we know of the processes of intellectual development 
in children . The STA course does, in fact , do more than pay lip 
service to this fundamental principle. ~ 

The work of Jean Piaget has indicated that there are five 
discernible stages in perception in the growing child. They are 
as follows: 

1. The sensory-motor stage, from birth to about 2 years of age o 

2. The stage of pre-operational thought, from about 2 years to 
about 4 years. 

3. The stage of intuitive thought at the kindergarten and pri­
mary level. 

4. The concrete operations stage in the balance of the elemen­
tary grades. 
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5. The formal operations stage, which begins in the late ele­
mentary and continues through the junior high school grades. 

As stages three to five are of major concern to us, I pro­
pose now to outline these stages in slightly more detail. 

Stage Three - The child lives in a world of symbols. 
Through word and image symbols he has created for himself a stable 
internal world in sharp contrast to the shifting,changing world of 
perceptions previously known. 

From immediate imitation of present sounds, actions and 
beings, he has progressed to deferred imitation of absent things

0 

The abstraction from action to thought has been accomplished; yet 
but the first faltering steps have been taken in the long walk 
from the particular to the general . He still relies upon trans­
ductive reasoning, that is, he still holds that as he knows the 
results to be right, then so must the means or process of arriving 
at the results be right~ 

His notions of groups and especially of groups of opera­
tions are still hazy, and ideas of invariance are just beginning 
to take root. Soon, he will be thinking operationally in con­
structing concepts of groups of operations with invariant features. 

Stage Four - In stage four he has progressed to the stage 
of operational groupings. He puts classes together mentally, clas­
sifies objects and actions, and forms more inclusive classes from 
the combination of several sub-classes. He begins to serialize 
asymmetrical relations of " greater than" and "less than" . He 
begins to be capable of understanding that number systems are 
products of classification and seriation, or ordering. 

Ideas of space , time, number, and of the material world 
around him flood into his mind, but these are complex ideas, and 
he is, so far, only capable of comprehending them in more-or-less 
concrete terms. 

He is beginning to be less ego-centric in his attitudes 
and behavior and the elements of detached logical reasoning emerge 
slowly and often painfully. 

Stage Five - By the end of the elementary school, the 
child ' s ability to per .form abstract operations becomes apparent . 
The child of the earlier stages has been concerned with action­
in-progress, with the here-and-now. At this stage of the pre­
adolescent, he thinks beyond the present, back into the past and 
forward into the future . The historical sense emerges o Hypo­
theses begin to be f ormed and tested . The elements of postula­
tional thinking and of logical deduction struggle for form and 
function. 
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My second postulate, then, is that the STA course is con­
sonant with knowledge of the deve lopment of thought in children. 

Perception and Perceivers. If perception is considered as 
the process of organizing and interpreting sensations received 
through the senses, then it can be shown that there is evidence 
for the existence of characteristic modes of perceiving and for 
the existence of certain types of perceivers. 

Some people may have a preferred sense: the visiles, those 
who perceive best visually; the audiles, those who perceive best 
auditorily; and the tactiles, those who perceiv e best through 
kinaesthetic means. 

Two main types of perceivers have been postulated, the 
analytic a nd the synthetic. The analytic tends to concentrate 
upon isolated detail, rarely seeing the total patterns in a situ­
ation at first, but gradually synthesizing the detail into a whole . 
The synthetic , on the other hand, sees the total field as an inte­
grated whole which he later analyzes in order to perceive the de­
tails. These ideas have import for classroom teachers in that 
they suggest that our grouping procedures, introductory work with 
symbols at all levels of complexity, provision for individual 
differences, and our remedial work should be planned with the 
ideas of the different modes of perceiving and the different types 
of perceivers in mind . This, in essence, is my third postulate. 

b ' Scientific Method and Problem Solving. In traditional 
arithmetic programs, it was assumed that the fundamental processes 
are best learned through association and drill, and so there has 
been a tendency to confine thinking in this area to associative 
thinking alone, even in the so-called problem-solving activities 
within the program. This solving of problems through the use of 
techniques of associative thinking is in sharp contrast to the 
problem- solving activities of STA . Here the definition of prob­
l em-solving is closer to "the process of overcoming difficulties 
encountered in the attainment of objectives" . The sequence of 
steps used is: 

1. Comprehension - read the problem carefully . 

2. Translation - write the equation that represents the 
action in the problem. 

3. Computation - do the computation that accompanies the 
equation . 

4 . Interpretation - write the statement that answers the 
problem. 

The thought processes involved then are not merely those 
of associative thinking but are extended to convergent thinkingo 
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w .... 

No longer do we have to rely upon key words and gimmick phras es 
such c;1s: 11 Look at the numbers in the problem. Decide whether to 
add, subtract, multiply, or divide." - without ever being shown 
how to decide~ In other words, the STA program invites a higher 
form of thinking in its problem-solving techniques, and makes use 
of two very powerful and refined aspects of mathematical tech­
nology, one of which is the equation. This is my fourth postulate. 

Emphasis Upon the Contribution of Knowledge to a Recog­
nized Subject Matter Discipline. Among the many criteria that 
have been used by curriculum workers in recent years - and these 
include "survival'' , "utility" , ' interest", "social significance" , 
and so on - the contribution that a particular subject makes to an 
organized field of knowledge has tended to become the major one 
employed. It is not hard to see that traditional courses in ele­
mentary arithmetic have failed to meet this criterion, as they 
were, even in their problem-solving aspects, concerned mainly with 
computational speed and accuracy. Children were required to jump 
immediately from the statement of the problem to the computation 
which solved it. In the STA program, the intermediate step of 
translating the problem into the appropriate equation deduced from 
the mathematical action perceived in the problem, makes a definite 
contribution to the study of more advanced mathematics, and hence 
contributes something to a recognized subject matter discipline. 

The essence of the application of this criterion in other 
aspects of the STA program is the emphasis upon structure: that is 
upon the basic principles of and the patterns of relationships 
within the subject. The STA program has reselected and replaced 
content and method in order to reveal clearly to the pupils the 
underlying principles and relationships that give mathematics its 
structure. 

My fifth postulate, then, is that modern courses should -
and STA does - contribute knowledge to a recognized subject matter 
discipline and reveal the structure of the discipline to the 
pupils. 

The Seeing Through Arithmetic Program 

From the five postulates I have just discussed with you, 
one could derive certain theorems which would indicate that the 
STA program is constructed on the following principles: 

- It emphasizes the mathematical values and aims of arithmetic, 
rather than the social or other aims and applications, thus 
contributing to the basic intellectual objectives of modern 
education. 

- The STA course recognizes and employs the most recent 
research findings in developmental psychology. 
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- In its methodology, the STA course attempts to appeal to 
all types of perceivers through all modes of perception. 

- The STA program mov.es beyond associative type thinking to at 
least convergent thinking in its problem-solving aspects. 

- The STA program emphasizes the structure of mathematics, em­
ploys several powerful aspects of mathematical technology, 
and thus contributes greatly to the recognized discipline of 
mathematics . 

Deductive Nature of the STA Program 

Few would deny that the Seeing Through Arithmetic and 
other modern approaches to elementary mathematical arithmetic are 
vast improvements over traditional arithmetic programs. It is my 
contention, however, that improved as they may be, they still 
suffer from a serious flaw, and strangely, this flaw arises from 
what I consider to be too restrictive an interpretation of a 
current definition of mathematics, namely that "mathematics is 
the search for patterns". 

In the STA program, this is interpreted to mean : "Mathe­
maticians have found certain patterns in elementary problem­
solving, and have invented certain equations to describe and to 
reveal these patterns." Two of the equations so used can be shown 
generically as follows: 

Examples 

(1) 

(2) 

of the 

5 

/aobRc / 

{a: b R c : d/ 

first equation 

3 := 2 
12 + n := 4 

3 X n := 20 

Examp les of the second are: 

15/ 3 
n/20 
3; 4 

:= n/ 1 
=- 35/ 100 
:= 4/n 

(rate-comparison) 

are: 

As, in the f irst equation , the "unknown" n can appear in 
any one of three places, replacing either i!_, or b~ or ~, and .Q. can 
be any one of "add", "subtract" , "multiply", or "divide" , whilst, 
for almost a ll proble ms, R is restricted to "equals", it then 
follows that there are 

3 x 4 x 1 := 12 basic types of non-comparative problems . 
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In the case of the second, _Q_ can replace, a, b, .Q, or d, 
and R is again generally restricted to "equals", thus there are 

4 x 1 = 4 basic types of rate-comparison problems. 

This means that our pupils sequentially, developmentally, 
and systematically are taught to translate all their problems into 
one of the 16 basic equations, are taught a corresponding process 
to solve the equation, and are thus restricted to a convergent 
type of thought process. 

The problem-solving approach, too, is necessarily deduct­
ive in nature: 

- Comprehend the problem. 

- From the structure of the problem, determine the structure 
of the equation that represents it. 

- Perform the standard computation for this equation-form. 

- Interpret the results. 

Now this is, as I have said before, a tremendous advance 
over traditional courses, and a most welcome one. My plea to you, 
however, is for the introduction of certain inductive methods to 
supplement this deductive approach, to broaden problem-solving, 
to involve more than associative and convergent thinking, to in­
volve divergent, inductive thought in our mathematical problem­
solving activities. So often, in life's problems, there is no 
standard, ready-made pattern of solution: one has to wrestle with 
the problem inductively, and the pattern only emerges after 
strenuous divergent thought. Let us equip our pupils with at 
least the readiness steps for this scientific mode of thinking. 

Inductive_Patterns 

(Note:- the following dialogue is based upon ideas pre­
sented by Professor G. Polya in his two-volume series entitled 
Mathematics and Plausible Reasoning, published by the Princeton 
University Press, 1954.) 

Dialogue to Illustrate the Sequence of Steps in 
Inductive Problem-Solving 

Teacher : - (holding up before the class a regulation chess-board). 

Pupil: 

T. 

P. 

How many squares are there on this chess-board? 

- (counting). Eight rows of eight. . sixty-four. 

- Is that all you can see? 

- Yes, thirty-two are black and thirty-two are white. 
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T. 

P. 

T. 

P. 

T. 

P. 

T. 

P. 

P. 

T. 

P. 

T. 

P. 

- Good . What are the dimensions of each of the squares 
that you can see? 

- Oh, about two inches by two inches, I guess. 

- That seems a reasonable estimate, but - (holding up a 
second then a third board) - what are the dimensions 
of this, and this? 

- Oh! I see. I think you can say that each of the 
squares is one unit in area. 

- Good . For each board, although they are different in 
area, any one of the squares you can see can be said 
to be one unit in area. 

- Oh! Wait! 
(excitedly) 
two units . 
hundr eds of 

I see now! The whole board is a square and 
. there are some squares two units by 

.. some three-by- three •.. There are 
squares! 

- Now you are beginning to see that the question I asked 
wasn't really an idle one; but are there actually 
hundreds? 

- Wel l - there certainly are a lot, and (ruefully) they 
are very hard to see! 

-- So ! They are hard for the eye to see, so let us try to 
"see" them in a different way - through a mathematical 
microscope, so to speak. 

- How can you do that, sir? 

- The wa y we have "seen" through other problems: let us 
order what we see~ Let us find some pattern in the 
quantities before us . 

- What sort of patterns do you mean, sir? 

- (smil i ng). Look above you at the acoustic tile in the 
cei l inge Look beneath your feet at the tiled floor. 
Suppose, now, that the ceiling and the floor wer e like 
this chess - board, each a square struct ure of squaresG 
Now ! How could I rephrase my original question, "How 
many squares are there on the chess-board?" so that it 
is more general, so that it could refer to the chess­
boar ds, the ceiling, the floor, in fact to any square 
structure of squares? 

- (after severa l false starts) •. • How many squares are 
in an n by n square structure of unit squares? 
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T. 

P. 

T. 

p. ( 1) 

p. ( 2) 

p. ( 3) 

T. 

P. 

T. 

p. ( 1) 

p. ( 2) 

P. 

T. 

P. 

T, 

P. 

T, 

P. 

T. 

(3) 

_ Very good. Now instead of confining our attention 
merely to a n 8 x 8 board, we have now generali zed ou r 
problem , n a mely, we a re considering an n by n board. 
we have created many more problems than the very re­
stricted one we started with. Often the solution to a 
set o f prob l ems is much simpler to find than is the 
solution to one membe r of the set. So let us now 
solve the new general problem. 

- I know, sir! We have done this type of problem before! 

- Good. Then what is the next step? 

- Find the simplest case . 

- Find the first case. 

- Use one . 

- Good! Good! Now take it easy~ Yes, you are all 
correct. What is the specialization, the simplest 
form o f our new general problem? 

- How many squares on a one by one, sir? The answer is 
one. 

- Yes, o f course. Now what? 

- Try a two by two, sir 

- The second simplest. 

- Two units by two units 

- I'll need a two by two to clobber you if you shout so 
exitedly! 

- There are five squares now: one big one and four little 
ones. 

- Good. Now what? 

- A three by three has ten squares. 

- How many unit squares has it? 

Nine, sir. . oh! I see, there are nine one by one's 
and .. four two by two's and one three by three o • 

- Excellent, now you are beginning to see through your 
mathematical microscope! In fact, you are well on 
your way through the i nductive process . 
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P. 

T. 

P. 

T. 

P. 

T. 

P. 

T . 

P. 

T . 

P. 

P. 

T. 

P. 

P. 

P. 

(1) 

(2) 

(1) 

(2) 

(3) 

Now let us put s ome o r d e r int o our obs e r v ations. 
(writes) . 

n x n 

l x l 
2 X 2 
3 X 3 

Can you see t h e patte r n? 

No . o f squa r es 

1 
1 + 4 
l + 4 + 9 

- Yes sir, the next should be l + 4 + 9 + 16, 30, sir! 

- You have fo r med a conjecture about an unfolding pattern . 
Conjectures are tricky things o Can you verify it? 

- Yes si r ! On a four by four board there will be 16 
little squares , then the re will be four two by two's 
and, let's see now. . nine three by three's . 
Yes sir, it is verified. 

- Yes , for one case, bu t is this enough? 

- We could try it for f i v e by f ive. 

- Of course, and f o r other cas es too, but will we then 
have proved our conj e cture? 

- I guess not sir, but if every one we try is true, then 

- Well? 

- I see sir, we cannot prove it, I guess. 

- Later on you will find a way to prov e conjectures of 
this nature, it is called mathematical induction. 
However , we will now assume our conjecture to be true 
if it checks out on one or two more. 

It does for f ive, sir. 

And for six 

- Very good, but let u s no t forget our problem: What 
was it? 

- How many squar es are there on a chess board? 

. . . on any squa re boar d! 

on an n by . . . n f) . 
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T. 

P. 

T. 

P. 

T. 

P. 

T. 

- Good! Let us look again at our numbers. 

n x n Number 

1 X 1 l 
2 X 2 1 + 4 
3 X 3 1 + 4 + 9 
4 X 4 1 + 4 + 9 + 16 

What do you notice in the series under "number"? 

- They're squares, sir! 

- Excellent! 
(writes) . 

n X n Number Series 

1 X 1 1 12 
2 X 2 1 + 4 12 + 22 
3 X 3 1 + 4 + 9 12 + 22 
4 X 4 1 + 4 + 9 + 16 12 + 22 

What would be the series for an n by n? 

1 2 + 22 + 3 2 ... up to n 2? 

+ 32 
+ 32 + 42 

- Excellent! Now - if our conjecture is true, we have 
solved our general problem, and along the way, our 
special problem of the chess board. Does anyone have 
the answer to our original problem? 

(chorus) - Yes, sir. Two-hundred four! 

- Excellent ah! there's the bell. 

To instruct and educate a child, therefore, does 
not mean to overwhelm him with bits of knowledge 
and with precepts, but to provide him, in pro­
portion to his capacity and his needs, with such 
nourishment as he is capable of assimilating; 
to educate is not an effort from the outside 
to impose behavior or knowledge; it is to put 
the child in a position where he can make that 
effort himself ("Children are springs, not wells", 
a Belgian minister once wisely observed) .1 

1Robert Dottrens The Primary School Curriculum. Unesco, Place de F t ' -on enoy, Paris - 7e, 1962. (p. l52). 
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How many oranges are there in a pyramid with an equilateral 
triangular base if the smallest number of full dozens of oranges 
is used? 

Generalize: How many oranges are there in a regular triangular 
pyramid? 

ppecialize to simplest cases: How many in the top layer? (1), in 
the next layer? (3), in the next? (6). 

conjecture the pattern: 1 + 3 + 6 + 10 + ... 

verify for several cases: e.g., the fifth term in the series 
should be 10 + 5 ~ 15. 

Veri fica tion: 0 
00 
000 
0000 
00000 (ve r ified) 

State the general problem: What is the sum of the first n tri ­
angular numbers? 

Search for patterns within the pattern: 

First term Second term 

0 1 0 
00 1 + 2 

n th term: 1 + 2 + 3 + . . . n 

Now, look closer! 

l+l+l+ ... +l 

1+2+3+ ... +n 

1 + 3 + 6 + ... + n (n + 1) 
1 X 2 

Conjecture: 

Third term 

0 
00 
000 1 + 2 + 3 

Sum= n 
1 

Sum = n (n + 1) 
1 X 2 

Sum ? 

n 
1 

n(n + 1) 
l x 2 

n (n + 1) (n + 2) 
1 X 2 X 3 

(?) 
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verify for several cases: 

one layer n(n + 1) (n + 2) =- 1 X 2 X 3 = 1 ( /, 
1 X 2 X 3 1 X 2 X 3 

Two layers n(n + 1) (n + 2) =- 2 X 3 X 4 = 4 ( /, 
1 X 2 X 3 1 X 2 X 3 

etc. 

State the conjectured solution: The general solution is that there 
are n(n + 1) (n + 2) oranges in a total o f n layerso 

1 X 2 X 3 

Solution of special problem: The solution to the special problem is: 

1 + 3 + 6 + ... + (n) (n + 1) 
1 X 2 

= n (n + 1) 
1 X 2 

New problem! What is the smallest value of 
integers) 

Solution: 

n (n + 1) (n + 2) = 12 p 
1 X 2 X 3 

n 

(n + 2) = 12 p 
X 3 

to satisfy (in 

? 

n(n + 1) (n + 2) = 1 x 2 x 3 x 12 x p (intuition? 
= 1 x 2 x 3 x 2 x 2 x 3 x p or per-
= (2 x 2 x 2) x (3 x 3) x p sistence?) 

n{n + 1} (n + 2) = p x 8 x 9 

Therefore the smallest va lue of n is n = 7. 

Check: 

Layer 1 2 3 4 5 6 7 
Number 1+3 +6+10+15+21+28 = 84 = 12 x 7 

There are 7 dozen oranges in the structure 

Recommendation --------------
This pattern of elementary inductive problem-solving is 

fundamental to mathematical and scientific modes of thinkingo 
Every attempt should be made to es t ablish at least the readiness 
steps_for such thinking in the elementary school. The application 
of this recommendation is left to the ingenuity of the arithmetic 
teacher. 
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summary_~f_Pattern ------
1. state the given, specific problem. 
2. Generalize the problem. 

This procedure of heaping up new problems may 
seem foolish to the uninitiated. But some ex­
perience in solving problems may teach us that 
many problems together may be easier to solve 
than just one of them - if the many problems 
are well co-ordinated, and the one problem by 
itself is isolated. 2 

3. Specialize to the simplest case, or to the simplest 
analogous form. 

4. Begin the "inductive" process. 
5. Form the conjecture through seeking out the patterns, 

the structures of the problem. 
6. Verify the conjecture for specific cases. 
7. If possible, prove the conjecture, (perhaps by mathe­

matical induction). 
8. Solve the general problem. 
9. Solve the specific problem. 

Eor_the_Thoughtful_Beader 

Try the pattern on this question: 

Into how many portions is space divided by 5 planes in 
the "general" position? 

Hint: Start with points dividing lines, lines dividing areas, 
then to planes dividing space. Good Luck! 

2 
Univ 'tG. Polya, Induction and Analogy in Mathematics, Princeton 

ersi Y Press, Princeton, New Jersey, 1954 (p. 47). 
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