Reader's Response _

An Induction Proof of the Factorization of *aⁿ*-*bⁿ*

Ron Persky

Editor's Note: Ron Persky is a long-time contributor to delta-K and a strong supporter of mathematics education in the United States. This proof is included in this issue as a mathematical prompt because, in Persky's words, it is "not what you call advanced math but I just think it is nice." I agree.

We establish that $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1}).$ (1)

To do this, the Second Principle of Finite Induction will be used as well as the following identity: $a^{n+1} - b^{n+1} = (a+b)(a^n - b^n) - ab(a^{n-1} - b^{n-1}).$

For n = 1, (1) yields a - b = a - b.

Assume (1) is true. Then for n+1, we have, using the above identity: $a^{n+1} - b^{n+1} = (a+b)(a^n - b^n) - ab(a^{n-1} - b^{n-1}).$

By the induction hypothesis and the Second Principle of Finite Induction $a^{n+1} - b^{n+1} = (a+b)(a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}) + ab(a-b)(a^{n-2} + a^{n-3}b + \dots + ab^{n-3} + b^{n-2}) = (a-b)\{(a+b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}) - ab(a^{n-2} + a^{n-3}b + \dots + ab^{n-3} + b^{n-2})\}$

Multiply the two terms inside the braces. $(a-b) \begin{cases} [a^{n} + a^{n-1}b + \dots + a^{2}b^{n-2} + ab^{n-1}] + [a^{n-1}b + a^{n-2}b^{2} + \dots + ab^{n-1} + b^{n}] - \\ [a^{n-1}b + a^{n-2}b^{2} + \dots + a^{2}b^{n-2} + ab^{n-1}] \end{cases}$

In the first bracket, [], the second term, $a^{n-1}b$, through the last term, ab^{n-1} , is cancelled by the terms in the third bracket. This leaves

 $(a-b)\{a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n\}$ and gives formula (1) for $a^{n+1} - b^{n+1}$ which is what is required to complete the induction proof.