An Induction Proof of the Factorization of $\mathbf{a}^{n}-b^{n}$

Ron Persky

Editor's Note: Ron Persky is a long-time contributor to delta-K and a strong supporter of mathematics education in the United States. This proof is included in this issue as a mathematical prompt because, in Pershy's words, it is "not what you call advanced math but I just think it is nice." I agree.

We establish that $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\cdots+a b^{n-2}+b^{n-1}\right)$.
To do this, the Second Principle of Finite Induction will be used as well as the following identity: $a^{n+1}-b^{n+1}=(a+b)\left(a^{n}-b^{n}\right)-a b\left(a^{n-1}-b^{n-1}\right)$.
For $\mathrm{n}=1$, (1) yields $a-b=a-b$.
Assume (1) is true. Then for $n+1$, we have, using the above identity:
$a^{n+1}-b^{n+1}=(a+b)\left(a^{n}-b^{n}\right)-a b\left(a^{n-1}-b^{n-1}\right)$.
By the induction hypothesis and the Second Principle of Finite Induction

$$
\begin{aligned}
a^{n+1}-b^{n+1}= & (a+b)(a-b)\left(a^{n-1}+a^{n-2} b+\ldots+a b^{n-2}+b^{n-1}\right)+ \\
& -a b(a-b)\left(a^{n-2}+a^{n-3} b+\ldots+a b^{n-3}+b^{n-2}\right) \\
= & (a-b)\left\{(a+b)\left(a^{n-1}+a^{n-2} b+\ldots+a b^{n-2}+b^{n-1}\right)-a b\left(a^{n-2}+\right.\right. \\
& \left.\left.a^{n-3} b+\ldots+a b^{n-3}+b^{n-2}\right)\right\}
\end{aligned}
$$

Multiply the two terms inside the braces.
$(a-b)\left\{\begin{array}{c}{\left[a^{n}+a^{n-1} b+\cdots+a^{2} b^{n-2}+a b^{n-1}\right]+\left[a^{n-1} b+a^{n-2} b^{2}+\cdots+a b^{n-1}+b^{n}\right]-} \\ {\left[a^{n-1} b+a^{n-2} b^{2}+\cdots+a^{2} b^{n-2}+a b^{n-1}\right]}\end{array}\right\}$
In the first bracket, [], the second term, $a^{n-1} b$, through the last term, $a b^{n-1}$, is cancelled by the terms in the third bracket. This leaves
$(a-b)\left\{a^{n}+a^{n-1} b+a^{n-2} b^{2}+\cdots+a b^{n-1}+b^{n}\right\}$ and gives formula (1) for $a^{n+1}-b^{n+1}$ which is what is required to complete the induction proof.

