34hCALGARY JUNIOR HIGH SCHOOL MATHEMATICS CONTEST

April 28, 2010

Nalie:

GENDER:

SCHOOL: \qquad GRADE:

- You have 90 minutes for the examination. The test has two parts: PART A - short answer: and PART B long answer. The exam has 9 pages including this one.
- Each correct answer to PART A will score 5 porints. 'oun must put the answer in the space provided. No part marks are given.
- Each problcm in PART B carrics 9 points. You should show all your work. Sonne credit for each problem is based on the clarity and completenesis of gour answer. You should make it clear whe the answer is correct. PART A has a total possible seore of 45 points. PART B has a total possible score of 54 points.
- You are permitted the use of rough paper. Geometry instruments are not neccosisary: References including mathematical tables and formula sheets are not permitted. Simple calculators without programming or graphic capathilities are allowed. Diagrams are not drawn to scale. They are intended as visual hints only:
- When the tracher tellis you to start work you should read all the problems and select those sou have the best chance to do first. You should answer as many problems as possible. but you may not have time to answer all the problems.

MARKERS' USE ONLY
PART A
$\times 5$
B1
B2
B3
B4
B5
B6

BE SURE TO MARK YOUR NAME AND SCHOOL AT THE TOP OF THIS PAGE.
 THE EXAM HAS 9 PAGES INCLUDING THIS COVER PAGE.

Please return the entire exam to your supervising teacher at the end of 90 minutes.

PART A: SHORT ANSWER QUESTIONS

A1 The product of three different prime numbers is 42. What is the sum of the three prime numbers?

A2 Four athletes at the Olvupic competitions are the ouly participants in cach of eight events. For each event, three medals are awarded. Each of these four athletes wins the same number of medals. How many medals did cach athlete win?

A3 Two sides of a triangle have lengths 5 cm and 6 cm . The arca of the triangle is a positive integer. What is the maximum possible arca of such a triangle, in cm^{2} ?

A4 Rose has to write five tests for her class. where each test has a maximum possible score of 100 . She averaged a score of 80 on her first four tests. What is the maximum possible average she can get on all five tests?

A5 Notice that $1-2=-1.1-(2-3)=2$. and $1-(2-(3-4))=-2$. What is

$$
1-(2-(3-(t-\cdots-100))) \ldots) ?
$$

A6 The number

$$
\frac{2^{300}+2^{99}+2^{98}}{14}
$$

is cqual to 2^{n}. for some positive integer n. Find n.

- ATA rectangular billiard table has dimensions 4 feet by 9 feet as shown. A ball is shot from A. bounces off $B C$ so that angle $1=$ angle 2 . bounces off $A D$ so that angle $3=$ angle 4 and ends up at C. What is the distance (in feet) that the ball traveled?

AS suppose that a is a certain real number so that $\frac{3 . x^{2}-a}{r^{2}+2}$ is always the same number no matter what read number x is. What is c ?
A. 9 The mumbers $1.2 .3 \ldots .100$ are written in a row. We first remove the first number and every second mumber after that. With the remaining munbers. we again remove the first number and every second number after that. We repeat this process until nue mumber remains. What is this number?

PART B: LONG ANSWER QUESTIONS

Bl In a video game, the goal is to collect coins and levels. A player's level is calculated by finding the number of digits of the mmber of coins he has collected. For example, if a player has 240 coins. then the player's level is 3 . since 240 has 3 digits. Currently: Lario has 120 coins and Muigi has 9600 coins.
(a) (4 marks) What is Muigis level? How many coins does Mhigi need to collect to increase his level by"?

Solution: Muigi has 9600 coins. which has four digits. Therefore. Muigi's level is 4 .

In order for . Muigi to reach level 5 . Muigi must collect $10000-9600=400$ coins to increase his level by 1.
(b) (5 marks) In their next game. Lario and Muigi each collect the same number of coins, and they end up at the same level. What is the smallest number of coins that Larios and Muigi could each have collected to accomplish this feat?

Solution: Lario needs $1000-120=880$ coins to increase his level by lo 4 . After collecting 880 coins. Muigi will have $9600+880=10480$ coins. Hence. Muigi is at level 5. Therefore. for Lario and Muigi to mal up at the same level, Lario needs to collect $10000-1000=9000$ more coins. After that, Muigi will have $10480+9000=19480$. Then both Lario and Mugi will be at the same level.

Therefore. Lario and Muigi need to collect $880+9000=9880$ coins.

B2 You are preparing skewers of meat balls. where each skewer has either 4 or 6 meatballs on it. Altoget her you use ' 32 skewers and $15($) meatballs. How many skewers have only 4 meathalls on them?

Solution 1: Suppose all of the skewers contain 4 meatballs. Then the munber of meatballs used is $32 \times 4=128$ meathalls. Therefore, we need $150-128=22$ more meatballs. Erory skewer with 4 meatballs that we change to a skewer with 6 meathalls increases the mumber of meathalls by 2. Therefore. in order to have 150 meatballs total. there are $22 / 2=11$ skewers with 6 meatballs. Therefore, there are $32-11=21$ skewers with 4 meathalls. The answer is 21 .

Solution 2: Let x be the mmber of skewers with 4 meathalls each. Therefore, there are $32-x$ skewers with 6 meatl)alls each. Since there are 150 meatballs total.

$$
4 x+6(32-x)=150
$$

This simplifies to

$$
4 x-192-6 x=150 \quad \Rightarrow \quad 2 r=42
$$

Therefore, $x=21$. The answer is 21 .

B3 khalid. Lesley. Nei and Noel are seated at $10 \mathrm{~cm}, 20 \mathrm{~cm}, 30 \mathrm{~cm}$, and 40 cm , respectively; from the corners of a 120 cm by 150 cm dining table. as shown in the figure. If the salt, S, is placed so that the total distance $S K+S L+S M+S N$ is as small as possible, what is that total distance?

Solution: The sum $S K+S L+S M+S . V$ is the smallest when $K, S . M$ lie in a straight line and $L, S . N$ lie in a straight line. In this case. $S H+S L+S M+S N=K M+L N$.

$K: M$ is the hypotenuse of a right-angled triengle with legs $120-10-30=80 \mathrm{~cm}$ ancl 150 cm . Therefore, $K M=\sqrt{80^{2}+150^{2}}=170 \mathrm{~cm}$.

LN is the hypotenuse of a right-angled triangle with legs $150-20-40=90$ cm and $120\left(\mathrm{~cm}\right.$. Therefore. $L Y=\sqrt{\left.9()^{2}+120\right)^{2}}=150 \mathrm{~cm}$.

Therefore. $K M+L N=320 \mathrm{~cm}$. The answer is 320 cm .

B4 shelfCity makes shelves that hold five books each and ShelfWorld makes shelves that hold six books each.
(a) (3 marks) Jarno owns a certain number of books. It turns out that if he buys shelves from ShelfCity, he will need to buy 8 shelves to hold his books. List all of the possible numbers of books that Jarno can own.

Solution: Jarno needs more than seven shelves. Therefore, he owns at least $7 \times 5+1=36$ books. He also docs not own more than $5 \times 8=40$ books. Thereforc, the list of possible number of books that Jarno can own is $\{36,37,38,39,40\}$.
(b) (6 marks) Danny owns a certain number of books. It turns out that whether he buys shelves only from ShelfCity or buys shelves only from ShelfWorld, he will need to buy the same number of shelves. What is the largest number of books that Damy can own?

Solution 1: Note that Danny will always need at least as many shelves buying from ShelfCity than buving from ShelftWorld. If Danny owns the maximum number of books possible, then by buying books from ShelfCity, all of his shelves are full. Thercfore, the answer is a multiple of 5 . By trial and error, we see that if Danny owns 5.10.15.20.25.30, 35, 40 books, then he needs to buy 1, 2, 3. 4. 5, 6. 7. 8 shelves from ShelfCity respectively and 1, 2, 3. 4, 5, 5, 6, 7 shelves from SheffWorld, resijectively. If Danny owns more than 25 books, then he will alwars need more shelves from ShelfCity than from Shefftorld. Therefore. Danny owns at most 25 books.

Note: Other trial and error methods are possible and accepptable, i.e. a student does not necessarily have to considering only multiples of five.

Solution 2: Let s be the number of shelves that Danny needs from each store. Since hee needs to buy s shelves from ShelfCitt: the number of books lie owns is from the set $\{5 s-4,5 s-3.5 s-2,5 s-1.5 s\}$. He also needs to buy s shelves from ShelflWorld. so the number of books he owns is from the set $\{6 \mathrm{~s}-5,6.5-$ $4.6 s-3,6.5-2,6 s-1,6.5\}$. The number of buoks he owns is in both lists, and therefore is at least $6 \mathrm{~s}-5$ and at most 5 s . Therefore, $6 \mathrm{~s}-5 \leq 5 \mathrm{~s}$. Solving this yiclds $s \leq 5$. Since Danny needs at most five shelves from ShelfCity, the number of books Damy can own is at most $5 \mathrm{~s} \leq 25$ books. If he does own 25 books. then for both companies. he will need to buy five shelves, i.e. the same number of shelves. Therefore. the largest number of books that Danmy can own is 25.

B5 Two players Secka and Hida play a game called Hot And Cold on a row of squares. Hida starts by hiding a treasure at one of these squares. Sceka has to find out which square it is. On each of Scekais turn, she picks a square.

- If Socka picks the square which is where the treasure is. Hida will saly "Ding!" and the game ends.
- If Secka picks a square which is next to the square where the treasure is, Hida will say "Hot!".
- If Seeka picks a square which is not where the treasure is. and is not next to the square where the treasure is. Hida will say "Cold!".
(a) (3 marks) Suppose the game is playerl on three squares as shown. Show how Secka can pick the sculuare with the treasure in at most two turns.

Solution: Label the squares 1.2.3 from left to right. Secka first picks square 1. If it is where the treasure is. Seeka is done in one turn. If Ilida says "Hot!", then Secka knows the treasure is in square 2 and picks it on her second turn. If Hida says "Cold!". then Secka knows the treasure is in square 3 and picks it on her second turn. In all casce. Seeka picks the square with the treasure in at most two turns.

Note: Serka (annot accomplish this by picking the second square first.
(b) (6 marks) Suppose the game is played on nime squares, as shown. Show how Seckal can pick the square with the treasure in at most four turns.

Solution: Label the squares 1.2.3.4.5.6.7.8.9 from left to right. Seeka first picks square 5. If the square contains the treasure, Secka is done in one turn. If Hida say's "Hot!", then Seeka knows the treasure is in square 4 or 6 . She picks these squares in her next two turns to guarantee finding the treasure, needing at most thee turns total. If IIida says "Cold!". then the treasure is in square 1.2.3.7.8 or 9. Seeka on her second turn then picks square 2. If the scquare contains the treasure. Seeka found the treasure in two turns. If Hida says "Hot!", then the treasure is at square 1 or 3 . Sceka picks these two squares to guarantee finding the treasure in at most four turns total. If Hida says "Cold!". then Seeka knows the treasure is at scpure 7.8 or 9. with two turns remaining. We apply. the strategy in (a) on these three scquares to find the treasure in at most two turns. In all cases. Seeka finds the treasure in at mest four turns.

Note: Other strategies are possible.

B6 Three people have iclentical pairs of shoes. At the end of a party, each person picks up a left and a right shoe. leaving with one shoe that is theirs and one shoe that belongs to someone else.
(a) (4 marks) In how many different ways conld this happen?

Solution: Label the people 1.2.3 and the left and right shoes for person 1 be labeled L_{1}, R_{1}. those for person 2 be labeled L_{2}, R_{2} and those for person 3 be labeled L_{3} and R_{3}.

There are two choices as to which correct shoe person 1 picks, namely left or right. Person 1 then has two choices as to whose person's shoe he picks as the wrong shoe. Therefore there are four choices of shoes for person l, namely $\left(L_{1}, R_{2}\right),\left(L_{1}, R_{3}\right) \cdot\left(L_{2}, R_{1}\right) \cdot\left(L_{3}, R_{1}\right)$.

Suppose person 1 picks $\left(L_{1}, R_{2}\right)$. Then person 2 must have picked L_{2} (since R_{2} already is in person l's possession and person 2 must be holding one of his own shoes). If person 2 has R_{1}. then person 3 has L_{3} and R_{3}. holding both of his shoes. which is not allowed. Therefore. person 2 is holding (L_{2}, R_{3}). Person 3 must then be holding ($L_{23} . R_{1}$). Similarly, no matter low person 1 picks the shoes. the choices for person 2 and 3 are determined.

Therefore. there are four difierent ways for three people to pick up a left and a right shoe leaving with one shoe that is theirs and one shoe that belongs to someonc else.
(b) (5 marks) Same as part (a). except that there are four people instead of three.

Solution: Whe use the same labeling as in (a) aud label the fourth person 4 and his left and right shoe L_{\star}, R_{4}. respectively:

Consider person 1. There are two choices as to which correct shoe person 1 picks. namely left or right. There are three choices as to whose person shoe he picks as the wrong slone. Therefore. there are $2 \times 3=6$ choices of shoes for person 1 . namely $\left(L_{1}, R_{2}\right),\left(L_{1}, R_{33}\right) \cdot\left(L_{1}, R_{4}\right),\left(L_{2}, R_{1}\right) \cdot\left(L_{: 3}, R_{3}\right),\left(L_{1}, R_{1}\right)$.

Suppose person 1 picks $\left(L_{1}, R_{2}\right)$. Then person 2 must lave picked L_{2}. We now consider the following cases for the right shoe that person 2 picked:
i. If person 2 is holding R_{1}. then either person 3 is londeling (L_{3}, R_{4}) and person 4 is holding $\left(L_{1} \cdot R_{3}\right)$. or person 3 is holding $\left(L_{1}, R_{3}\right)$ and person 4 is holding ($L_{3} . R_{4}$). Hence there are two possibilities for this case.
ii. If person 2 is holding $R_{3,3}$. then person 3 must be holding L_{3}.] Person 3 camot be holding R_{1}. because then otherwise person 4 will be helding (L_{4}, R_{4}). which is both of his shoes. Therefore, person 3 is holding R_{4}. This leares person tholding ($L_{-1} \cdot R_{1}$). This is the ouly possibibility:
iii. If person 2 is holding R_{4}, then similar to case (ii). there is only one possibibility:

Therefore, the total mmber of ways that all this can happen is $6 \times(2+1+1)=2.1$ wars.

