The Alberta High School Mathematics Competition
 Part I, November 17, 2009

1. If $2^{x}=3^{y}$. then 4^{x} is equal to
(a) 5^{4}
(b) 6^{y}
(c) 8^{4}
(d) 9^{y}
(c) none of these
2. Caroline bought some bones for her 7 dogs. Had she owned 8 dogs. she could have given each the same number of bones. As it was. she needed two more bones to give each dog the same number of bonce. The number of bones she could have bought was
(a) 16
(b) 24
(c) 32
(d) 40
(e) 48
3. Ace calculates the average of all the integers from 1 to) 100 . Boa calculates the average of all the integers from 1001 to 1100 and subtracts 10000 . Coco calculates the average of all the integers from 1000001 to 1000100 and subtracts 10000000 . The largest answer is given by
(a) Ace only
(b) Bear only
(c) Cen only
(d) exactly two of them
(c) all three of them
4. A large rectangular grmmasium floor is covered with unit square tiles. most of them blank. in the pattern shown in the diagram below. Of the following fractions. the one nearest to the fraction of tiles which are not blank is
(a) $\frac{1}{12}$
(b) $\frac{1}{8}$
(c) $\frac{1}{6}$
(d) $\frac{1}{3}$
(e) $\frac{1}{4}$

5. The number of integers between 1 and 2009 inclusive which can be expressed as the difference of the squares of two integers is
(a) 1
(b) $5(02$
(c) 1005
(d) $15(5$
(c) 2009
6. Among the positive integers with six digits in their base-10 representation, the number of those whose digits are strictly increasing from left to right is
(a) between 1 and 50
(b) between 51 and 100
(c) between 101 and 500
(d) between 501 and 10000
(e) greater than 1000)
7. The number of arrangements of the letters AABBCC in a row such that no two identical letters are adjacent is
(a) 30
(b) 36
(c) 42
(d) 48
(e) nonc of these
8. If 2^{2009} has m digits and 5^{2009} has n digits; in their basc-10 representations, then the value of $m+n$ is
(a) 2007
(b) 2008
(c) 2009
(d) 2010
(c) 2011
9. An equilateral triangle has arca $2 \sqrt{3}$. From the midpoint of each side, perpendiculars are dropped to the other two sides. The area of the hexagon formed by these six lines is
(a) $\frac{\sqrt{3}}{2}$
(b) 1
(c) $\sqrt{3}$
(d) 2
(e) none of these
10. Two sides of an obtuse triangle of positive area are of length 5 and 11 . The number of possible integer lengths of the third side is
(a) 3
(b) 4
(c) 6
(d) 8
(c) 9
11. $Q(x)$ is a polvnomial with integer cocfficients such that $Q(9)=2009$. If p is a prime number such that $Q(p)=392$. then p can
(a) only bc 2
(b) only be 3
(c) only be 5
(d) only be 7
(c) be any of $2,3,5$ and 7
12. A parallelogram has two opposite sides 5 centimetres apart and the other two opposite sides 8 centimetres apart. Then the area. in square centimetres, of the parallelogram
(a) must be at most 40 and can be any positive value at most 40
(b) must be at least 40 and can be any value at least 40
(c) must be 40
(d) can be any positive value
(e) none of these
13. The number of positive integers n such that $\sqrt{n}+\sqrt{n+\cdots+\sqrt{n}}<10$ for any finite number of square root signs is
(a) 10
(b) 90
(c) 91
(d) 99
(e) 100
14. A chord of a circle divicles the circle into two parts such that the squares inscribed in the two parts have areas 16 and 144 square centimetres. In centimetres; the radius of the circle is
(a) $2 \sqrt{10}$
(b) $6 \sqrt{2}$
(c) 9
(d) $\sqrt{85}$
(e) 10
15. The number of prime numbers p such that $2^{p}+p^{2}$ is also a prime number is
(a) 0
(b) 1
(c) 2
(d) 3
(e) more than 3
16. Suppose that $2-\sqrt{99}$ is a root of $x^{2}+a x+b$ where b is a negative real number and a is an integer. The largest possible value of a is
(a) -4
(b) 4
(c) 7
(d) 8
(e) none of these

Alberta High School Mathematics Competition

Solution to Part I - 2009

1. If $2^{x}=3^{4}$. then $4^{x}=\left(2^{x}\right)^{2}=\left(3^{y}\right)^{2}=9^{y}$. The answer is (d).
2. The number of bones Caroline bought is a multiple of 8 but 2 less than a multiple of 7 . The answer is (d).
 for Ace. $n=1000$ for Bea and $n=10000000$ for Cec. The answer is (e).
3. Almost the entire gymmasimm floor may be divided into 2×3 non overlapping rectangles each with exactly one non-blank square at the lower left corner. The answer is (c).
4. Observe that $x^{2}-y^{2}=(x-y)(x+y)$ is the product of two integers of same parity: Hence $r^{2}-y^{2}$ is either odd or divisible by 4 . Thus a mumber which is neither odd nor clivisible by 4 (ammot be expressed as a difference of two squares. On the other hatud. if n is odd, then $n=2 k+1=(k+1)^{2}-k^{2}$. If n is divisible by then $n=4 k=(k+1)^{2}-(k-1)^{2}$. Between 1 and 2009 inclusive, there are $10(05$ mmbers that are odd and $5(0) 2$ that are clivisible by 4 . The answer is (d).
5. We can choose any six of the nime non-zero digits. The mumber of choices is $\binom{9}{6}=84$. Each choice gives rise to a mique number. The answer is (b).
6. Assume that the first A appears before the first B . and the first B before the first C . Then we must start with AB and continue with A or C '. If we continue with A . the last three letters must be CBC. If we start with ABC. we must continne with A or B. In either ease. cither of the last two letters can appear before the other. So the total is $1+2 \times 2=5$. Relaxing the order of appearance, the total beromes $5 \times 3!=30$. The answer is (a)
7. Since $10^{n-1}<2^{2009}<10^{n}$ and $10^{m n-1}<5^{2009}<10^{m \prime \prime}$. we have $10^{n+n+2}<2^{20099} 5^{2009}<10^{m+n}$. It follows that $10^{\prime n+n-1}=2^{2009} 5^{20099}=1\left(0^{2009}\right.$. Hence $m+n-1=20009$. The answer is (\mathbf{d}).
8. Let $A B C$ be the triangle and $D R E P F Q$ be the hexagon. as shown in the diagram below. Triangles $A P E, A P F, E R D$ and $F Q D$ are all congrient to one another. Hence $D R E P F()$ has the same area as the parallelogram $A F D E$. which is one half of $2 \sqrt{3}$. The answer is (c).

9. By the Triangle Inequality the third side must be from \bar{i} to 15 . Now $\left.99^{2}<11^{2}-5^{2}<10\right)^{2}$. so that (5,7.11) : (5.8.11) ancl (5.9.1]) are obtuse triangles. Also. $12^{2}<11^{2}+55^{2}<13^{2}$, so that $(5.11,13)$. ($5.11,14$) and (5.11 .15) are obthse triangles. The other three are not. The answer is (c).
10. Sinc:c $Q(9)=2009, x-9$ is a factor of $Q(x)-2009$. Since $Q(x)$ has integral coefficients, $p-9$ divides $Q(p)-2009=392-2009$. Since this number is odd. $p-9$ must be odd. Since p is prime, we must have $p=2$. Now $392-2009=-1617=-231 \times 7$, so that $Q(x)$ does exist. For instance, we may have $Q(x)=231 x-70$. The answer is (a).
11. Let 5 (entimetres be the height of the parallelogram. Its base is a segment intercepted by the other pair of parallel lines 8 centimetres apart. Hence its length is at least 8 centimetres and can be arbitrarily large. The answer is (b).
12. With one square root sign, $\sqrt{n}<10$ is equivalent to $n<100$. With two square root signs, $\sqrt{n}+\sqrt{n}<10$ is equivalent to $n+\sqrt{n}<100$, which is in turn equivalent to $n<91$. With three square root signs and $n<91$, we have $\sqrt{n+\sqrt{n+\sqrt{n}}}<\sqrt{n+10} \leq 10$. With more square root signs. the same incquality will hold. There are 90 positive integers which satisfy $n<91$. The answer is (b).
13. Let x be the distance from the centre of the circle to the bottom edge of the larger scuare. The square of the radius of the circle is given by $6^{2}+x^{2}=2^{2}+(4+12-x)^{2}$. This sields $x=7$ so that the radius of the circle is $\sqrt{ } 6^{2}+7^{2}=\sqrt{85}$. The answer is (d).

14. If $p=2,2^{\prime \prime}+p^{2}=8$ is not prime. If $p=3.2^{\mu}+p^{2}=17$ is prime. If $p>3$. then $p=6 k \pm 1$ for some integer k. so that $p^{2}=36 k^{2} \pm 12 k+1$ is 1 more than a multiple of 3 . On the other hand. whon divided by 3. successive powers of 2 leave remainders of 2 and 1 alternatoly: Since $\mu>3$ is oddl. 2^{μ} is 2 more than a multiple of 3 . Itence $2^{\mu}+p^{2}$ is divisible by 3 . and camot be prime. The answer is (b).
15. Let the other root be t. Then $-n=t+2-\sqrt{99}$. Now $b=t(2-\sqrt{99})<0$. so that $t=\sqrt{99}-2-a>0$. Since a is an integer. $a \leq 9-2=7$. The answer is (c).

The Alberta High School Mathematics Competition Part II, February 3, 2010

1. Of Melissa`s clucks. $x \%$ have 11 ducklings each, $y \%$ have 5 ducklings each and the rest have 3 clucklings each. The average number of ducklings per duck is 10 . Determine all possible integer values of x and y.
2. (a) Find all real numbers $t \neq 0$ such that $t x^{2}-(2 t-1) x+(5 t-1) \geq 0$ for all real numbers x
(h) Find all real numbers $t \neq 0$ such that $t x^{2}-(2 t-1) x+(5 t-1) \geq 0$ for all $x \geq 0$.
3. Peints A, B, C and D lie on a circle in that order. so that $A B=B C$ and $A D=B C+C D$. Determine $\angle B A D$.
4. Let 11 be a positive integer. A $2^{\prime \prime} \times 2^{\prime \prime}$ board. missing a 1×1 square anywhere is to be partitioned into rectangles whose side lengths are integral powers of 2 . Determine in terms of n the smallest number of rectangles anomg all such partitions, wherever the missing sfuare may be.
5. Let f be a non-constant polynomial with non-negative integer coofficients.
(a) Prove that if M and m are positive integers such that M is clivisible by $f(m)$, then $f(M+m)$ is also divisible by $f(m)$.
(b) Prove that there exists a positive integer n such that cach of $f(n)$ and $f(n+1)$ is a composite number.

The Alberta High School Mathematics Competition Solution to Part II, 2010.

1. We have $11 x+5 y+3(100-x-y)=100($ or $4 x+y=350$. Since $y \geq 0$. we get. $x \leq 87$. Since $x+y \leq 100$. we also have that $3 x \geq 250$. so $x \geq 84$. Thus the only solutions are $(x, y)=(84,14) ;(85,10):(86,6)$ and $(87,2)$.
2. For (ither (a) or (h), clearly the leading coefficient t of the quadratic must be positive.
(a) For the inequality to hold for all real x, the discriminant must be non-positive. that is;

$$
0 \geq(2 t-1)^{2}-4 t(5 t-1)=1-16 t^{2}=(1-4 t)(1+4 t)
$$

Since $t>0,1+4 t>0$. so we need $1-4 t \leq 0$. Thus $t \geq \frac{1}{4}$.
(b) We now have the additional possibility that the two roonts of the quadratic are real and non-positive. This holds if and only if $0<t \leq \frac{1}{4} \cdot 2 t-1 \leq 0$ and $5 t-1 \geq 0$. This is equivalent to $\frac{1}{5} \leq t \leq \frac{1}{4}$. Combining with the answer to (a), we have $t \geq \frac{1}{5}$.

3. First Solution:

Putting $A B=B C=b$ and $C D=c$, we get $A D=b+c$. Let $\angle B A D=r$. Since $A B C D$ is (yclic, $\angle B C D=180^{\circ}-\alpha$. Applying the cosine law to triangles $B A D$ and $B C D$. we have $B D^{2}=b^{2}+(b+c)^{2}-2 b(b+c) \cos a$ and $B D^{2}=b^{2} \div c^{2}-2 b c \cos \left(180^{\circ}-a\right)=b^{2}+c^{2}+2 b c \cos a$. Hence $b^{2}+(b+c)^{2}-2 b(b+c) \cos a=b^{2}+c^{2}+2 b c \cos a$. so that $b^{2}+2 b c=\left(2 b b^{2}+4 b c\right) \cos a$. This vields $\cos \alpha=\frac{1}{2}$, so that $\alpha=60^{\circ}$ is the only possibility.

Sccond Solution:

Let E be the point on $A D$ such that $D E=D C$. so that $A E=A D-D E=B C=A B$. Nuw $\angle B D E=\angle B D C$ since they are subtended by the equal ares $B A$ and $B C$. It follows that triangles $B E D$ and $B C D$ are congruent. so that $B E=B C=B A=A E$, triangle $B A E$ is equilateral and $\angle B . A D=60)^{\circ}$.

4. First Solution:

The area of the punct ured board is $2^{2 n}-1$. The base- 2 representation of this number consists of 201 s . Since the area of each rectangle in the partition is a power of 2 , we must have at least $2 n$ rectangles. There exist such partitions with exactly $2 n$ rectangles. Divicle the board in halves by a horizontal grid line. Set aside the one with the missing square and cover the other with a rectangle of height 2^{n-1}. Reperating the process with the strips set aside. We oltain rectangles with decreasing heights $2^{\prime \prime-2} .2^{n-3} \ldots \ldots 2^{1}$ and 2^{0}. a total of n rectangles. We now divide the resulting $2^{\prime \prime} \times 1$ board in halves by a vertical line. Set aside the one with the missing square and cover the other with a rectangle of width $2^{\prime \prime-1}$. Repeating the process with the strips set. aside. we obtain another n rectangles with decreasing widths, for a total of $2 n$ rectangles in the overall partition.

Second Solution:

Divicle the board into four congruent. quadrants. Set aside the one with the missing square. Nerge two of the other quadrants into one rectangle and kecp the third quadrant as the second rectangle. In reducing a $2^{n} \times 2^{n}$ board down to a $2^{n-1} \times 2^{n-1}$ board. we use t.wo rectangles. It follows that we will use exactly $2 n$ rectangles in the overall partition. We now prove that we camot get be with a smaller number. The area of a rectangle of the prescribed type is a power of 2 . The smallest has area 1 , and the largest has area $2^{2 n-1}$. Thus there are $2 n$ different sizes. If we use one of each size, the total area of these $2 n$ rectangles is $1+2+\cdots+2^{2 n-1}=2^{2 n}-1$, cxactly the size of the punctured chesshoard. Consider any other collection of rectangles whose areas are powers of 2 and whose total area is $2^{2 n-1}-1$. Replace any pair of rectangles of cqual area by one with twice the area. Repeat until no further replacement is possible. The resulting collection consists of rectangles of distinct arcas which are powers of 2 , and with total area $2^{2 n-1}-1$. It can only be our collection, and since mergers only reduce the number of rectangles, $2 n$ is indeed minimum.
5. (a) Vote that $f(M+m)-f(m)$ is a sum of terms of the form $a_{k}\left((M+m)^{k}-m_{1}{ }^{k}\right)$ where a_{k} is the coofficient of the term x^{k} in $f(x)$. Since cach term is clivisible by $M=(M+m)-m$. so is $f(M+m)-f(m)$. Since M is clivisible loy $f(m) . f(M+m)-f(m)$ is clivisible by $f(m)$. It follows that $f(A+m)$ is divisible by $f(m)$.
(b) Since all the eocfficients of f are nenn-negative and f is non-constant, it is strictly increasing. Let $M=f(2) f(3)$ and $n=M+2$. By (a). $f(n)$ is divisible by $f(2)$ and $f(n+1)$ is divisible l)y $f(3)$. Since $f(n+1)>f(n)>f(3)>f(2)>f(1) \geq 1$, both $f(n)$ and $f(11+1)$ arte composite.

