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Contextualizing the Research 
Mathematics teaching and learning happen every 

school day. Albeit sometimes celebrated and advocated 
for, most mathematics teaching and learning are often 
questioned, criticized or negatively judged by people 
involved in mathematics education. These criticisms 
have often led these same people to call for changes to 
how mathematics is taught and learned in classrooms. 
It has always seemed odd to me that these criticisms 
are addressed mainly to teachers and their teaching prac­
tice. For me, as a mathematics education researcher, 
the problem has always been something else. To con­
textuali7.e this better, I offer you this quote from French 
didactician of mathematics. Guy Brousseau: 

I am never critical toward teaching as it is prac­
ticed. If you see 200 000 teachers doing the same 
thing and it looks stupid to you, it is not because 
there arc 200 000 stupid people. It is because there 
is a phe11omn1011 that orients this same type of 
reaction in these people. And it is this phe11ome11on 
that we need to understand . ... We won't improve 
it with an ideology, nor by moralizing to teachers. 
(Brousseau 1988; my translation) 

It is this "phenomenon,'' this "something else.'' that 
the research project I report on in this paper attempts 
to address.In short, the underlying belief of this proj­
ect is that it is not the people who are problematic in 
mathematics teaching and learning. but the mathemat­
ics itself: the problem resides in the mathematics being 
taught and learned and not how it is taught or learned. 
My entry into the problem is, therefore, mathematical. 

This paper outlines the significance of this research 
for the continuing improvement of mathematics 
teaching and learning. I explain the various phases of 
the research to give the reader an idea of the approach. 
Then. through this, I report on the specific project 
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conducted, focused on the notion of area of planar 
figures. and discuss the resu Its and products of this 
research orientation and their outcomes for the teach­
ing practice. 

The Research Approach: 
Delving Deeper into the 
Mathematics 

The intention to address the mathematics being 
taught and learned in schools came as a result of di­
verse reform movements in mathematics that advo­
cated for "less mathematics, but deeper," to promote 
more conceptual forms of understandings in students. 
But what does it mean to go deeper into the mathemat­
ics? It is this question that this research project ex­
plored, taking the notion of area of planar figures as 
a specific example. 

In this project. the choice of area of planar figures 
as an example to work on was based on personal 
interest and on my teaching experience in secondary 
schools, where I have often been unsatisfied with the 
treatment of this topic. Area is often seen as an easy 
topic simply consisting of helping students memorize 
a number of diverse formulas. Thus, learning area is 
pinned down to knowing and memorizing formulas, 
recognizing which ones to use and applying them in 
a problem. Consider this typical quote taken from the 
Purplernath website (www.purplemath.com/modules/ 
geoform.htm) addressed to learners: 

Some instrnctors like to give all needed geomet­
ric formulas. so your test will have a listing of 
anything you might need. But not all instructors 
are this way, and you can't just expect a new in­
structor ... to give you all this information. Ask 
your instructors for their policies, but remember 
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that there does come a point (high school? SAT? 
ACT? College? "real life"?) at which you will be 
expected to have learned at least some of these 
basic formulas. Start memorizing now! 
Thus. the central question of this research project 

became, what would it mean to work deeper in area 
of planar figures? To address this question, a number 
of phases were designed. I report on them below. 

Phase 1 : What Is Out There? 

Interesting as it may seem as a research orientation. 
wanting to delve deeper in mathematics supposes that 
one has some awareness of the mathematics usually 
worked on in schools. This led to the consideration 
of what is out there in the area of planar figures. Thus. 
the first phase of the research reviewed various forms 
of textbooks and curricular materials to gather a sense 
of what is out there concerning the teaching and 
learning of area of planar figures. 

This review of Grades 4 to 8 resources revealed a 
somewhat poor treatment of the notion of area of 
planar figures. From most of the resources reviewed, 
three important tendencies could be highlighted: 

I. A n  explicit and important focus given to area
formulas of planar figures, which were either
given. constructed or explained

2. A large number of isolated formulas. one for
each planar figure; for example, rectangle [Lxl].

parallelogram [Bx/zl, square [s�], rhombus

[(Dxd)
J 

"d[(8+b)xh]--- , trapezm 
:: 2 

3. A focus placed on numerical calculations of
areas for the planar figures, often triggered by
a command, such as "Calculate the area of the
following rectangle.''

It was therefore felt that area received a rather poor 
treatment through these various resources. Thus, the 
project's central question was again brought to the 
fore: what would it mean to work deeper in area of 
planar figures than what these resources already offer? 
The challenge was to delve into the topic and draw 
out more of it than this review outlined to enrich 
mathematically the concept of area of planar figures. 
This paved the way for the second phase of the re­
search concerning the development of a deeper ap­
proach to the concept of area of planar figures. 

Phase 2: Digging into and 
Developing the Mathematics 

As mentioned. the challenge was to probe into the 
concept of area to draw out an approach that enriched 
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its treatment. Therefore, the work centred on exploring, 
making sense and delving into the mathematical 
concept of area of planar figures to unpack some of 
its underlying meanings. relations and subtleties often 
hidden within it. 

However, it is important to note that this work was 
explicitly seen as being able to produce/develop only 
one of the many possible approaches to the concept 
of area of planar figures, as many other ideas could 
be explored. The intention was not to develop all 
possible treatments for area of planar figures but to 
offer one rich approach to illustrate what it could 
mean to delve deeper into a topic of study (here, with 
area of planar figures taken as an example). 

Two important issues emerge from the overabun­
dance of formulas, numbers and calculations in the 
study of area: (I) the absence of geometry and (2) the 
enormous number of isolated and disconnected for­
mulas to memorize. Richard Skemp discusses this 
second issue: 

There is a seeming paradox here, in that it is cer­
tainly harder to learn. It is certainly easier for pupils 
to learn that "area of a triangle=½ base x height" 
than to learn why this is so. But they then have to 
learn separate rules for triangles, rectangles, paral­
lelograms. trapeziums: whereas relational under­
standing consists partly in seeing all of these in 
relation to the area of a rectangle. It is still desirable 
to know the separate rules: one does not want to 
have to derive them afresh everytime [sic]. But 
knowing also how they are inter-related enables 
one to remember them as parts of a connected 
whole, which is easier. (Skemp 1978, 12-13) 1 

These issues triggered specific guidelines in the 
research inquiry for developing the approach that 
would de) ve deeper into area of planar figures: (I) 
attempting to go back to and work in geometry in 
area of planar figures and (2) finding a way to draw 
out the links existing between the usual area formulas. 
To illustrate where these guidelines led the work, I 
offer a glimpse at ideas that were brought together 
for del\'ing into area of planar figures. (However. 
because of space constraints I cannot go into great 
length about these ideas, so I refer the r;ader to three 
other papers that were produced on these ideas: 
Proulx 2007; Proulx 2008; Proulx and Pimm 2008). 

A Glimpse at the Ideas 
Developed for Area of Planar 
Figures 

Let's begin by introducing a mathematical prin­
ciple that influenced the inquiry: the Cavalieri principle. 
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This principle, for planar figures and solids, asserts 
that: 

If between the same parallels any two plane figures 
are constructed. and if in them, any straight lines 
being drawn equidistant from the parallels, the 
included portions of any one of these lines are 
equal, the plane figures are also equal to one an­
other; and if between the same parallel planes any 
solid figures are constructed, and if in them, any 
planes being drawn equidistant from the parallel 
planes, the included plane figures out of any one 
of the planes so drawn are equal, the solid figures 
are likewise equal to one another . ... The figures 
so compared let us call analogues, the solid as well 
as the plane, ... (Cavalieri 1653) 

Gray (1987, l 3) expresses the two-dimensional 
aspects of the Cavalieri principle as follows: 

The principle asserts that two plane figures have 
the same area if they are between the same paral­
lels, and any line drawn parallel to the two given 
lines cuts off equal chords in each figure. 

Figure I offers an illustration of the Cavalieri prin­
ciple with two plane figures: 

Informally, the principle asserts that if you cut each 
polygon horizontally at the same height and each 
chord obtained is of equal length, then the two poly­
gons are of the same area. To make the comparison, 
both polygons need to be the same height; if not, the 
comparison appears not possible because one polygon 
would be cut where there would not be any of the 
other polygon left to cut. 

When used for the study of area, the Cavalieri prin­
ciple allows for insightful comparisons between figures, 
and in that sense appears helpful in establishing geo­
metric links and relating planar figures. For example, 
one can establish links between rectangles and paral­
lelograms (of same base and same height), where both 
figures lie between the same parallels (see Figure 2). 

The 2-D version of the Cavalieri principle helps 
us also to see "families of planar figures;'' for ex­
ample, a family of rectangle and parallelograms of 
same area. To see this, let the parallelogram be as 
slanted as you want: any parallelogram with the same 
height and same base would have the same area, 
because each cross-section is always of the same 
length, creating the equivalent family of rectangles 
and parallelograms (Figure 3). 

Figure 1. An Illustration of the Cavalieri Principle in Two Dimensions 

·······························•······ ..... ______ ........................................... .......... ,.,...-------., .................................. _ ........... . 1-------1--------------- _____ __, 
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\....

-----�
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············································-----....a.=�·=··�·=··�·=··�·=�� - - - - - . j·�------4-' 

Figure 2. Using the Cavalieri Principle with a Rectangle and a Parallelogram 

Figure 3. Family of Rectangle and Parallelograms 

f···················· . ··············l 
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A parallelogram thus possesses an associated 
rectangle, which has the same base and same height, 
implying that the area of a parallelogram can be ob­
tained through the same formula as for rectangles: 

Area of the 

parallelogram 
length of 

= the base X height

The Cavalieri principle, and families of parallelo­
grams, of

f

ers an interesting entry into rhombuses and 
squares. Obviously the square. frequently defined as 
a rectangle with four equal sides, is directly related 
to the preceding formula of Areo= /Josex l!etgh1. 
Thus, this prevents the need for inventing a specific 
formula for the square (often given withs!), a preven­
t ion that in fact strengthens the I ink between the 
square and the rectangle. 

The rhombus can be defined as a parallelogram 
that possesses all identical sides and therefore can be 
seen as part of a family of parallelogram and directly 
associated with a specific rectangle (having the same 

base and height as the rhombus). However, defining 
a rhombus as a parallelogram raises some questions 
concerning the usual "data" given to calculate its area. 
Diagonals are usually provided (or to be found) for 
finding the area of the rhombus; its formula being in 
fact directly related to it [ (�rll]_ Hence, defining the 
rhombus as a parallelogram-leads one to aim for the 
"base" and ''height" of the rhombus, something quite 
unusual for rhombuses.' However, one has to ac­
knowledge that this strengthens the link between 
rhombuses, parallelograms. squares and rectangles; 
a link that, in addition. simplifies the various formulas 
for these four planar figures by providing a single and 
general formula for them: .Areo= /Josex heigh!. 

Concerning families, the same thing can be said 
for triangles. where all triangles with the same base 
and height are part of the same family, be they as 
slanted as one wants (Figure 4 or Figure 5). 

It is also possible to establish a family of trape­
wids, where the small base slides on the same plane, 
producing a family of trapezoids with the same base 
and the same height (Figure 6). 

Figure 4. A Family of Triangles with Same Height and Same Base 

I 
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Figure 5. Another Representation of a Family of Triangles 
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Figure 6. A Family of Trapezoids with Same Height and Same Base 
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Moreover, as the family of trapezoids gets estab­
lished, it is interesting to note that a trapezoid is in­
deed defined as "a quadrilateral with two sides paral­
lel" (see, for example, Wolfram Math World website 
http://mathworld.wolfram.com), which takes into 
account not only standard trapezoids that we are often 
used to seeing (Figure 7) but also any quadrilateral 
that has a pair of opposite sides that are parallel, which 
are indeed trapezoids, without being parallelograms 
(Figure 8)'. 

In that sense, the family is composed of any quad­
rilateral that has the same height and a pair of opposite 

and parallel sides, making the family of trapezoids 
look like the following (Figure 9). 

One notices. however, that no family of equivalent 
trapezoids contains a rectangle. However, there is a 
fixed relationship between a trapezoid and its associ­
ated rectangle. By rotating the rectangular trapezoid 
(that is part of any trapezoid family) about the mid­
point of the remaining slant side, a rectangle that is 
the double of the trapezoid is produced (Figure 10), 
establishing a significant relationship between trap­
ezoids and rectangles. Trapezoids become perceived 
as the half of a related rectangle that has the same 

Figure 7. Some Examples of Standard Trapezoids 

_L ____ �
L 

Figure 8. Another Type of Trapezoid 

_/_ __ / 
Figure 9. A Family of Trapezoids with Nonstandard Ones 

, .. . . .................. � 
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Figure 10. Two Copies of a Right Trapezoid Creating a Rectangle 
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height and a base equal to the sum of both the trap­
ezoid's bases. 

This helps establish a relationship between trap­
ezoids and rectangles, where the trapezoid is seen as a 
half of its associated rectangle (with same height and 
a base being the sum of both trapezoid's bases). 

Area of area of the associated rectangle 
½X (same height and base is the sum of = 

trapezoid 
the two bases of the trapezoid) 

+ 
Area of 

½X (Length of 
X height)trapezoid both bases 

Like trapezoids, there are no rectangles in the 
triangle's family either (see Figures 4 and 5). But, 
again, it is possible to establish a relationship between 
the right-angled triangle and its associated rectangle. 
which is once more the double of it obtained as well 
by rotation about the midpoint of the hypotenuse (see 
Figure 11 ). As well, this rotation or double of the 
triangle can lead triangles to be called "half rectan­
gles," a connotation that emphasizes the relationship 
between a triangle and its associated rectangle (see 
for example, Jamski 1978). 

Figure 11. Two Copies of a Right-Angled 
Triangle Forming a Rectangle 

............................ ------� ............................................ .. 
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·· 
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...... . 
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At the level of formulas, this offers a specific con­
ceptualization because the triangle is not defined
anymore in regard to its own formula [ 18:h> ] but
mainly in its relationship with its associated rectangle 
[½ of rectangle]. Subtle as it may seem, it provides 
the occasion to draw out a strong link between the 
rectangle and all other planar figures mentioned 
above. The triangle is therefore defined in relation to 
its relationship with its associated rectangle; that is, 
as being half of the area of a rectangle that has the 
same height and the same base. 

Area of 
triangle 

= 1/: X area of
2 

associated rectangle 

A�ea of' = ½ X (Length of X height)
triangle base 

The glimpse at some of the ideas presented above il­
lustrates how the approach developed for conceptualizing 
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more deeply the area of planar figures offers a differ­
ent view. 1t can transform one ·s view of the area of 
planar figures far away from a calculational view 
(Thompson et al 1994) and from a collection of dis­
connected formulas. In addition to attempting to 
strengthen the existing link between figures and their 
formulas, this approach grounded these links in geo­
metrical aspects, an approach different from a view 
focused on numbers and calculations for area. 

However, this conceptual work was still incom­
plete. The project intended to work on a more concrete 
phase, structured around the construction of physical 
devices that would support the approach aimed at 
delving into the concept of area of planar figures. 
Thus, a third phase was designed and consisted of 
building devices and materials that would embody 
and support the mathematical ideas and issues devel­
oped in phase 2 of the project. 1 present a number of 
the designed devices below. 

Phase 3: Building the 
Supporting Devices4

Device 1: Variations Keeping the 
Area Constant 

This device was designed to show, dynamically, that 
the area stays constant as one moves from left to right 
or right to left the upper base of the figure (for a quad­
rilateral) or the vertex (for a triangle). One important 
mathematical property that can be drawn out of this device 
is that for quadrilaterals, for example, any parallelo­
gram with equal bases and equal height is of the same 
area independently of how slanted it is (in relation to 
Figure 3). It can also help to show that this family of 
equivalent-area parallelograms can be related to the 
rectangle with same base and same height. For the 
triangle, it also can be related to a right-angled tri­
angle of the same base and same height (in relation 
to Figures 4 and 5). As well. the same could be rep­
resented for trapezoids in relation to Figures 6 and 9. 

Device 2: Variations Keeping the 
Perimeter, But Not the Area, Constant 

This device was built to contrast with Device 1. 
where the variation changes the area while keeping 
the perimeter constant. Albeit similar work can be 
done with geostrips, the decrease in area can be shown 
in relation to the black rectangle drawn on the back 
of the device offering something to compare the new 
area with. Thus. as one varies the angles, the area of 
the rectangle decreases in comparison with the black­
initial rectangle that had the same area as the white 
rectangle when all angles were at 90 degrees. 
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Device 1: Variations Keeping the Area Constant 

Device 2: Variations Keeping the Perimeter, But Not the Area, Constant 

Device 3: An Accumulation of Cross-sections 
Device 3 shows aspects of the Cavalieri principle 

in regard to cross-sections of equal length that can be 
taken from a figure (between a rectangle and a paral­
lelogram) in relation to Figures 1 and 2. The stripes 
or cross-sections can be tossed aside to create a paral­
lelogram (or another figure) that keeps the same area. 

Device 4: The Area of the Rhombus 
C alculated as the Area of a Parallelogram 

Device 4 illustrates how to overcome the difficulty 
of considering the rhombus as a parallelogram in 

regard to the data given to calculate its area (normally 
its diagonals). It shows that a rhombus, for which 
one does not know the length of its side and thus 
cannot compute its height using the parallelogram/ 
rectangle formula of base x height, can be reorgan­
ized to create a parallelogram for which the long 
diagonal is the base and half of the small diagonal 
is the height. This device intends to help link the 
rhombus with parallelograms and rectangles to con­
tinue contrasting with the need to opt for having a 
different and disconnected formula for the rhombus. 
See Figure 12. 

Figure 12. Reorganizing a Rhombus into Another Parallelogram, Using the Device Developed 

•, 
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Device 5: The Relation Between 
Trapezoids and Rectangles 

This device illustrates the idea of Figure IO in order 
to see, through doubling the figure, that twice a trap­
ezoid constitutes a rectangle ( or a parallelogram if 
the trapezoid is not a right-angled one). Hence, this 
uses the ratio of l :2 between the trapezoid and the 
rectangle that has the same height and a base consti­
tuted ;f the sum of the trapezoid's bases, supporting 
the idea that the area of a trapezoid can be calculated 
in relation to the rectangle (again setting aside the 
need for another specific formula for the trapezoid). 

Device 6: The Relation Between 
Triangles and Rectangles 

In the same vein as for the trapezoid, this de\'ice 
suppot1s the idea of the triangle as half of_lhe rectangle
with the same base and same height (Illustrated tn 
Figure 11 ). This device, however, embodies a very 
specific case, the one with a right-angled t�oscel_es
trianole leading to a square (one could think ot a 

0 
. . variation in the triangle used, leading to vanous rect-

angles and parallelograms that would be the double 
of area). 

Device 7: Variations on the Triangle 

This device was built in the same spirit as Device 2, 
but for triangles to contrast with Device I that keeps 

the area constant in the case of the triangle. Here, it 
shows a different sort of family of triangles: isosceles 
trianoles with the same equal sides and a third one 

0 
. . that varies. This leads us to ask probing questions; 

for example, which triangle in the family has the 
bigger area? (see Figure 13 inspired_ by A�ital and
Barbeau 1991 ). What happens to a tnangle in terms 
of area when only one side varies? 

Thus, those devices were built to support the ideas 
put forth in Phase 2 of the project. Specifically, t�ey 
were designed to draw out the geometric pro�ert1es 
in regard to area through a dynamic interplay _wtth �he
devices (changes, variations. constants, relat1onsh1ps 

Figure 13. Another Sort of Family of 
Triangles: The Isosceles Triangles 

Obtained Through a Variation of the 
Angle Joining Both Equal Sides 

Device 3: An Accumulation of Cross-Sections 

Device 4: The Area of the Rhombus Calculated as the Area of a Parallelogram 
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between figures, families and so on), and supporting 
the "delving deeper approach" to area of planar fig­
ures developed. 

Final Remarks 

The development reported on about area of planar 
figures, specifically using the Cavalieri principle, 
brings forth the interrelations between the usually 
studied planar figures at a geometrical level. It also 
links these figures through their formulas, instead of 
having numerous area formulas to make sense of or 
memorize. Whereas the study of the many different 
formulas tends to isolate figures from each other, this 
geometrical approach helps to reunite them and 
stimulate significant reasoning for the concept of area. 

This sort of work on delving deeper in mathemati­
cal concepts, where only the example of area of planar 
figures was offered, appears important to stimulate 
the development of rich mathematical reasoning that 
enables a deeper understanding of mathematical 
concepts. This said. continuous work must be con­
ducted along those lines as area of planar figures 
appear only as one of many topics in school mathe­
matics that can be delved into and from which richer 
mathematics can be brought forth. For example, 
similar work has been conducted in a project led by 

Elaine Simmt around systems of equations (for details 
on the work done and its outcomes, see Proulx et al 
2008) as well as a project I have led on the study of 
trigonometry (reported in Proulx 2003). 

In each of these projects, the outcomes led to 
questioning the study of mathematical topics and the 
orientation they received in the curriculum. As men­
tioned, it is not the people who teach or learn math­
ematics who are problematic, it is mathematics itself. 
Thus, how can school mathematics topics be enriched 
and dug into deeper to revitalize the teaching and 
learning of mathematics in schools7 Paying attention 
to the development of school mathematical concepts 
appears to be a fruitful line of inquiry in mathematics 
education in relation to the goal for continuing en­
hancement and revitalization of the teaching and 
learning of mathematics in classrooms. 

Mathematics needs mathematicians to continue to 
evolve as a field of study. Perhaps what schools need 
are not mathematicians but school mathematicians: 
people who probe into the mathematics of the cur­
riculum. Simply put, there is a lot of mathematics to 
delve into and develop within school mathematics. 
We need people to work intensely on these issues to 
enhance and revitalize the teaching and learning of 
mathematics in schools. This project has attempted 
to move toward that goal. 

Device 5: The Relation Between Trapezoids and Rectangles 

Device 6: The Relation Between Triangles and Rectangles 
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Device 7: Variations on the Triangle 

Notes 

1. A rapid Internet search concerning area formulas yields a
ho1Ti f ying list or numerous and different formulas for the area of 
rlanar figures, giving the impression that planar figures like rect­
angles. parallelograms. rhomhuses and squares are \'ery different 
figures requiring very di1Terc111 trcatmcnls concerning their area. 

2. In this case, it is possihle 10 transform the rhomhus with long
diagonal D and short diagonal cl in a parallelogram of hase D and 
ol height d/2; a parallelogram then associ.:ncd with a rectangle of 
hasc D and of height d/2. 

3. I say ·'used to seeing .. mostly hccause from looking al vari­
ous 1exthooks and wehsi1es. rarely docs one of them offer a pictun: 
different 1·rom the ones offered in Figure 7. II seems indeed that 
this type ol trapezoid is not a current form that is often studied. 

4. I ncc:d to acknowledge here the tn:mcndous work Linne
hy one ol my research assistants. Tc>m Hillman. in physically 
constructing these dC\·iccs. 

References 

Avita!. S. and E J Barbeau. 1991. ·•1n1ui1ively Misconceived 
Solutions 10 Problems." /-i,,- rhe Leurning ,,r Mmhe11wtics 
11, nu]: 2-8 

Brousseau, G. 1988. ··Fragilite de la connaissance ct fragilite du 
sarnir." Conft:rcncc c:ivcn at the CIRADE. January 2:2. 1988 
!VHS/color/2 casset;esj. Montreal. Que: UQAM/CIRADF..

Cavalieri. l:3. I 653. Ceomerria llllliri.,ibilih11.,· Co111i1111<1ru111 
Norn Quada111 R11rin11e Pmmotu. Bologna. Italy: Clemente 
Ferroni. ( A method ror the determination or a new geometry 
of continuous indivisibles.) 

Gray. J. 1987. U11i1 9: 1'/1,- Rnure rn rhe Culrn/11.,·. (MA 290: TC1pics 
in the History of Mathematics). Milton Keynes, Buckingham­
shire: Oren l'ni1-.:rsi!y. 

20 

Jamski, W D. 1978. "So Your Studcnts Know About Arca·/" The 
Arith111<'1ic Te{l(·her 26. no 4: 37. 

Proulx. J. 2003. "L'histuire de la 1rigC1nnmetric comme out ii de 
rcncxion didac1iquc." l:J11l/,,1i11 de /'Association 111a1l11i11w1iq11e 
du Quebec 43. no 3: 13-27. 

--. 2007. --L'airc des figures planes a la maniere de Claude 
Janvier:· Em·ol: Ren,e du group" des responsables e1111wth{-
111ariq111:s d11 Quiibl!C 141. 9-14. 

--. 2008 . .. Establishing families or Planar Figures Through
the Principle 01·ca,alicri." Onturio Murhematics Gu:elle 46, 
no 4: 25-30. 

Proulx. J. M Beisicgcl. H Miranda and E Sirnmt. 2009. "Rt:think­
ing the Teaching of Systems of Equations." M111hemarics 
Ji-uchcr 102. no 7: 526-33. 

Pwulx. J. and D Pimm. 2008. "Algebraic Formulas. Geometric 
Awarcm:ss and Cavalieri's Principle." fin the Learning of' 
Marh1'11101ic 28. no 2: 17-24. 

Skemp.RR. 1978 ... Relational Understanding and I nstrumental 
L:111.krswnding:· The Arithmetic Teacher 26. no 3: 9-15. 

Thompson. A G. R A Philipp. PW Thompson and B A Boyd. 
1994. --calculational ,mcl Conceptuol Orientations in Teach­
ing Mathcrnotics." In Pmfi·.uional Derelop111e11tji1r Ti:acher.1 
of Mathematics: NC1M /994 Yearbook. cd DB Aichele o.nd 
AF Cox ford, 79-92. Rcslon, VJ: !'-ational Council of Teach­
ers of Ma1hcma1ics. 

.Jerome Proulx is pn�fessor of didacTique des 
nwthematiques at The U11iversite du Quebec a 
Monrreal (UQAM, Montreal. Qc). His re.search 
interests are situated in mathemaTics Teacher 
education. particulurly co11cemi11g the mutlzematicul 
preparation of reachers at both pre- and inservice 
/(!l'e/. He teaches graduate and undergraduate 
courses 011 nwtlzenwtics teaching and learning. 

de!w-K. Volume 48, Number I, December 20 I 0 


	11 - 20 Research in and Development of School Mathematics



