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GUIDELINES FOR MANUSCRIPTS _______ _ 

delta-K is a professional journal for mathematics teachers in Alberta. It is published to 

• promote the professional development of mathematics educators, and
• stimulate thinking, explore new ideas and offer various viewpoints.

Submissions are requested that have a classroom as well as a scholarly focus. They may include

• personal explorations of significant classroom experiences;
• descriptions of innovative classroom and school practices;
• reviews or evaluations of instructional and curricular methods, programs or materials;
• discussions of trends, issues or policies;
• a specific focus on technology in the classroom; and
• a focus on the curriculum, professional and assessment standards of the NCTM.

Manuscript Guidelines 
1. All manuscripts should be typewritten, double-spaced and properly referenced.
2. Submit work electronically, preferably in Microsoft Word format.
3. Pictures or illustrations should be clearly labelled and placed where you want them to appear in the article.

A caption and photo credit should accompany each photograph.
4. If any student sample work is included, please provide a release letter from the student's parent allowing

publication in the journal.
5. Limit your manuscripts to no more than eight pages double-spaced.
6. A 250-350-word abstract should accompany your manuscript for inclusion on the Mathematics Council's

website.
7. Letters to the editor or reviews of curriculum materials are welcome.
8. delta-K is not refereed. Contributions are reviewed by the editor(s), who reserve the right to edit for

clarity and space. The editor shall have the final decision to publish any article. Send manuscripts to
A. Craig Loewen, Editor, 414 25 Street S, l..ethbridge, AB TU 3P3; fax (403) 329-2412, e-mail loewen@uleth.ca.

Submission Deadlines 

delta-K is published twice a year. Submissions must be received by August 31 for the fall issue and 
December 15 for the spring issue. 

MCATA Mission Statement 

Providing leadership to encourage the continuing enhancement 
of teaching, learning and understanding mathematics. 
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FROM YOUR COUNCIL 
----------------------

From the President's Pen 

The first thing I need to inform you of is that we are making delta-Ka refereed 
journal. delta-K has been, for many years, the academic publica6on of MCATA. 
It has maintained a high quality in both the articles published and its presentation 
and has garnered respect and praise from all comers. But there is always room to 
improve. With direction from editor Craig Loewen and the MCATA executive, we 
plan to take delta-K to a new level by incorporating a refereeing process for sub­
mitted articles. The details of this process will be worked out at our regular meet­
ings throughout the year. 

Also on the topic of change, I notice that the Western and Northern Canadian 
Protocol (WNCP) is beginning preliminary work on revisiting mathematics cur­
riculum for Grades K-12. This initiative will assess whether major revisions are 
needed at each level. At the secondary level, Grade 7 is due for implementation in 

September 2006, moving up one grade every year until Grade 12 implementation in September 2011. 
Mathematics education is certainly not a static topic. The applications change, the technology used to assist 

understanding changes, connections to other curricular areas improve and so on. In fact, over the years, math­
ematics education has seemed to be an evolving, adapting entity, almost a living and breathing organism. We 
as educators are a major force in this process. Tremendous work was done by teachers in the last curriculum 
revision to make mathematics more relevant and meaningful to Alberta students. We must be prepared to do 
so again over the next several years if we are to continue our commitment to provide the highest quality math­
ematics education in our schools. 

Finally, if you are looking for some interesting reading on mathematics curriculum, try the following: 
• What the Numbers Say: A Field Guide to Mastering Our Numerical World (Broadway Books, 2003),

a numeracy argument by Derrick Niederman and David Boyum
• To Infinity and Beyond (Princeton University Press, 1987), a study of the concept of infinity and undefined

values, by Eli Maor

Len Bonifacio 
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EDITORIAL ______________ _ 

This is my second issue as the new editor of delta-K, and I wanted to start by 
thanking several people who have provided such great assistance during the past 
year. In particular, I want to thank the Mathematics Council executive, who have 
shown continual interest and are always ready to provide support when needed. 
Also, thanks must be given to Karen Virag and her excellent staff for all they do to 
present the journal in such a professional format. 

Beginning with the next issue of delta-K, Gladys Sterenberg will be joining me 
as coeditor. Gladys has been a teacher in the Lethbridge area for a number of years 
and has served as an instructor and supervisor in the Faculty of Education at the 
University of Lethbridge, specializing in mathematics. Gladys completed her 
bachelor's and master's degrees at the University of Lethbridge and is currently 
engaged in her doctoral studies at the University of Alberta. I am delighted to have 

Gladys as part of this team and I look forward to her many contributions as both author and editor in the issues 
to come. 

It is with regret that I inform you of the passing of John Percevault, a former editor of delta-Kand someone 
familiar to many of our members. John served in the Faculty of Education at the University of Lethbridge for 
several years as the mathematics specialist and as a faculty administrator. John organized and led several ac­
tivities as a member of the Mathematics Council's South Regional and presented regularly at MCATA and 
NCTM conferences. He was highly committed to the reconceptualization of mathematics teaching and learn­
ing, and he showed a special interest in the improvement of problem-solving instruction. He was awarded the 
distinction of Mathematics Teacher of the Year in 1986. John Percevault will be remembered for his collab­
orative nature, his years of volunteer service with and leadership in the Mathematics Council, as well as his 
many contributions within the broader mathematics and educational communities in Alberta. 

This issue includes a wonderful range of articles with topics addressing instruction from the earliest grades 
through to university calculus. Inside, you will find many problems and teaching ideas and lots to keep your 
mathematical skills honed. Enjoy! 

A. Craig Loewen
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FEATURE ARTICLES ___________ _ 

Using Telescoping Terms to 
Derive Formulae for Sums of Powers 

of the First n Natural Numbers 

Darryl Smith 

The excellent article by A. Craig Loewen titled 
"Sums of Arithmetic Sequences: Several Problems and 
a Manipulative" in the June 2004 issue (Volume 41, 
Number 2) of delta-K reminded me of Riemann sums 
and the formulae that are so important in those 
problems. For example, to calculate the value of the 
integral 

2 M 

Ji x 2dx = lim If(x;)Ll\ 
n➔oo j=J 

the interval must be partitioned from x = 1 to x = 2 
into n subintervals, where the width of each subin­
terval, &; , is given by the expression 2 - I or .!..
Then, n n

4 

= lim L., /(1 + __:_)-n 
( 

• 1 
J 

n-ioo i=l n n 

= lim t((I +�)2 ..!_) 
n-ioo i=l n n 

= lim I.. (1 + _'._ + -

1 
)-

n 
( 

2" ·2 
1 

J 
n-!oo i=l n n 2 n 

= lim, -xt +-Xi +-xi2 "(1 2 1 Jn-ioo-tf n n
2 

n
3 

l. ( 
1 'f1 2 'f . 1 'f .2 

J = 
n� - L., +-2 .L} +-, L.,l

n ;=.1 n ;c,1 n ;c,1 

At this point, some of the formulae for sums of 
powers of the first n natural numbers are required, 
such as 

n 

2)=n' 
i=l 

"{-,
1
• = n(n + 1)

Lt and ,_, 2 
I,/ = n(n + 1)(2n + 1)

i=I 6 
Other such formulae will appear later in this article. 
At first, I would introduce the required formulas, 
verify them and prove them by mathematical induc­
tion. However, it always concerned me that I did not 
have an algebraic method of determining these for­
mulae in my bag of tricks. 

To complete the above integral, substitutions of 
the required formulae are made into the last statement 
to obtain 

= lim(.:!..xn +2x
n(n + 1) +_!_

x
n(n+ 1)(2n + 1))

n--1«> n n 1 2 n" 6 

( 
n+l 1 n+l 2n+l

) =lim 1+--+-x--x- -
,,__ n 6 n n 

2 =1+1+-
6 

7 
=-

3 

That is, the value of the definite integral J
2 

x2dx
7 I 

is exactly 3 . Of course, since x
2 > 0 for all values

x E [I, 2] , the value of the integral is also the area 
enclosed by the function y = x2 and the x-axis be­
tween x = I and x = 2 . 
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The result can be verified on the home screen of 
the TI-83 calculator using MATH9, which pastes in 
the numerical integration function fnlnt. The format 
of the argument for this function is fnlnt (function, 
independent variable, lower limit, upper limit). 

fnlnt(X2,X,1,2) 
2.333333333 

I 
When faced with evaluating an integral-defined 

function, such as /(x) = f t2

dt, simply use the format 
described above to define the function in a convenient 
location, such as Y1 , as shown below. In function 
mode, the only independent variable recognized by 
the TI-83 is x. That is, the t used in the defined 
function /(x) = f t1dt will be replaced by x.

�,�ti �1❖t2 �,�t3 

,Y1Elfnlnt(X2,X,1 
,X)I 
,Y:::= 
,Y3= 
,Y11= 
,Y�= 
,Yli= 

The graph of the function f(x) = f t1dt is graphed 
below using Zoom-6, which defines the viewing 
window [-10,10,1] by [-10,10,1]. 

/ 

Notice that the graph of f(x) = f/dt appears to have 
a zero at x = 1, which is con�istent with the value of 
the definite integral /(I)= J

1 
t1dt = 0. The values of 

these definite integrals are easily obtained using the 
table feature of the Tl-83, where the numbers in the 
column labelled y

1 
are the values of definite integrals that 

are members of the range of the function/(x) = f t1dt.

The domain for this function is x E R . It is left
1

to the 
reader to verify that, if x < I , then f (x) = f t2 dt < 0 

X Y1 
0 
2.3333 
B.li667
21
'11.333
71.61i7
11'1
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The focus of this article is not Riemann sums and 
integrals but, rather, an algebraic technique using the 
properties of summation and telescoping terms to 
directly derive fonnulae for the sums of powers of the 
first n natural numbers involved in Riemann sums. 

Consider the series consisting of n terms, each of 
which is 1, so that we have 1 + 1 + 1 + . .. + I. Be­
cause there are n-id.entical 1 s, the sum is obviously
n, so we can write I,1 = n. The same result could be 

i=I 

obtained by treating the above series as arithmetic 
with a common difference of d = 0. 

To derive a formula for the sum of the first power 
of the first n natural numbers, we have 1 + 2 + 3 + 
... + n. This series is arithmetic with d = 1, and ap­
plying the formula 

ll s. = 2 [2a + (n - J)d] gives the result
i:J = n(n+I) 

1=1 2 . 

For an alternative approach, consider the expres­
sion (i + 1)2 - i2· = 2i + 1. We can use the properties 
of summation to obtain 

� (1 + 1)2 
- 12 + (2 + 1)2 - 22 + 

(3 + 1)2 - 32 
+ ... + (n + 1)2 - n2 

n n 

= 2Z:,i+ :I,1 
r=l r=l 

Notice that, in the expansion of the left-hand 
side, all the terms cancel except (n + I )2 and -(1 )2; 
that is, the terms telescope, leaving just two terms. 
Because we have previously determined that f, l = n,
we obtain (n+l)2 -12 =2f,i+n. Solve for I,; to 
obtain i=1 ;-1 

as before. 
A calculator approach can also be taken. Using 

STAT mode on the TI-83, simply enter at least the 
first three terms of the natural number sequence 1, 2, 
3, ... in List!, and a matching number of terms for 
the sequence of partial sums 1, 3, 6, ... in List2, as 
shown. Because the quadratic regression involves the 
parameters a, b and c, at least three data points are 
required. 
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L1 L2 
1.(1000 i1:1Miiil 
2.0000 3:.0000 
3:.0000 6.0MO 
------ ------

L2(1)= 1 

QuadRe9 
'::1=ax2+bx+c 
a=.5 
b=.5 
c=0 
R2= 1 

L3: 2 

------

Performing a quadratic regression gives 
2 x(x+ 1) 

y=0.5x +0.5x+0= ---'--....:... 
2 

with R2 
= 1. Because it is a sequence, observe the 

condition that x E N 
Generally, to determine an expression for the sum 

of the first n terms of the kth power of the natural 
numbers, the following expression can be used: 

(. 1)k+I - ,k+\ - •k+I (k 1) 'k 
(k + 1)k •k-1 l+ l -l + + l + 21 1 

+ 
..

+ 1-l'•'.
The first and last terms on the right will cancel, so 
we have 

t((i+ l)M - z-1<•1 )= t((k+ 1)/ + (k;?c i"-1 + ... +I)•

In expanding the left-hand side of this expression, 
the terms will always telescope. Simply substitute 
previously determined expressions into the right-hand 

II 

side and solve for the expression I/. 
;:1 

To again illustrate the technique, we determine a 
n 

closed form for I, i2
• Beginning with the expression 

i=I 

(i + 1 )3 - i3 = 3i2 + 3i + 1, we obtain 

6 

<=> (1 + 1)3 -13 + (2 + 1)3 - 23 + (3 + 1)3 -33 + ...
n n n 

+(n + 1)3 -n3 =JI/+ 32.:i + I,1
i=l i=l i=l 

, 2 � .2 n(n + 1) <=> n +3n +3n = 3 L..,1 +3--- + n
i=l 2 

n 

<;:=> 2n3 + 6n2 + 6n = 6L/ + 3n2 + 3n + 2n 

n 

<;:=> 6:I/ = 2n3 + 3n 2 + n = n(2n2 + 3n + 1)
i=l 

<;:=> f ;2 =
n(n + 1)(2n + 1)

i=l 6 

To obtain the same result on the TI-83, a cubic regres­
sion using at least four data points is needed, where 
L2

1 
= 12, L2

2 
= l2 + 22 and so on. 

L1 U: L3 

1 1 ------

2 s 
3 11.t 
lt 3(1 
------ !¾¾iii! 

L2(S) = 

CubicRe9 
Y=ax3+bx2+cx+d 
a=.3333333333 
b=.5 
c= .1666666667 
d=-8.2E-12 
R2=1 

2 

The calculator gives the result y = 0.333333 ... x3 
+

0.5x2 
+ 0.1666666 ... x, with R2 = l. Since the

ffi. 
I l l . l coe c1ents are 
3 

, 
2 

and 
6 

respective y, we have 
J 3 ) 2 ) 

y=-x +-x +-x 
3 2 6 ' 

which can be expressed in the more familiar and 
convenient form 

x(x + 1)(2x + 1) NY = 
XE 

6 , 

Consider (i + 1)4 - i4 
= 4i3 + 6i2- + 4i. Using the 

properties of summation, we obtain 

I,((i+1)'-i4 )= I,(4i� +6i2 +4i+l) 
(=l i=l 

<=> (l +1)4 -1' +(2 +1)'-24 + (3 +l)'-34 + ... 
n n n n 

+(n+1)'-n' =4Li� +6Li1 +4Li+ LI 
i=I f::l l=l i:1 

( l)• 1• 4� .; 6 n(n + 1x2n + 1) <=> n+ - = �I + ----'-���+ 
i=l 6 

<=>n' +4n1 +6n2 +6n=4I,i3 +2n3 +3n2 + 
i=l 
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n 

� 4}:>3 
= n

2
(n

2 
+ 2n + 1) 

t=I 

Expressing the result in this form makes it easy to 
remember because it is simply the square of the result 
for the sum of the first n natural numbers. 

Regression can be used as before, where L2
1 
= 13, 

L2
2 

= 1 3 + 23 and so on. 

L1 L2 L3 
1 1 ------
2 9 
3 36 
Lt 100 

s: 22:S: 
------ ARR ii I 

l2(6) =

QuarticRe9 
':f=ax '1+bx3 + ... +e 
a==.25 
b==.5 
c=.2500000002 
d= -3.42E-10 

-.1.-e= l. 81 E -10 

2 

The R2 value is again 1, and the value of the coeffi­
cients d and e in y = a.x4 + bx3 + cx2 + dx + e is 0. 
Therefore, we have y = 0.25x4 + 0.5x3 + 0.25x2 or 

l ◄ l 3 2 
y=-x +-x +0.25x 

4 2 

=----
4 

= [ x(x2+1) J ,XE N. 

The expression for I i4 is a bit tedious, but it is 
i==I 

achieved using the same technique. We begin with 

I,((i+ 1/ - i
5 )= I,(5i4 + IOi3 + IOi2 + 5i +I) 

u-:1 i=l 

<=> (n+ Os - ,s =sf/+ 10:f/ + 10f/ + 5'I,i + f I 
i=l i=l i=l i;:: 1 i=l . 

As before, we substitute previously derived expres­
sions into the right-hand side and simplify the left­
hand side to obtain 
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5n4 +10n
3 +10n2 +5n+I 

=S'I/ +IO n
2 (n +l)

1 

+IO n(n +1)(2n +I) +
i:I 4 6 

5 n(n+l) ---'---'-+n
2 

Multiply through by 6 to clear fractions and isolate 
n 

the term containing I/ to obtain 
i=I 

n 

30I/ =6n5 +15n4 +10n3 -n
i=l 

=n(6n4 
+ 15n3 

+ 1 On2 -1) 
The right-hand side can be factored and then divided 
through by 30 for the final result of 

'I)4 

= 
n(n + l)(2n + 1)(3n

2 
+ 3n -1)

. 
�, 30 

Unfortunately, a quintic polynomial regression is 
beyond the capabilities of the calculator. 

Conclusion 

The properties of summation and telescoping terms 
have been used to derive the following: 

" 

L,l=n 
i::l 

'I)= n(n+1)
i::l 2

I/ = n(n + 1)(2n + 1)
i::l 6 

I/= [n(n + 1)] 2 

i::l 2 

I/ = n(n + 1)(2n + 1)(3n2 + 3n-1) . 
1::l 30 

The next time you teach Riemann sums in your 
calculus class and it comes time to derive formulae 
for sums of powers of natural numbers, I encourage 
you to consider the direct approach using telescoping 
terms. The technique is rich in algebraic opportunity, 
such as expanding powers of binomials and exploring 
the properties of sigma notation and limits. When I 
carefully and thoroughly worked through the first 
derivations with the class, the students were capable 
of doing the last ones by themselves, provided that I 
gave them a hint as to the required form. More im­
portantly, students always seem impressed by their 

7 



ability to use what turns out to be rather straightfor­
ward algebraic tools to determine some rather impres­
sive identities. Also, a word from the voice of expe­
rience: even though the overhead projector was my 
favourite mode of presentation in class, I always did 
this lesson on a 20-foot whiteboard. It made it easier 
to f ollow the derivations, look back and record the 
list of formulae as we went. The calculator regressions 
are interesting and are best done concurrently with 
the algebraic derivation, but they are insufficient by 
themselves. Try obtaining these regressions using 
Excel, a program capable of doing up to degree 6 
polynomial regressions. The result given by Excel 

for I/ is shown below. In spite of the given value
i=I 

R2 = 1, the result holds only to approximately the fourth 
term when compared to exact values determined from 

I/ = 
n

2
(n + 1)

2
(2n 2 + 2n -1)

. 
�1 12 

n 
1 
2 

.. 3· 
4 
5 

·s
7 

35000 

3o�b
1

25000 

20000 

15000 

1000) 

5000 

0 
0 

"; ........ ·P..��i�r .��r:ri ... �!5.ing .. �.e.r.�tiqin,.r.e..96.·§�tirn····
. . 32 .. . i

f . .. 
:i3 ifo026iim:2'. 

243. . 276 
·- .. - ---· . - 276 .. 2i6 oii2:f

f

1;-
1024 1300 1300: . iDi:145563' 
3125 ···•· 4425· 44251 4425 542505 

;;;;7 .. ; . ::�� .. ···• 1��f ·��;::�!:. 

2 4 6 8 

Darryl Smith is in his third year of retirement after 34 years with the Edmonton Catholic 
School District, 30 of which were spent at Austin O'Brien High School. His one regret 
is that technology use did not arrive in the mathematics classroom until the last third 
of his career. During the past two years, he has had the privilege of working with 
many excellent teachers from the Edmonton Catholic School District in workshop 
settings and relishes these opportunities to implement calculator technology into 
mathematics education. 
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A New Approach to Partial Fractions 

David E. Dobbs 

Algebra courses give instruction for adding or 
subtracting two rational functions, or ratios of poly­
nomials. One way to do this is to find a common 
denominator, rewrite each rational function using 
this common denominator, add or subtract the nu­
merators and simplify the result. In integral calculus, 
it is often necessary to reverse this process; that is, 
to rewrite a given rational function as a sum of sev­
eral simpler rational functions, or partial fractions 
(see, for instance, Stewart 2001, 40�7). It is possible 
to describe and justify a method for carrying out 
this rewriting at the level of a typical precalculus 
course (see, for instance, Dobbs and Peterson 1993, 
197-204). Because this method is designed to be
generally applicable, it tends to be rather time-con­
suming. Moreover, this method consists of several
steps, requires the user to introduce a considerable
amount of notation (variables that must be solved for
in systems of equations) and often taxes students'
memories and patience. Although some shortcuts
are known, they can fail to lead to a complete solu­
tion, such as when the denominator of the given ra­
tional function in lowest terms has a multiple root.
One currently fashionable way to address this situa­
tion is to use computer algebra systems (CAS) to find
partial-fraction decompositions. This article will in­
troduce a new paper-and-pencil algorithm for obtain­
ing partial-fraction decompositions. The next two sec­
tions will introduce this new approach as an iterative
method based on a few easy-to-remember strategies.

Like other paper-and-pencil algorithms for obtain­
ing partial-fraction decompositions, this method is 
quickest when applied to decomposing rational 
functions whose denominators are expressed as prod­
ucts of linear factors. This new method has the fol­
lowing advantages. When used on complex calculus 
problems and differential equations, technology is 
not required to combat impatience. The new method 
does not require the user to introduce any notation. 
Data whose denominators have multiple roots do not 
pose any additional difficulty. Like traditional ap­
proaches to partial-fraction decomposition, the new 
method can reinforce several topics in the typical 
precalculus course, including arithmetic operations 
on rational functions and factorization of quadratic 
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polynomials. In addition, the new method can reinforce 
the binomial theorem and, if covered, mathematical 
induction. Moreover, its treatment of irreducible 
quadratic factors can reinforce arithmetic with com­
plex numbers. 

The New Method When 
Denominators Have Only 
Linear Factors 

The task is to decompose a rational function that 
is in lowest terms. In this section, we consider the 
case where the denominator of the given rational 
function has only linear factors. Notice that a linear 
factor ax+b can be rewritten as a(x-c), where 

c =_I!_. Thus, there is no harm in assuming that the 
a 

linear factors of the denominator are of the form x-d

for various constants d.

One paradigm will be enough to point the way. 
Our experience in algebra courses with the addition 
and subtraction of rational functions tells us that 

A B (A+B)x-(Ab+Ba) --+-- = -------.
x-a x-b (x-a)(x-b) 

Therefore, to rewrite 
I----as 

(x-a)(x-h) 

A B 
--+-­

x-a x-b' 

(A+B)x-(Ab+Ba) must equal I. In particular, the co­
efficient of x must be 1; that is, A+ B = o or, equiva­
lently, B =-A. Although this analysis has the flavour 
of the traditional method for partial-fraction decom­
position, all that needs to be remembered from the 
analysis thus far is that, if a'#- b, then 

I 

(x-a)(x-b) 

can be rewritten as 
A A 

x-a x-b

9 



for the constant A , which can be determined using 
the rules for the addition and subtraction of rational 
functions. For instance, to decompose 

l 
(x-2)(x+3) ' use 

A A 

x-2 x+3

where A(x+3)-A(x-2)= 1; that is, 5A = 1, or A= 2..
The upshot is the partial-fraction decomposition 5 

1 1/5 1/5 
-----

(x-2)(x+3) x-2 x+3

The above method is memorable, and can be sum­
marized with the following general formula: If a t:- b,
then 

1 _11(-b+a) 11(-b+a). (1.1) 
(x-a)(x-b) x-a x-b

Let us next consider the case that the given rational 
function has a constant numerator and denominator 
with more than two linear factors. If the denominator 
does not have a multiple root (that is, if the denomi­
nator does not have a repeated linear factor), the 
above reasoning only has to be repeated several times. 
More precisely, to decompose a rational function of 
the form 

I 
(x-a)g(x) 

decompose the simpler rational function -1- , mul­
g(x) 

l 
tiply the resulting sum of partial fractions by x -a , 
expand by using the distributive property and then 
decompose each of the resulting simpler rational 
functions. The success of the method depends on 
reducing the problem to a set of simpler rational 
functions at each step. The rigorous mathematical 
explanation is that the method uses mathematical 
induction on the number of linear factors in the de­
nominator. However, most students are fully con­
vinced (and should be) by the following kind of 
example. 

To obtain the partial-fraction decomposition of 
1 

(x- 2)(x+ l)(x-4) 
reason as follows. First, as in the general formula 
from the first decomposition problem, we have 

l -1/5 1/5 ----==--+--·(x+l)(x-4) x+l x-4

Next, multiplying through by -
1
-, we find that

x-2 
I I -1/ S 1/ S 

(x-2)(x+l)(x-4) x-2 ( x+I + x-4)

=-!..(---) +.!_( l ).5 (x-2)(x+l) 5 (x-2)(x-4) 
Finally, by again using the earlier general formula 
and combining like terms, we obtain 

_.!_(_!_Q_-�
)+

.!.(-1 /2 + �)5 x-2 x+I 5 x-2 x-4 

-1/6 1/15 1/10
= --+--+--

x-2 x+l x-4·

To handle nonconstant numerators, we only need 
to rewrite each occurrence of x in the numerator as 
(x-a) +a, where x-a is a factor of the denominator, 
and then to rewrite each occurrence of xn in the nu­
merator by using the binomial theorem to expand 
((x-a)+a)". In effect, we are rewriting the numera­
tor, which is a polynomial in the variable x , as a 
polynomial in the variable x - a . (This part of the 

method is an excellent preparation activity for calcu­
lus, in which students could learn, more generally, to 
approximate an n-times differentiable function by its 

nth Taylor polynomial centred at a.) Once again, the 

following sufficiently complicated example can be given 
to convince a class that the method works in general. 

Let's use the above strategy to find the partial­
fraction decomposition of 

3x2 -7x+S 
(x-2)(x + l)(x-4) 

The numerator is rewritten as 

3((x -2) + 2)2 -7((x -2) + 2) + 5 = 
3((x-2)2 +4(x-2) +4)-7(x-2)-9 =
3(x-2)2 +5(x-2)+3 . 

Thus, by again using what is known about addition 
and subtraction of rational functions and then cancel-
1 ing common factors of corresponding numerators 
and denominators, we find that 

3x2 -7x+5 3(x-2)2 +5(x-2)+3
(x-2)(x+ l)(x-4) (x-2)(x+ l)(x -4) 

3(x-2) 
(x+l)(x-4) 

5 3 +----+-----­
(x+l)(x-4) (x-2)(x+I)(x-4) · 

We have already seen how to decompose each of the 
last two terms on the right-hand side as sums of par­
tial fractions. The remaining term, 

3(x-2) 
(x+l)(x-4)' 
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is simpler than the original problem and can now be 
written as a sum of partial fractions by another ap­
plication of the above method, as follows: 

3(x-2) 3x-6 3((x + 1)-1)-6 
(x+l)(x-4) (x+l)(x-4) (x+l)(x-4) 

3(x+l)-9 3 9
=---- =--- ----

(x+l)(x-4) x-4 (x+l)(x-4)

How should we proceed if the denominator of the 
given rational function has a multiple root; that is, if 
it has a repeated linear factor? It is enough to indicate 
how to handle rational functions of the form 

l 
(x-a)"g(x)' 

where x - a is not a factor of g(x) (that is, where a is 
not a root of g(x)), because nonconstant numerators 
can be handled as above using the "x = (x -a)+ a" 
trick. To do so, factor x - a out of the denominator 
so that the problem is presented as 

_l_
( 

l )· 
x-a (x-ar-1g(x)

Notice that the second factor, 
1 

(x-a)"-1g(x)'
represents a simpler problem (inasmuch as its de­
nominator has a degree that is less than the degree of 
the original denominator). By mathematical induction 
on this degree (in practice, by repeatedly factoring 
linear factors out of the denominator), we can reduce 
the rational function to a sum of simpler rational 
functions that are, ultimately, already in partial-frac­
tion form or amenable to being rewritten with the 
help of the general formula from earlier. The follow­
ing example can be given to illustrate the method. 

Let's indicate how to use the above strategy to 
produce the partial-fraction decomposition of 

1 

(x-2)2(x+ 4)3 (x-l)

Note that the given denominator has degree 6. Factor 
one of the linear factors out of the denominator, such 
as x-2, so that the problem becomes rewriting 

_l_(_l_),
x-2 g(x) 

I 
where g(x) = (x-2)(x +4) 3(x+ 1) . Lurking within g(x)
is sure to be a simpler problem, which is either already 
in partial-fraction form or amenable to being treated 
by the general formula from earlier. By the general 
formula, 

1 1/3 I/3 
----=-----· 

(x-2)(x+I) x-2 x+l
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Therefore, in multiplying by __ l _, we have 
(x + 4)3 

l 1/3 1/3 

g(x) = (x-2)(x+4)3 (x+l)(x+4)3 ' 

and so the given rational function has been rewritten as 
l _ 1/3 1/3 

(x-2)g(x) - (x-2)2(x+4)3 
(x+l)(x-2)(x+4)3 

• 

Notice that both of the terms on the right-hand side 
have degree 5, and are thus simpler than the original 
data. By iterating the process once more, we come to a 
sum of terms, each having denominators with degree 4 
at most. Further iterations lead to the desired partial­
fraction decomposition. For reasons of space, the 
details of these calculations will be left to the reader. 

When Denominators Have 

Irreducible Quadratric Factors 

In this section, we will look at a new way of find­
ing the partial-fraction decomposition of a rational 
function in lowest terms whose denominator has at 
least one irreducible quadratic factor. We begin with 
a notational simplification, just like at the beginning 
of the oreceding section. Any quadratic oolynomial 
a.x2 +bx+ c can be rewritten as a(x2 + dx + e), where

b C d = - and e = -. Thus, we can assume that the ir-
a a 

reducible auadratic factors of the denominator are of 
the form x2 +bx+ c for various constants b and c. 

It would appear at first that, in order to continue 
using the method introduced in the preceding section, 
more than one formula analogous to the general for­
mula may need to be developed. This approach is 
rather similar to the classical method of introducing 
several variables and solving systems oflinear equa­
tions. For this reason, this section's problem is best 
handled by reducing it to that of the preceding section. 
This can be done, provided that you are prepared to 
use complex numbers as coefficients of various rel­
evant polynomials. If g(x) = x2 +bx+ c is an irreduc­
ible factor of the denominator, recall that g(x) can 
be factored as (x-1j)(x-r2), where r1 and r2 are the
roots of g(x). (If necessary, r, and r

2 
can be found

by using the quadratic formula.) Thus, if the de­
nominator is given as having been factored over the 
real numbers (as is usual in the classical method for 
partial-fraction decomposition), we can write that 
denominator as a product of linear factors, possibly 
with complex number coefficients. We can then pro­
ceed to find a partial-fraction decomposition exactly 
as in the preceding section. 

The price to be paid in using this method is that 
you must be willing to do a considerable amount of 
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arithmetic with complex numbers. Moreover, it is 
easy to lose heart during the process as to whether 
the final result will simplify and have only real-num­
ber coefficients. Be assured that this will always work 
out, in view of the general theorem guaranteeing 
partial-fraction decompositions over any field (see, 
for instance, Dobbs and Hanks 1992, 31-33). While 
keeping track of the various factors that arise, remem­
ber that the nonreal complex roots of any real poly­
nomial g(x) arise as pairs of complex numbers that 
have the same multiplicity as roots of g(x) (see, for 
instance, Dobbs and Hanks 1992, 54). 

Be warned that this method of handling irreducible 
quadratic factors can be time-consuming. However, 
as promised, it requires only the method of the pre­
ceding section coupled with the above formula for 
factoring quadratic polynomials and the ability to 
perform the arithmetic operations on complex num­
bers. We close with an example that illustrates the 
new method outlined in this section. 

Use the above method to find the partial-fraction 
decomposition of 

x2 -7x-9

(x2 +4)(x-3) 
Using the "x=(x-a)+a" trick, we can rewrite the 
numerator as 
((x -3)+ 3)2 - 7((x-3) +3)-9 = (x -3)2 -(x-3)-21. 
Therefore, by distributivity and cancelling, 

x2 -7x-9

(x
2 +4)(x-3) 

The first and second terms on the right-hand side are 
already in partial-fraction form. So, all we have left 
to do is find the partial-fraction decomposition of 

I 

(x
2 +4)(x-3) 

.� . 

Because the roots of x2 + 4 are ±2i. the denomina­
tor can be factored as (x + 2i)(x-2i)(x-3) . Next, by 
using the method of the preceding section and arith­
metic with complex numbers, we find 

1 1 
(x + 2i)(x -2i)(x -3) 

(ix 1 I , I (ix I 
) 

1 
4 2i+3 

-
3-2i� - 4 2i+3 x+2i +

(ix I ) I 1/13 (2+3i
) 

l (-2+3i
) 

I 

4 3 -2i X -2i = X -3 52 X + 2i 
+ 

52 X - 2i . 
Then, by adding the terms that involve nonreal num­
bers (the same way that any rational functions are 
added), the final form of the decomposition is 

I 1/13 -(2
+31\x-2z)+(-2+31)(x+21)

---- =-+ 52 ) 52 = 
(x2 + 4)(x-3) x -3 (x+ 2i)(x-2i) 

l 3--x--
_Ll_+ 13 13
X-3 X

2 +4
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A Related-Rates Problem 

Ronald L. Persky 

You try to avoid it, but occasionally it happens. 
That is, you construct a test problem so that the stu­
dents can use a particular principle demonstrated in 
class. Then, a student, having no idea how to solve 
the problem, puts numbers together by happenstance 
and produces the correct answer. Consider the fol­
lowing problem: 

Two roads are perpendicular. Car A is 6 miles from 
the intersection and is heading toward it at 39 miles 
per hour. Car B is 8 miles from the intersection 
and is heading toward it at 52 miles per hour. At this 
instant, how fast is the distance between them 
changing? 

One student wrote, ✓392 +522

, which is 65 and 
happens to be correct. 

This is a related-rates problem, and the standard 
procedure is to write x

2 + y1 = z 2 and take the de­
rivative with respect to time, that is, dx dy dz 

2x-+2y-= 2z-dt dt dt ·
After solving for dz and substituting values, we can 

dt 
easily obtain the answer. 

What made the student's answer work is that 
52 8 

39 
=

6 
or, in general,

¾ =�· y 
t 

(I) 

The intent of this article is to show that, in this prob­
lem, the equation below is true given equation (1): 

(�;J +(t J = (�; )
2 

(2) 

First we establish two companion ratios. Starting 
with dx dy dz x-+y-=z-,

dt dt dt 
divide by dy y 

dt 
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to produce ¾ ¾z 

X z-
+l- dt 

y - dy-
t y dt· 

From equation (I), we can write 

and use this in place of 1 above. This gives 

x¾dt + Y¾dt = z
¾dt 

dy dy dy 
y dt X dt ydt. 

Combine the left side, 

or 

dt dt _ dt x2 
dx + y2¾X 

z
¾

z 

dy- dy 
xydt ydt 

2
¾x ¾z

z - z-
dt _ dt 

dy - dy 
xy dt y dt , 

which easily gives the first ratio 

¾!__ 
x-

. 

Again start with 
dx dy dz

x-+y-=z-
dt dt dt 

Divide by 
dx 

x-

dt 

(3) 
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to produce ¾¾z 
y z-

1+ dx 
= dt 

X dx t dt ·

From equation (I), we can also write 

l= x�/x 
/y� 

and use this in place of 1 above to get 

,t�/t�= z1�

ly1t /x1 /x� ·
Combine the left side, 

or 

( 2 2¾Y ¾z 
X +y - z-dt _ dt 

dx - dx 
xy- x-dt dt 

which gives the second ratio 

½ .:.= 

Now to establish equation (2). Start again with 

dx dy dz 
x-+y-=z-dt dt dt 

using equation ( 1 ), 

[
dd* Y IJ dx dy dz
I� dt + y dt = z dt '

multiply by d� 
dt 

y , 

From equation ( 4 ), 

(!: J +(! J =(�;J_ 

Ronald L. Persky is a member of the math department at Christopher Newport University, a small 
university in Southeastern Virginia. 

(4) 
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Programming and Problem Solving with 
the Tl-83 Plus: The Structured Search 

A. Craig Loewen

Problem solving has always been one of the most 
difficult areas of the mathematics curriculum to teach 
well. Despite 25 years of research devoted to improv­
ing problem-solving skills, many students still 
struggle with how to start a problem and how to be 
flexible (that is, switching from an ineffective strat­
egy to a new one). Our students do not seem to have 
a wide range of problem-solving strategies at their 
disposal and instead focus on such strategies as guess­
and-test when no algorithm seems immediately avail­
able. Guess-and-test seems to have become even more 
popular in an age when calculators and computers 
aid in making quick, accurate computations. 

Now, don't get me wrong. I'm not speaking against 
guess-and-test as a strategy. It is a legitimate, recog­
nized and viable strategy, but in some ways it seems 
a bit inelegant and it is often inefficient. 

There are, of course, many different problem-solv­
ing strategies, and we know that more sophisticated 
solvers combine these strategies. For example, the 
elimination strategy works well only if you are able 
to generate an effective and comprehensive list, and 
drawing a picture usually helps identify an appropri­
ate formula. In general, all problem-solving strategies 
become more powerful when they are blended with 
other strategies. Add to that the power of the mini­
computer. When we can harness the ability of the 
hand-held computer to quickly make repetitive com­
putations, we may further enhance several of these 
strategies. The computer can be used to quickly gen­
erate lists, check conditions in the problem and 
complete exhaustive searches. All this can be done 
much more quickly than we can do on our own. In 
general, with a few simple programming skills (which 
are easily mastered by a high school student), we can 
blend these strategies and tools to create something 
we could call a structured search.

The Structured Search 

In a structured search, we would set up a loop that 
effectively generates a list of possible values that can 
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then be tested against the conditions of the problem. 
The TI-83 Plus gives us at least two efficient ways to 
create this kind of loop. This simple program uses 
the "for"-loop and writes the values 1-5 on the cal­
culator screen: 

PROGRAM:ABA 
:1➔A 
:While A<6 
:OisP A 
:A+l➔A 
:End 
:■ 

This following program, which uses a "while"-loop, 
does the same thing: 

PROGRAM:ABA 
:For(A,1,5) 
:OisP A 
:End 
:■ 

Although the differences between the two types of 
loops are quite small, the "for"-loop is a little more 
elegant and much easier to enter. The "for"-loop also 
forces a fixed number of repetitions of the commands 
within the loop, whereas the second type of loop is 
more flexible, continuing indefinitely until a condition 
is met. 

To complete the structured search, we also need 
to know how to enter simple logical checks, which 
are called "if'-statments. Let's modify our "for"-loop 
program above to do the following: 

• Consider all the values from 1 through 19, using
the command For(A, l ,  19)

• Print on the screen all of the values of A that are
divisible by 3, using the command If A/3 =
int(N3):Disp A
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Here is the program: 

I 

3 
6 
9 

12 
15 
18 

Done 

Here is the screen display when the program is run: 

PROGRAM:ABA 
:For(A,1,20) 
:If A/3=int.(A/3) 
:Ois.P A 
:End 
:■ 

Knowledge of the other mathematical functions avail­
able on the Tl-83 Plus, together with these simple 
commands (and a little exploration), will provide 
us with another means of tackling a variety of 
problems. 

Cryptarithms 
A common type of problem appearing in many 

magazines and newspapers (and even on the Internet) 
is cryptarithms. A cryptarithm is an arithmetic state­
ment where the digits have been replaced by letters. 
Here is a classic cryptarithm: 

ABCD 
L._1 
CDBA 

In this problem, each of the letters A through D needs 
to be replaced by a single digit to create a four-digit 
number that, when multiplied by 4, produces the same 
four digits in reverse order. Note that both As must 
be the same digit, which is true for all four letters. 

It is a lot of fun to solve this problem by hand, but 
it is fun to solve it with a structured search, too. We 
need to set up four loops ( one for each variable, A, 
B, C and D), use them to build the number ABCD, 
multiply that value by 4 and see what happens. 

• Is it possible that there are no solutions to this
problem? Is it possible there is more than one
solution?

• How would you approach this problem if you were
solving it without programming? What is a reason­
able strategy?

• How long would you estimate it would take to
solve this problem by hand?

16 

Here is a structured search that could solve this problem: 

PROGRAM:ABCD 
:For(A,1,9) 
:For(B,0,9) 
:For(C,0,9) 
:For(D,1�9) 
:1000*A+l00*B+10 
*C+D➔E
: 1000ll<D+H'.10*C+10
*B+A�F
:If E>t<4=F:DisP E 

: End 
: End 

: End 
: End 
:■ 

• Why do the A and D loops run from 1 to 9, while
the B and C loops run from Oto 9?

• Could this program generate any extraneous solu-
tions? How could you tell?

• How many solutions does the program generate?
• How many values will this program consider in all?
• What does the line A x 1000 + B x 100 + C x 10

+ D ➔ Edo?
• What are the values that are stored in the variables

E and F?
• Why are there four "end"-statements at the bottom

of the program?
• Adapt the program above to solve this similar

problem: ABCD x 9 = DCBA.

Notice how long the calculator takes to run through
the entire list of possible solutions. An obvious dis­
advantage of the structured search is the time required 
to execute it (although it is still much quicker than 
doing it by hand). A significant advantage is that the 
search has considered all possibilities, something we 
would never be willing to do by hand. 

But wait a minute! Does the program have the 
computer test possibilities that are not reasonable? In 
other words, is there a way to further limit the num­
ber of possibilities considered and thus speed up the 
program? We already limited A to the values I 
through 9 because O cannot appear as the lead digit. 
However, consider that A must be either 1 or 2. If A 
is 3 or greater, a digit will be carried into the 10,000s 
place when A is multiplied by 4-and the product 
must not involve more than four place values. This 
one change significantly delimits the number of pos­
sibilities we need to consider. We can change the line 
For(A, 1, 9) to read For(A, 1, 2). 

• How many possibilities does this one change
eliminate?

• Are there other leners that could be further limited?
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Strangely, with this process, we are slowly moving 
toward greater emphasis on another strategy: apply­
ing logical reasoning. Again, we see how strategies 
become more powerful when blended. If we con­
tinue with this process, we may find that logical 
reasoning leads us through to another, even more 
elegant solution to the problem. This is the joy of 
problem solving-identifying a number of ways to 
attack a problem and implementing a broad range of 
skills and strategies, moving gracefully between and 
among them as the solution is built. 

Another important idea emerges as we play with 
this problem. A critical problem-solving skill is being 
able to identify when a strategy is not appropriate or 
does not apply. Unless we can significantly limit the 
number of checks the program needs to make, it could 
become a very tedious process. For example, when 
a problem requires five or more variables, it would 
probably be better to turn to a more powerful com­
puter to engage the search or turn to a different strat­
egy altogether. 

Another Example 

Let's look at another example of a cryptarithm to 
explore how we can modify our program to check for 
solutions: 

AB 
+ BA 
CDC 

The first thing we notice is that there are still four 
variables, but neither A, B nor C can equal zero. We 
will need to modify our "for"-loops. Obviously, we 
also need to modify our "if'-statements. 

• What would the new "if'-statements look like? 
How many would we need? 

• How many possible solutions could this search gen­
erate? How would we check for extraneous solutions? 

One possible program looks like this: 

PROGRAM:ABBA 
For(A,1,9) 
For(B,1,9) 
For(C,1,9) 
For(D,0�9) 
11*A+11*B➔E 
101*C+10*D➔F 
If E;;::F:DisP A*1 

000+B*100+C*10+0 

:End 
:End 
:End 
:End 
:1 
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When run, the program generates several possible 
solutions, but be sure to check for ineligible ones; 
that is, solutions where two letters are assigned the 
same digit. 

Here, another important quality of the problem­
solving process is reinforced. Looking back is critical, 
although it is often overlooked. It is tempting to think 
that, because the program generated all of these re­
sults, they are all viable. This is not the case. Looking 
back helps confirm which possible solutions are real 
solutions. It is at the looking-back stage that we are 
most likely to catch our mistakes (computational or 
logical) and thus learn from our experience. 

Challenges 

• How many solutions are there to the equation ABC 
+ CBA=DDD? 

• Program your TI-83 Plus to solve the following 
equation: ABCDE x 4 = EDCBA. Estimate how 
long you think the calculator will require to gener­
ate its results. Use what you know from the ABCD 
x 4 = DCBA problem. Can you think of ways to 
limit the search? 

• Try to build a routine in your program to eliminate 
ineligible answers 

• Try to generate your own substitution problems 
that can be solved through a structured search. 

A Money Problem 

Consider another familiar problem that can be ef-
fectively solved using a structured search: 

Uri has 48 coins in his pocket, all nickels and pennies. 
Altogether, he has exactly $1.72 in change. How 
many nickels and how many pennies does he have? 

We could set up a system of linear equations to solve this 
problem, but it is also fun to write a simple program as 
an alternative solution. The program looks like this: 

PROGRAM:CENTS 
:For(N,.0,34) 
:48-N➔P 
:If 5*N+P;;::172:Di 
SP N,P 
:End 
=• 

• How are the dimensions of the N-loop (nickels) 
determined? 

• Why does this program require only one loop? 
• How many possible solutions are there? 
• Describe the connection between the system of 

linear equations related to this problem and the 
program above. 
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• Assume that Uri also has some dimes. Is there a
solution to this problem? How many solutions are
there to this problem? Construct a structured search
to solve this revised problem.

• Write a money problem of your own that could be
solved using a structured search.

Some Challenging Problems 
There are many different problems that can be solved 

using a variation of the structured search. Here are two 
somewhat more challenging problems with related 
programs. You may wish to try solving the problems 
yourself with or without your calculator, or you may 
find it interesting to work your way through the pro­
gram, trying to determine the effect of each line. 
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Find the smallest number that, in each case, pro­
duces a remainder that is one less than the divisor 
when divided by each of the values 2 through 10. 

PROGRRM:Rz 
ClrHoPle 
11+N 
0➔C
While C=0 
1➔C 
ForCR,2,10) 
N-int(N/A)*A+T
If T;cA-1:Then
0➔C:10➔A:N+l+N 
OutPut(l,1,N) 
End 
End 
End 
DisP N 
I 

A perfect number is defined as a number that equals 
the sum of all its factors. For example, the first 
perfect number is 6 because its factors I, 2 and 3 have 
a sum of 6. What are the next two perfect numbers? 

PROGRAM:PERFECT 
2➔C 
ClrHoMe 
For(A,2,500) 
Out.Put( 1, 1, A) 
0➔T 
ForCB,1,..fCA)) 
If fi/B-int...(A/8) 
T+B+A/8"7T 
End 
It" .f(A)=int(.J"(A 

)):T-..f(A)➔T 
:If T-A=A:Then:O 
utput(C,1,A):C+l 
➔C:End
:End 
=• 

The topic of perfect numbers has captivated many 
mathematicians over the centuries. It is worth reading 
about these numbers and finding other algorithms that 
have been defined for identifying them more easily. 

Cryptarithms and Alphametics 
Included below is a collection of cryptarithms and 

alphametics. An alphametic is a special type of cryp­
tarithm in which the letters used to replace the digits 
in an equation also form comprehensible words. 
Sometimes the words themselves form phrases. Here 
is a familiar alphametic: 

SEND 
+MORE
MONEY

It is not practical to solve the above alphametic 
with a hand-held computer because it involves eight 
different letters and thus eight different loops. How 
many different possibilities would the calculator have 
to consider in order to solve this problem? 

The following p uzzles were taken from 
www.freepuzzles.com. 

How many solutions are there for each of the 
following? 
AB +B=BA 
C+C+C=DC 
WAS x S =ASAW 
Ax C xAC=CCC 

Here are two slightly more challenging puzzles 
taken from the same website. Each of these problems 
could also be solved with a structured search. 

A 2 + B2 + c2 = 02 + E2 
In the equation above, the letters represent con­
secutive positive integers. Find the corresponding 
value for each letter. 

(30 + 25)2 = 3,025 
Break the number 3,025 into two parts, 30 and 25. 
The square of (30 + 25) equals 3,025, as shown. 
Two more numbers share the same property. Can 
you find them? 

The following website has a huge number of cryptarithrns 
and alphametics, as well as an aid to solve the puzzles: 
www.tkcs-collins.com/truman/alphamet/alphamet.shtml. 

TO+GO=OUT 
I+ DID =TOO 

Conclusion 
Doing problems and puzzles like these is a fun and 

motivating activity that can be easily implemented 
into the mathematics classroom. The structured search 
provides another problem-solving tool for effec­
tively approaching these problems. 

delta-K, Volume 42, Number 1, December 2004 



Uncovering a Test for 
Divisibility by a Prime: 

A Journey of Mathematical Discovery 

Murray L. uiuber 

One of the joys of being a mathematics teacher is 
the excitement of being a student. Teaching concepts 
and solving problems with students provides many 
opportunities to see new relationships between con­
cepts and to discover patterns that we have never 
noticed before. 

This article has grown out of discoveries that I 
made over a fairly extended period of time teaching 
an introductory-level university course entitled 
Higher Arithmetic. Most of the students were in the 
humanities, and many planned to be elementary 
school teachers. My discoveries grew out of a par­
ticular topic-divisibility-but illustrate the discov­
ery process that mathematics teachers engage in on 
a regular basis. The topic of divisibility was a part of 
a section of the course on number theory. In the text­
book first employed, the authors presented or sug­
gested ways of developing rules for divisibility by 
2, 3, 4, 5, 6, 8 and 9, along with mathematical justi­
fication for some of these rules (Meserve 1981, 64--07). 
These rules and their justifications led me to wonder 
whether there was a general algorithm for divisibil­
ity by a prime. I could have searched for written 
sources to find the answer but was drawn by the ap­
peal of discovering the rules for myself. Of course, 
I was far from alone in this kind of experience; the 
need to discover and the compulsion to generalize 
are at the heart of the study of mathematics. 

There was another way in which I was far from 
alone. Although it is not often apparent, the process 
of mathematical discovery is typically somewhat 
convoluted. Characteristically, the textbook solution 
of a challenging mathematical problem misrepresents 
the process by editing out the convolution. The result 
is a tidied-up version of the solution in which sequen­
tial logic and efficient communication trump accurate 
representation of the process. The need to tidy up a 
solution is understandable but we should make our 
students aware that the process leading to a textbook 
solution is not always so tidy. The reader will benefit 
by knowing that, in favour of efficient communication, 
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much of the convolution has been edited out of the 
following description of my journey of discovery. 

Some Basic Rules for Divisibility 

The following rules, along with the proof of the 
last one, illustrate how the process of discovery began. 

A counting number n is divisible by 

• 2 if and only if its last digit is divisible by 2;
• 3 if and only if the sum of the digits is divisible by 3;
• 4 if and only if the number represented by its last

two digits is divisible by 4;
• 5 if and only if its last digit is 5 or a O;
• 6 if and only of it is even and the sum of the digits

is divisible by 3 (that is, it is divisible by both 2
and 3);

• 8 if and only if the number represented by its last
three digits is divisible by 8;

• 9 if and only if the sum of the digits is divisible by 9.

The rule for divisibility by 7 is more complex and
is often left out of such a list. The formulation of that 
rule was the beginning of my process of discovery. 
That rule and its proof will be given later. Because 
the rule for divisibility by 9 was instrumental in sug­
gesting the structure of other rules and their proofs, 
it seems natural to begin with a proof of that rule. I 
have labelled it rule 1. 

Rule 1: A counting number n is divisible by 9 if and 
only if the sum of its digits is divisible by 9. 

The following proof for a four-digit number is de­
pendent on the closure, commutative and associative 
properties of addition of counting numbers along 
with the distributive property of multiplication over 
addition. 

Let n = d
3
dAd

0 
where d

3
, d

2
, d

1 
and d

0 
are its digits. 

Then n = 1,000d
3 

+ 100d
2 
+ IOd, + ld

0 

* n = (999 + l)d
3 
+ (99 + l)d

2 
+ (9 + l)d

1 
+ ld

0 

* n = (999d
3 
+ 99d

2 
+ 9d

,
) + (d

3 
+ d

2 
+ d

1 
+ d

0
) [I] 

19 



1) To prove the if part of the theorem, we need to
show that, if the sum of digits of n is divisible by
9 then n is also divisible by 9.
If the sum of n's digits is divisible by 9, then
d

3 
+ d

2 
+ d

1 
+ d

0 
= 9k for some k E N = {I, 2, 3, ... }

⇒ n = (999d3 + 99d
2 

+ 9d1) + 9k from equation [I]
⇒ n = 9(11 ld

3 
+ l ld

2 
+ d, + k)

⇒ n is a multiple of 9, that is n is divisible by 9.

2) To prove the only if part of the theorem, we need
to show that if n is divisible by 9 then the sum of
its digits is also divisible by 9. Suppose that n is a
multiple of 9, say n = 9) for some j E N. Then,
from equation [I],
9) = (999d

3 
+ 99d

2 
+ 9d,) + (d

3 
+ d

2 
+ d

1 
+ d

0
) 

⇒ 9) = 9(1 l ld
3 

+ l ld
2 

+ ld
1
) + (d

3 
+ d

2 
+ d, + d

0
) 

⇒ d
3 

+ d
2 

+ d
1 

+ d
0
= 9(1 l ld

3 
+ l ld

2 
+ ld 1) - 9)

⇒ d
3 

+ d
2 

+ d, + d
0
= 9(1 lld

3 
+ l ld

2 
+ ld

1 
-j)

⇒ the sum of the digits of n is a multiple of 9.

Once this and the other rules had been proven,
some persistent exploration that made use of my 
knowledge of modular arithmetic (a topic that will 
be explored shortly) led to the following rule for 
divisibility by 7: 

Rule 2: A counting number n = d.d..A.
2 

• • •  d
2
d

1
d

0 
is 

di visible by 7 if and only if the following linear com­
bination of its digits is divisible by 7: 

ld0 + 3d1 + 2d2 +(-Id)+ (-3d4) + (-2d5) + .. .
ld

6 
+ 3d

1 
+ 2d

8 
+ (-ld

9
) + (-3d

l0
) + (-2d

ll
) + .. . 

Note that the linear combination of digits begins with 
the last digit and that the coefficients of the linear 
combination repeat every six digits (the means by 
which these coefficients were determined will be 
described later). 

Example: Determine whether n = 88 ,580,723 is 
di visible by 7. 

Solution: According to Rule 2, n will be divisible 
by 7 if and only if 
ld

0 
+ 3d

1 
+ 2d

2 
+ (-ld

3
) + (-3d

4
) + (-2d

5
) = ld

6 
+ 3 d

1 

is divisible by 7, that is, if 
(1 X 3) + (3 X 2) + (2 X 7) + (-} X 0) + (-3 X 8) + 
(-2 x 5) + (1 x 8) + (3 x 8) = 2 1  is divisible by 7. 
According to the rule, because 2 1  is divisible by 7, 
88,580,723 is also divisible by 7. The reader may 
use a calculator to verify the above result, but one 
of the advantages of Rule 2 is that it can be applied 
to numbers too large to input into your calculator. 

The proof for Rule 2 drew on my knowledge of 
modular arithmetic. What follows is a brief overview 
of the concepts of modular arithmetic that are needed 
to discover and prove rules of divisibility. 
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Modular Arithmetic: A Tool for 
Exploring Divisibility Rules 

Two integers, m and n, are said to be congruent 
mod k (Rosen 2003 ,  161-63) where k is a particular 
counting number is they differ by a multiple of k, that 
is m-n =)k wherej E Z = { ... , -2 , -1, 0 ,  1, 2, ... }. 
If this is the case, we write m == n(mod k). For ex­
ample, 7 and 12 are congruent mod 5 because 12 - 7 
= I x 5, a multiple of 5. Perhaps a more intuitive 
way of looking at this example is to say that 7 and 12 
both have the same remainder, 2 ,  when divided by 5. 
(7 = I x 5 + 2 and 12 = 2 x 5 + 2). To extend the 
example, -3 is congruent to both 7 and 12 mod 5 
because it also has a remainder of 2 when divided by 5 
(-3 = -1 x 5 + 2). In fact, modular arithmetic is often 
conceptualized as the arithmetic of remainders. 

Using this idea, we can generate an infinite family 
of integers of which all members are congruent to 
2 mod 5. That family is the set ( ... , -8, -3 , 2, 7, 12, ... } . 
It is easy to see that each of the numbers in this fam­
ily will y ield a remainder of 2 when divided by 5. We 
will say that each of these numbers and a mod 5 
equivalent of 2. 

Congruence mod 5 partitions the integers into five 
families of integers that are called equivalence classes: 

[0] = { .... -10, -5, 0, 5, 10, ... } 
(]] = { ... , -9, -4, 1, 6, 11, ... } 
(2] = { ... , -8 , -3 , 2 ,  7, 12, ... } 
[3] = { ... , -7, -2 . 3 ,  8, 13, ... }
[4] = { ... , -6, -1. 4, 9, 14, ... }

The term equivalence class is used because congruence 
mod k satisfies the three properties of an equivalence 
relation (Roman 1989, 141-48). More will be said about 
this shortly. [0] is referred to as the equivalence class 
associated with 0 .  Numbers in it are congruent to 
0 mod 5. Numbers in [ l]. the equivalence class asso­
ciated with 1, are each congruent to 1 mod 5; and so on. 
Note that the numbers in [0], that is, the numbers con­
gruent to 0 mod 5, are all multiples of 5. In this analy­
sis, k = 5, but analogous results can be obtained for any 
value of k. For example, k = 12 results in the "clock 
arithmetic," where 12 equivalence classes correspond­
ing to the hours on a clock face, a analogy that is some­
times taught in the elementary school cuniculum. 

Exploration of the rule for divisibility by 7 will 
make use of congruence mod 7. In mod 7 arithmetic, 
the equivalence classes are 

[0] = [ ... , -14, -7, o. 7, 14, ... }
[ l] = { ... , -13, -6, 1, 8, 15, ... }

[ 6] = [ ... , -15, -8. -1, 6, 13 , ... }
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In mod k arithmetic, we often choose the non­
negative numbers 0, 1, 2, ... , (k-1) to be the repre­
sentatives of the classes [O], [I], [2], ...  , [k - I]. 
However, in developing rules for divisibility by a 
prime, these are not generally the most appropriate 
representatives. For example, in the test for divisibil­
ity by 7, the formulation of the rule is simpler if we 
use the numbers -3, -2, -1, 0, 1, 2, 3 as representatives 
of the classes. As well, as we shall see, the formula­
tion of the rule for divisibility by 11 is far simpler if 
we use -1 rather than 10 as the representatives of the 
class [10) == { ..• , -23, -12, -1, 10, 21, 32, ... }. 

In devising the rule for divisibility by a prime p
we wiJI use mod p arithmetic with equivalence 
classes [OJ, [ 1], [2], ... , [p - 1]. We will see that, in 
general, the formulation of the rule for divisibility by a 
prime pis simplest if we use the integers between_ 1/2 p
and 1/2 p as the representatives of the classes rather 
than the non-negative integers 0, 1, 2, ... , (p - 1). 

Once useful property of modular arithmetic is that 
the result will be the same no matter if the remainders 
from addition or multiplication are determined before or 
after the operation. To put it more fonnally, the mod k
equivalent of the result of a calculation involving two or 
more counting numbers is the same if the mod k equiv­
alent of each of the counting numbers is used in the 
calculation. For example, consider the product 28 x 6: 

28 X 6 = 168 = 33 X 5 + 3 
⇒28 x 6 = 3(mod 5)

Now find the mod 5 equivalents before multiplying: 
28 = 5 x 5 + 3 ⇒ 28 ⇒ 3(mod 5), and 
6 = 1 x 5 + 1 ⇒ 6 = l (mod 5) 
Then 3 x 1 = 3 = 3(mod 5), the same as the result 
above. 
This example illustrates one of the properties of 

modular arithmetic. The following theorems describe 
the properties of congruence mod k that are useful in 
exploring and proving rules for divisibility. 

Theorem 1: Suppose that a, b and c integers are that 
k is a particular counting number. Then the congru­
ence mod k is: 
a) reflexive: a = a(mod k)
b) symmetric: a= b(mod k) ⇒ b = a(mod k)
c) transitive: a = b(mod k) and b = c(mod k) ⇒

a= c(mod k);

A relation that is reflexive, symmetric and transitive 
is called an equivalence relation. Congruence mod k
is a equivalent relation. 
Proof of c ): Suppose that a = b(mod k) and b = c(mod k)

Then a - b = ik and b - c = jk for some i, j E Z 
⇒ a - c = (i + j)k, i + j E Z
⇒ a= c(mod k)
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Theorem I c) says that if a and b differ by a multiple 
of k, and b and c differ by a multiple of k, then a and 
c wiJI differ by a multiple of k. Or, to put it another 
way, a, b and c will each yield the same remainder 
when divided by k.

Theorem 2: Suppose m, n E Z with m = rm(mod k)
and n = r (mod k), r and r E Z with O $ r < k and 

n m n m 

0 $ r < k*. Then 
a) [m + n] = [r

m 
+ r

0
](mod k), and

b) [m x n] = [r x r ](mod k)
m n 

Theorem 2 a) says that in computing a sum of two
integers, the modular arithmetic can be done either 
before or after finding the sum; the result will be the 
same. Theorem 2 b) says the same thing about prod­
ucts. Theorem 2 a) can be extended to a sum with any 
number of items. Similarly, theorem 2 b) can be ex­
tended to a product with any number of factors, in­
cluding a power, as in the corollary below. Taken 
together, theorems 2 a) and b) imply that in a calcula­
tion involving any combination of sums and products 
of integers, such as a polynomial, the modular arith­
metic may be done either before or after doing the 
calculation. That is, the remainders may be found 
either before or after doing the calculations (see 
theorem 3 below). These results are important in an 
exploring and proving rules for divisibility. The proof 
of 2 a) is straightforward and is left to the reader. 
Proof of 2 b): m = r (mod k) and n = r (mod k) ⇒ m
= q k + r and n = q

mk + r, q , q E Z.
0

Then,
m m n n m n 

m x n = (q k + r ) (q k + r) = q q k2 + q r k +
m m n n m n  m n  

qnrmk + r
'"
r" 

= (qmq/ + qmr" + qn
r

m
)k + rmr

n 

= rmr
0
(mod k)

⇒ m X n = rmrn(mod k)

The symbols qm and q
0 
are appropriate because they 

represent quotients, Equally appropriate are rm and 
r

0
, which represent remainders. 

Corollary to theorem 2 b): a = b(mod k), ⇒ a" =
c"(mod k) where n is any counting number 
Proof: a = b (mod k) ⇒ a x a = b x b(mod k)

⇒ a2 
= b2(mod k)

⇒ a2 x a= b2 x b(mod k)
⇒ a3 

= b3(mod k)
⇒ a3 x a = b3 x b(mod k)
⇒ a4 

= b4(mod k) 

Theorems 2 a) and b) and the above corollary lead 
to a more general theorem that has already been al­
luded to: 
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Theorem 3: Let p(x) be a polynomial with integer 
coefficients and k be a counting number. Then, 
for integers a and b, a = b(mod k) => p(a) =
p(b)(mod k).

Theorem 3 says that in evaluating a polynomial 
mod kit does not matter which member of an equiv­
alence class is used; the result will be the same for 
all members of the class. The theorem is proved 
formally in many texts (including Stark 1984, 61-65). 
The proof formalizes the following argument: the 
integers a and b are members of the same equivalence 
class and thus have the same remainder, r, when di­
vided by k. In evaluating p(a) and p(b), xis replaced 
by a and b, respectively, in p(x). Each evaluation 
consists of calculating sums and products. Thus, ac­
cording to theorem 2, the remainders for each of p(a) 
and p(b) may be found either before or after calculat­
ing the sums and products. If the remainder r is found 
first, the result of the evaluation in both cases is p(r). 
Thus, both p(a) and p(b) will be congruent to p(r) 
and therefore congruent to each other. 

Developing and Proving 
New Divisibility Rules 

With these concepts from modular arithmetic, it is 
possible to prove the Rule 2 concerning divisibility 
by 7. The following is a proof for a 12-digit number 
n. It can easily be extended to numbers with more
digits.

Let n = d
1 1d10

d
9 • . •  

di 1
d

0 

� n = (d
1 1 x 10 11) + (d

10 
x 1010) + (d

9 
x 109) +

(d
8 

X 108) + (d
7 

X 107) + (d
6 

X 106) + (d
5 

X 105) +

(d
4 

X 104) + (d
3 

X 103) + (d
2 

X 102) + (d, X 10 1) +

(d
0
x 10°) [2] 

Now 10° =I= l (mod 7), 
10 1 = 10 = 3(mod 7) since 10 = I x 7 + 3, 
102 = 100 = 2(mod 7) since 100 = 14 x 7 + 2, 
103 = 1,000 = 6 = -l(mod 7) since 1,000 = 

143 X 7 + (-1), 
104 

= 10,000 = -3(mod 7) since 10,000 =

1,429 X 7 + (-3), 
105 

= 100,000 = -2(mod 7) since 100,000 = 
14,286 X 7 + (-2), 

106 
= 1,000,000 = l (mod 7) since 1,000,000 =

142,858 X 7 + 1, 
107 =10,000,000 = 3(mod 7) since 10,000,000 = 

1,000,000 x 10 = 3 x I (mod 7) 
[Theorem 2 b)] 

It should be clear that this list repeats beginning 
at 106

• Because n consists of sums of products in 
equation [2], we can apply theorem 2 to find the 
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mod 7 equivalent of n by replacing the powers of 10 
by their mod 7 equivalents. This will obtain 

=> n = ((d
1 1 x -2) + (d

10 x -3) + (d
9 

x -1) + (d
8
x 2) +

(d
7
x 3) + (d

6
x 1) + (d

5
x -2) + (d

4
x -3) + (d

3
x -1) 

+ (d
2
x 2) + (d

1 
x 3) + (d

0
x l)](mod7)**

=> n = [( ld0 +3d
1 
+ 2d2 + (-ld3) + (-3d4) + (-2d5) +

ld6+ 3d
7 
+ 2d8 + (- ld9) + (-3d10) + (-2d

11
)](mod7) [3]

It is clear that n will be divisible by 7 if and only 
if n = 0(mod 7). Because n has a mod 7 equivalent 
that is equal to the linear combination of the digits in 
equation [3], it will be divisible by 7 if and only if 
that linear combination is divisible by 7. 

This concludes the proof of rule 2 for a 12-digit 
number. This proof could be extended to a number 
with any length of digits. It should be clear why the 
mod 7 equivalents of the powers of 10 were chosen 
to be between -3 and 3 inclusive rather than between 
0 and 6 inclusive. 

Having discovered the rule for divisibility by 7, 
I was prepared to move on to other rules. But, as 
I reflected on the process the following facts struck 
me as having more than passing significance: 
• 10° 

= l (mod 7)
• 103 = 1,000 = -1 (mod 7)
• 106 = 1,000,000-= ](mod 7)
• 109 = 1,000,000,000=-l(mod 7)

When I recognized that 1,000,000 = 1,0002
, 

1,000,000,000 = 1,0003 and so on, it occurred to 
me that a rule with a simpler formulation could 
be constructed if n were first written in base 1,000. 
For example, consider again n = 88,580,723. 
Then 

n = 88 X } ,0002 + 580 X } ,000 1 + 723 X J ,000° 

⇒ n = [88 x I + 580 x -1 + 723 x 1 ](mod 7) 
⇒ n = [-23l](mod 7) = [-33 x 7 + 0](mod 7) =
O(mod 7)
Thus n is divisible by 7.

The above observations and example lead to another 
formulation of the rule for divisibility by 7. 

Rule 2a: A number n is divisible by 7 if and only if, 
when it is expressed in base 1,000, the alternating 
sum of its digits beginning with the last digit is divis­
ible by 7. Note that alternating sum is used here to 
mean that the signs of the digits are alternated be­
tween positive and negative. In base 1,000 a digit is 
typically a 3-digit base 10 number.*** 

The next step was to develop a rule for divisibil­
ity by 11. The exploration process was analogous to 
that used in developing the rule for divisibility by 7. 
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First, the mod 11 equivalents of the powers of 10 were 
found using theorem 1: 

10° =1 = ](mod 11), 
101 =10 = - l(mod 11) since 10 = Ix 11 + (-1), 
102 

= [(-1)2](mod 11) :::l(mod 11), 
103 =1,OOO=[(-l )3](mod 11) = - l(mod 11), 
104 =1O,OO0=::[(-1)4](mod 11) =::l (mod 11), 
105 =10,OOO=::[(-1)5)(mod 11) = - l (mod 11) 

It is clear that the mod 11 equivalents of the powers 
of 10 alternate in the pattern 1, -1, 1, -1, ... provid­
ing that -I is used as the representative of the class 
{ ... , -23, -12, -1, 10, 21, ... }. 

The exploration described above leads to a simple 
rule for testing divisibility by 11: 
Rule 3: A counting number n is divisible by 11 if and 
only if the alternating sum of its digits is divisible by 11. 

As alluded to earlier, the simplicity of rule 3 is 
dependent on using -1 as the representative of the 
class { ... , -23, -12, -1, 10, 21, ... }. Because the 
above explanation of the development of the rule also 
contains the basic elements of its proof, no formal 
proof is included here. The following is an example 
of its application. 

Determine whether n = 576,213,489,573 is divis­
ible by 1 I. 

Solution: 3 - 7 + 5 - 9 + 8 - 4 + 3 - I + 2 - 6 + 7 - 5 
= -4 = 7 (mod 11). According to rule 3, n is not divis­
ible by 1 I. 

The techniques used in exploring rules for divis­
ibility by 7 and 11 can be applied toward finding a 
rule for divisibility by 13, 17 or any prime. Much of 
that exploration is left for the reader. The next section 
deals, rather, with a theorem that describes a general 
algorithm for determining divisibility by any prime p.

A General Algorithm for 
Testing Divisibility by a Prime 
Theorem 4: Suppose that n = d,d,.A.

2 
• • • dAd

0 
is a 

counting number and p a  prime with n > p. Then n is 
divisible by p if and only if m = c

1
d

1 
+ c,.A. 1 + c,.A.

2 

+ ... + cA + ci
0 

is divisible by p where each 
0 $i$t, ci :::W(mod p) and -l/2p < ci < l/2p. 
Proof: It will be sufficient to prove than n = m(mod p) 

n = (d,x 10') + (d,_
1
x 101

•
1) + ... + (dix lQi) + ... +

(d
1
x l 0 1 ) + (d

0
x 10°) 

Note than c. :::IO i(mod p) ⇒ 10; = c.(mod p)' 
[The�rem l.b] 

⇒ dx IOi 
= d.xc(mod p) [Theorem 2.b] 

⇒ (d,x c
1
') + 

1

(d1_'1 x c/' 1) + ... + (d
1
x c/) + . . .  +

(d1x c/) + (d
0
x c1°) = (c,d, + c,.A.1 + c,_i,_2 + ... + 

c
1
d1 + c0d0)(modp) [Theorem 2.a] 

⇒ n = m(modp) 
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As a final exercise in this exploration, apply theo­
rem 4 to find a rule for divisibility by 13. In develop­
ing the rule, use W = c

1

i(mod p) to find the mod 13 
equivalents of the powers of 10. 

10° =I= l(mod 13), 
101 = 10 = -3(mod 13), 
102 

= (-3)2(mod 13) = 9(mod 13) = -4,mod 13) 
103 

= [(-3)2x(-3)](mod 13) = [ (-4) x (-3)](mod 13) 
= 12(mod 13) = - l(mod 13) , 

104 == [(-3)3x(-3)](mod 13) = [(-1) x (-3)](mod 13) 
= 3(mod 13), 

105 
= [(-3)4 x (-3)](mod 13) = [ (3) x (-3)](mod 13) 
= -9(mod 13) = 4(mod 13) ,

111 = [(-3)5(-3)](mod 13) = [(4) x (-3)](mod 13) 
= -12(mod 13) = l(mod 13) , 

Now, suppose n = d,d,.A.
2 

• • •  d1A0
d

9
d

8
d

7
d

6
dl4

d
3 

dAdo 
* n = (d,x 10') + (d

1
_
1
x 101• 1) + (d1

_ x 10'·2) + ... +
(d

11
x 10 11) + (d1 0x 1010) + (d

9
x 10g) + (d

8
x 108) +

(d7x 107) + (d
6
x 106) + (d

5
x 105) + (d

4
x 104) +

(d
3
x 103) + (d2

x 102) + (d
1
x 101) + (d0

x 10°) 
Then, using the above mod 13 equivalents for the 
powers of 10, the following is obtained: 
Rule 3: A counting number n is divisible by 13 if and 
only if m is divisible by 13 where 

m = [ld0 = (-3d) + (-4d) + (-ld3) + 3d4 + 4d
5 

+ 
ld6 + (-3d7) + (-4dg) + (- ld9) + 3dl0 + 4 dll+ ... ] 
Example: Determine whether n = 889,594,829,357 
is divisible by 13. 
Solution: n will be divisible by 13 if and only if m
is divisible by 13 where 
m =} X 7 + (-3 X 5) + (-4 X 3) + (-1 X 9) + 3 X 2 
+4x 8+1 x4+(-3x 9)+ (-4x 5)+(=1 x9)+
3 x 8 + 4 x 8 = 13 = O(mod 13)
m = O(modp) ⇒m is divisible by 13

⇒ n is divisible by 13

Conclusion 
The process of exploration described in this article 

began with some textbook rules for divisibility by 2, 
3, 4, 5, 6, 8 and 9. Those rules lead to a search for 
rules for divisibility by other numbers like 7 and 11. 
The focus was on primes because it seemed that once 
the rules for divisibility by primes was uncovered, 
divisibility by a composite number could be tested 
using a combination of the rules for divisibility by 
primes. Uncovering the rules for divisibility by 7 and 
11 was expedited by calling on the concepts of 
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modular arithmetic. These concepts enabled the cul­
minatio� of the exploration process, namely the 
fori:nul�t.10n of a general algorithm for determining
d1v1s1b1hty by a prime. 

This process of exploration was particularly satis­
fying for a number of reasons: 
I. There was the prospect of exploring many rules

(because there are many primes that might be of
interest) with the possibility of observing some
general patterns.

2. The process naturally used the concepts of modular
arithmetic and demonstrated a property that the con­
ceptc; have in common with most mathematical con­
cepts-their ability to expand our native brainpower.

3. The process satisfied a compulsion that has char­
acterized most mathematical exploration over the
past couple of centuries-the need to generalize.
It lead to the determination of a general algorithm
for testing divisibility by a prime.

4. The. culmination in a general algorithm gave a
feeling of completion to the process. Later, the
thought hit me in an Archimedes moment that the
algorithm could be made perfectly general. After
the formulation and proof of the algorithm, it oc­
curred to me that the properties of modular arith­
metic that I had applied to the primes were
equally applicable to composites. Therefore, the
algorithm can be extended to composites and thus
to all counting numbers. This even more general
algorithm could be used to verify the rules for divis­
ibility by 4, 6, 8 and 9, and to explore the patterns
m the rules for divisibility by other composites.
This process of uncovering the rules for divisibil-

ity by a prime is illustrative of the many opportunities 
for mathematical exploration that teachers encounter. 
By taking advantage of these opportunities, we can 
sensitize our students to these opportunities and help 
them become more acquainted with the nature of 
mathematical discovery. 

Notes 

* The symbols rm and rn are used because they
are t�e .remainders when m and n, respectively,
are d1v1ded by k. According to the division al­
gorithm for counting numbers, the remainder r,
when a counting number n (the dividend) is
divided by another counting number d (the divi­
sor), can be made to be a non-negative number
Jess than d. In our case, the divisor is k so the
remainder can be made to be less than k. The
division algorithm can be extended to the inte­
gers Z.

** Alternatively, one could observe that n = p(l0),
wh�re p(x) = d

1
/ 1 

+ d
1
_�10 

+ d�9 
+ ... + d�2 

+

d
1
x + d�, a polynomial. By theorem 3, since

10 = 3(mod 7), p(I0) = p(3)(mod 7). The mod 7
equivalent of n could be evaluated by using p(3)
instead of p(I0). The reader can check that
30 = l (mod 7), 31 = 3(mod 7), 32 = 2(mod 7),
33 = - l(mod 7), 34 = -3(mod 7), 35 = -2(mod 7)
and so on. The result would be the same.

*** In a codified base 1,000 system we would need
1,000 different symbols to represent the numbers
0, I, 2, . .. , 999. In such a theoretical system
each digit would be represented by just one
symbol.

Bibliography 

Meserve, 8. E., and M.A. Sobel. 1981. Contemporary Mathematics. 

3rd ed. Englewood Cliffs, N.J.: Prentice-Hall. 

Stark, H. M. 1984. An Introduction to Number Theory. Boston: 
MIT Press. 

Roman, S. 1989. An Introduction to Discrete Mathematics. 2nd ed. 
Orlando, Fl.: Harcourt Brace. 

Rosen, K. H. 2003. Discrete Mathematics and Its Applications. 
5th ed. Boston: McGraw Hill. 

Murray L. Lauber is an associate professor in the Augustana Faculty of the University 
of Alberta. He has taught a variety of courses, including precalculus, calculus, linear 
algebra, 1,screte mathematics and higher arirhmetic at the university level and 
ma�hemat1cs and physics at the high-school level. He has published a number of 
�rt1cles and has presented at workshops and conferences. He believes that mathematics 
1s a potent tool for expanding the intellectual capacities of all students. 

24 delta-K, Volume 42, Number 1, December 2004 



A Little on the Lighter Side!-and Beyond? 

Werner Liedtke 

Over the years, I have concluded some of my 
courses' final examinations by asking the students to 
write, for two marks, a couplet, rhyme or pun about 
mathematics teaching and learning. The option of 
printing "The End" is also presented, but many stu­
dents take the opportunity to write something. I am 
always amazed at their creativity. When the request 
has not been part of the exam, students have asked, 
"What, no poem?" or have written one anyway. 

I would like to share a few submissions to illustrate 
what creative activities can result in, and if some of 
these result in a smile, then they were worthwhile. 

Some students will object to being asked to write 
something but will do so in verse form, just to make 
sure. Here are three examples: 

You son of a gun, 
Thinking I'll write you a pun 
About arithmetic fun. 
Sorry-I've got to run! 

Wish I could 
Wish I might 
Pass this test 
And do all right. 
Now it's over. 
Now it's true. 
'Cept this poem 
I can't do. 

As I don't have enough time 
To make a couplet in rhyme, 
I just thought I'd let you know 
That I'm about ready to crow 
And giving a test like this is a crime! 

No doubt, many of the pieces that have appeared 
over the years are good enough to be put into print. At 
least one student anticipated this when she wrote: 

I like to teach the numbers, 
I like to teach the signs, 
But I find that in arithmetic 
Not many words do rhymes. 
And let me just remind you, 
If you put this in a book, 
I want a cut of the profit, 
Or I'll label you a crook! 
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There are students who anticipate the request and 
prepare something ahead of time. This was the case 
for K. Enders, a distance-education student from 
Calgary in a course on diagnosis and intervention. 
She enclosed the following last April: 

Number Sense 

When I was a child, you see, 
Numbers made no sense to me. 
It takes a teacher, you see, 
to develop NUMERACY. 

SUBITIZE !-think fast!-just try? 
How many did I see? (Big sigh) 
I could not count as they flashed by. 
My brain is fried. Oh my, Oh My! 

VISUALIZE, now my surprise! 
Saw "50" in my mind-three guys! 
Count fingers thrice, but toes just twice, 
Teacher, am I getting wise?? 

FLEXIBLE, what does it mean? 
To bend, to snap? Oh I'm so keen! 
Different numbers make thirteen??? 
Such combinations I've not seen! 

RELATE to other numbers?-NO! 
My thinking is so awful slow. 
Sixty-six is big I know! 
But numbers bigger? Smaller?-OH ! 

CONNECTING still remains a pain. 
It's so hard to engage my brain. 
My teachers frowned with great disdain 
Relate my math life?-insane 1 ! 

I ESTIMATE at sixty-nine, 
I'll be doing math just fine, 
As in my rocker I decline 
And hear, "Well done-now, please resign!" 

When I was in your class, you see, 
NUMBER SENSE took shape-s-1-o-w-l-y. 
Math intervention worked for me. 
Thank you-
"Was blind, but now I see!!!!" 
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I still smile when I think about the student who 
wrote: 

Instead of studying math, 
I decided to have me a bath. 
The result was-I failed the test, 
But of everyone there, I smelled the best! 

Then, there are comments that come straight from 
the affective domain: 

I think adding 
Is very saddening. 
I think subtraction 
Is not worth the attraction. 
I think multiplication 
Is too hard to rhyme with! 

Thank God this test is over 
I think I am going to die. 
I did not know the answers 
And I couldn't even lie. 

The following is part of a poem made up by 
K. Koopmans, who was a student in a University of
Victoria program in Cran brook, British Columbia. It
was written for a unit for her Grade 2 students:

This is the tale of two young knights, 
So noble and so fine. 
The first young knight was named Pat Um, 
The second knight: D. Zine 

Now, two things must be stated here 
To clarify this rhyme, 
So please listen most carefully: 
I'll state it just one time. 

Now, first of all, it must be known, 
How to pronounce "D. Zine" 
For it does not rhyme with "nineteen": 
Instead, it rhymes with "nine." 

Now, secondly, no one quite knows 
What "D" means in D. Zine, 
But he's always called this; 
It seems to suit D. fine. 

The problem, though, for these two knights, 
Was not with just their names, 
For folks thought Pat Urn and D. Zine 
Were, all in all, the same. 

Both knights had flags they flew with pride 
Of yellow, green and blue. 
They were alike in many ways, 
Yet, different in a few. 

D. Zine's flag was impressive, yes,
With multicoloured hues,
And random shapes across his flag,
In yellow, green and blue.

D. Zine had stars and squares galore,
Which were spread to and fro,
While shapes that were on Pat Urn's flag
Formed patterns on each row.

Compared with Pat Urn's precise flag, 
Of perfect patterned rows, 
D. Zine's flag was a mess of shapes
(Pat Um had told him so!).

And so a Wizard told the town 
The answer to their plight. 
There was a very simple way 
To recognize each knight. 

One had to look so very close 
At each flag of each knight, 
and if the shapes repeated, then: 
"It's Pat Um!" would be right. 

But if the shapes did not repeat 
In any sort of way, 
"This knight must be the great D. Zine !" 
Is what you'd have to say. 

Thence, both the knights lived happily 
Their lives were full and fine, 
Because of the great Wizard-
They knew Pat Urns from D. Zines. 

Whenever I read the ideas submitted by teachers 
and teachers-to-be, I cannot help but smile and think 
how lucky children are to be taught by these people. 

Werner Liedtke is a professor emeritus of the University of Victoria, B. C. He delivers 
distance education courses through the Knowledge Network and teaches at the College 
of the Rockies in Cranbrook, B. C. He has presented at the University of Victoria to 
caretakers of young children and students, and to teachers and parents about the 
importance of number sense and settings. 
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TEACHING IDEAS 

Children's Literature in the 
Elementary Mathematics Classroom 

A. Craig Loewen

Any elementary school teacher can tell you that 
children love to share in a good story. Although some 
students are stronger and more avid readers than oth­
ers, all children seem to enjoy either reading a story 
or sharing in the experience of having a story read to 
them. Some of the most intimate and special times I 
remember sharing with my children involved our 
rocking chair and a good book, typically one that one 
of them selected. Times spent with a good book are 
inherently enjoyable and motivating. We can build 
on that sense of enjoyment and bring it into our pri­
mary mathematics classrooms by using good chil­
dren's literature as a springboard to fun and challeng­
ing mathematics activities. In this article, several 
children's books will be introduced, accompanied by 
a few math activities related to each story. 

The process whereby I selected the books was 
really quite simple. I asked my children's teachers 
what their favourite books were, I asked local librar­
ians for titles of popular books and, most impor­
tantly, I asked my children which of our books they 
enjoyed the most. I have focused on children's books 
that are very motivating. They have a charming 
story or intriguing pictures, and some have both. I 
did not select books that were obviously geared to­
ward teaching mathematics; that is, books in which 
the story is deliberately secondary to how the main 
character uses math in his or her life, such as books 
that tell the story of how a character learns to add or 
tell time. Although these publications also have their 
place, I was much more interested in books that em­
phasized storyline, character, plot, or a surprise or 
visual appeal-the books we most like to read. 

As you peruse the activities that follow, you will 
notice that the stories serve mainly as context for the 
mathematical activities, and that the activities may 
take a variety of forms, including games, problems, 
manipulative explorations and so on. The books are 
not selected to teach a concept itself but to stimulate 
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the child's imagination and motivation-to get him 
or her dreaming about being chased by a monster or 
eating cookies with Grandma, or imagining how hard 
it would be to rise above the challenges of a truly 
rotten day. 

Alexander and the Terrible, Horrible, 
No Good, Ve,y Bad Day 
by Judith Viorst 

Have you ever had a day as bad as Alexander's 
day? His day was so bad that he was thinking of just 
packing up and moving to Australia! From the first 
moment he rises in the morning, everything just starts 
to go wrong. Getting dressed turns out to be a disas­
ter, breakfast is ruined because there is no toy in his 
cereal and travelling to school is uncomfortable, but 
school itself is absolutely awful. Alexander's day just 
gets worse and worse. He finds out that he is no lon­
ger Paul's best friend and discovers that his mother 
forgot to put the treat in his lunch, and then the den­
tist finds a cavity in his teeth. I can identify with 
Alexander. Can you? 

Activity 1: Alexander's Game 
Objective: Count orally by ones, twos, fives and tens 
to 100 (Number Concepts, Grade 1). 

Part of Alexander's very bad day happens during 
counting time when he leaves out the number 16. 
Sometimes leaving out a number is good and even fun! 

Play this simple game with a partner. Try skip­
counting by twos all the way to 100. If you make it 
to I 00 successfully, start over skip-counting by fives. 
To increase the challenge, skip-count by threes, start­
ing at 11. In another version of the game, further 
increase the challenge by snapping your fingers in­
stead of saying the number if it has a four in it (such 
as 14, 24, 34, 40, 42, 44 and so on). Adapt the games 
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by playing with several players. Any player who 
makes a mistake drops out of the game. The last 
person standing wins. 

Activity 2: Horrible-Day Race Game 
Objective: Explore faces, vertices and edges of 3-D 
objects (3-D Objects and 2-D Shapes, Grade 2). 
Materials: 3-D solids, scrap paper 

To play this game, the teacher must first prepare 
the object cards. Select 8-10 different objects or 
things that are mentioned in the story-examples 
include castle, tooth, paper bag and sweater-and 
write these words on separate index cards. 

Players are divided into teams with two to six 
players, and one player is appointed as the first to 
draw. Each team needs several sheets of scrap paper 
and a collection of 3-D solids. 

To start the game, each student drawing first for 
his or her team approaches the teacher, and the 
teacher reveals the object listed on the first index card 
to all of them. The players return to their groups and 
race to draw the object listed on the card. However, 
players may not draw freehand; instead they must 
trace around the edges of the faces on their 3-D solids. 
The player drawing may not speak or try to act out 
the word. Once another player in the group guesses 
the name of the object from the drawing, that player 
goes up to the teacher and whispers the name of the 
object to the teacher. If correct, the player is shown 
the object on the next index card. This player returns 
to the group and takes over the task of drawing for 
his or her team. In this way, the team races its way 
through the object cards. The first team to progress 
through the entire deck of object cards wins. 

The True Story of the Three Little 
Pigs! by Jon Scieszka 

We all know the story. You know, the one about the 
three little pigs and the big bad wolf? This book echoes 
the familiar tale in which the cruel wolf destroys the 
homes of the poor piglets and eats them up. But did 
it ever occur to you that the wolf might really be in­
nocent? Perhaps the entire incident was the fault of 
the piglets. Maybe they drove him to it. This is the 
famous story with a new twist, told from the perspec­
tive of the wolf-and maybe he has a point! 

Activity 3: House of Bricks 
Objective: Place objects on a grid, using columns and 
rows (Transformations, Grade 4). 
Materials: Centimetre grid paper 

Try building your own house of bricks, where the 
bricks are locations on a piece of grid paper. Draw 
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your house by shading in squares on your grid paper. 
Each brick is one square. Make a list of all the ordered 
pairs representing the squares you shaded in. Try 
reading your list of ordered pairs to a partner and let 
him or her try to build a house just like yours from 
your instructions. 

Activity 4: House of Sticks 
Objective: Observe and build a given 3-D object 
(3-D Objects and 2-D Shapes, Grade 1). 
Materials: Marshmallows and toothpicks 

In the story, the three little pigs each build their 
own houses--one of straw, one of sticks and one of 
bricks. Try to build the frame for your own house 
using only marshmallows and toothpicks. How many 
marshmallows did you use? How many toothpicks 
did you use? Can you build a frame for a two-storey 
house using only 13 marshmallows? How many sticks 
(toothpicks) are needed for this house? Can you build 
a frame for a single-storey house using only 16 tooth­
picks? How many marshmallows are required? 

Activity 5: Wolves and Pigs Problem 
Objective: Communicate and apply positional lan­
guage in oral, written or numerical form (Transforma­
tions, Grade 2). 
Materials: Two-colour markers 

There are three wolves and three pigs on the same 
side of a river and they would like to cross to the 
other side. They have one boat that can hold only two 
animals at a time. If, at any time, the wolves outnum­
ber the pigs, the pigs will be eaten! How can all six 
animals cross the river safely? 

The Monster Bed 
by Jeanne Willis 
(illustrated by Susan Varley) 

"Never go down to the Withering Wood!"-you 
never know what you might find or what might hap­
pen. The Withering Wood is special, indeed, because 
it is home to a family of monsters who don't believe 
in humans. The smallest monster is terribly afraid of 
humans, but his mother assures him that there is no 
such thing. Just to be safe, the smallest monster de­
cides to sleep under his bed-after all, no humans 
would think to look for him there! Along comes a 
truant (human) boy who has found himself lost in the 
woods. He discovers the monster's cave and bed and 
decides to lie down for a little nap. Just as he is about 
to drift off to sleep, it occurs to the boy to check 
under the bed for monsters. 
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Activity 6: Measure a Monster 
Objective: Construct items of specific lengths (Mea­
surement, Grade 2). 
Materials: Six-sided die, ruler 

Draw your own monster. Start with a piece of scrap 
paper. Draw an oval approximately five centimetres 
long in the middle of the paper. This oval will be the 
body of your monster. To complete your monster, you 
need to add a head, nose, wings, legs, arms, ears, eyes 
and anything else you might choose. To add pieces 
to your monster, first decide what part you wish to 
draw and then roll the die to determine how long (in 
centimetres) that part is to be. For example, if you 
decide to draw the right leg of your monster and you 
roll a three, you would draw a leg three centimetres 
in length. You can add more than one set of arms or 
legs, or none at all depending on your imagination. 
Whose monster is the scariest? 
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Activity 7: Exit the Forest 
Objective: Compare outcomes as equally likely, more 
likely or less likely (Chance and Uncertainty, Grade 4). 
Materials: Exit the Forest game board, clear plastic 
overhead spinner 

T his is a probability game you can play by your­
self, cooperatively with another player or competi­
tively with other players as a race to the exit. To play 
the game, place a small marker (such as a bean or a 
block) on the "Start" square in the bottom left corner 
of the game board. Place the clear spinner on any one 
of the four given spinner mats and twirl the spinner. 
Move your marker in the direction spun (one space 
horizontally, vertically or diagonally). If the game is 
played competitively, the first player to make his or 
her way around the obstacles to the upper right corner 
wins. You may not leave the game board or land on 
any space occupied by an object or another player. 
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Alphabet City 
by Stephen T. Johnson 

This is actually a picture book of art; no reading 
is necessary to thoroughly enjoy this work. Alphabet 
City is a collection of watercolour paintings and 
drawings that show where many of the letters of the 
alphabet occur in a city setting. The pictures do not 
show just how letters are used to form words on signs 
and so on, but also how the actual shapes of the letters 
themselves are all around us, if only we would notice. 
A is not for apple in Alphabet City; the letter A is 
formed by a traffic banicade. B is found on some 
metal stairs, C is found in a cathedral window, D 
makes a great border for a flower garden and so on. 
Can you guess where the letter Q can be found? My 
favourite is the letter S. What's yours? 

Activity 8: Symmetry City 
Objective: Create and verify symmetrical 2-D shapes 
by drawing lines of symmetry (Transformations, 
Grade 4). 
Materials: Geoboard, elastics, mira board or mirror 

As you look at the wonderful pictures in Alphabet 
City you will notice that many of the letters have more 
than one line of symmetry. Which letters have one line 
of symmetry? Which letters have two lines of symme­
try? Which letters have more than two lines of symmetry? 
What words can you make that have a line of sym­
metry running through the entire word by using the 
letters? You may need to spell some words from top 
to bottom on your page to see the line of symmetry. 

Try making some of the letters of the alphabet with 
elastics on a geoboard. Use a mirror or your mira 
board to explore the letters in the book, and use the 
geoboard to find all the lines of symmetry. 

Activity 9: Word Sums 
Objective: Apply a variety of estimation and mental­
mathematics strategies to addition and subtraction 
problems (Number Operations, Grade 2). 
Materials: Calculator 

Have you ever heard of a two-dollar word? Usu­
ally we refer to very long or unusual words as two­
dollar words. Begin by making a list of all the letters 
of the alphabet and writing a number next to each 
letter showing its place in the alphabet. Write 1 next 
to the A, 2 next to the Band so on. These numbers 
represent the values of each letter. Find the value of 
your name by adding up the values of each letter in 
your name. Whose name has the greatest sum? Can 
you find a word with a value of exactly 100? What 
about200? 
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Blue Sea by Robert Kalan 

This story is about a little fish that encounters a 
big fish, which would like to eat him for lunch, except 
that along comes a bigger fish. These fish are chased 
by an even larger fish! How should the littlest fish 
escape? Each fish is eventually trapped until the little 
fish swims away safely into the blue sea. This story 
incorporates many mathematical concepts, including 
simple addition and subtraction, as well as relative 
sizes and shapes. 

Activity 10: Pattern Block Fish 
Objective: Use manipulatives and diagrams to dem­
onstrate and describe the processes of addition and 
subtraction of numbers to 18 (Number Operations, 
Grade 1). 
Materials: Pattern blocks, pencil crayons 

This is a simple exploration activity in which 
students construct models of simple addition equa­
tions. In this activity, students select any number of 
two different colours of blocks and arrange them to 
resemble the shape of a fish. The students then write 
an addition sentence to represent the number of blocks 
of each colour used. 

For example, in the fish below, one yellow hexagon 
and four green triangles were used. The related sen­
tence is I + 4 = 5. 

Ask students to trace the blocks on a piece of paper 
in the shape of their fish and colour the fish according 
to the colour of the blocks before writing the addition 
sentence. 

Activity 11: Going Fishing 
Objective: Estimate, measure, record and compare 
the area of shapes, using nonstandard units (Measure­
ment, Grade 2). 
Materials: Coloured tiles (or paper squares cut ap­
proximately one inch on a side) 

In this exploration activity, you will use coloured 
tiles (or paper squares) to create fish shapes. Whose 
shape has the greatest area (measured in tiles)? Whose 
shape uses the greatest number of blue tiles? How 
about red tiles? Create the best fish shape using ex­
actly 24 tiles. If you build your fish out of paper 
squares and glue them to a larger page, the children 
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can create a giant aquarium bulletin board. Develop 
estimation questions based on your bulletin board 
display. For example, how many tiles were used in 
all to make these fish? 

The Doorbell Rang 
by Pat Hutchins 

Don't you just hate it when someone calls or the 
doorbell rings just as you are sitting down to supper? 
Or even worse, a caller arrives just as you are about 
to dive into a plate of fresh-baked cookies! In this 
story, several children are about to do just that-share 
a plate of cookies-when the doorbell rings and 
several friends walk in. After the cookies are redis­
tributed, the kids are again about to start eating when 
the doorbell rings and more friends arrive. This hap­
pens over and over again until ... 

Activity 12: Cookie Countdown 
Objective: Apply a variety of estimation and mental­
mathematics strategies to addition and subtraction 
problems (Number Operations, Grade 2). 
Materials: Chocolate chips (or other small markers, 
such as gram blocks) 

This activity is both a problem and a game, based 
on the traditional game of Nimh. Start with 21 cook­
ies (chocolate chips or small markers) placed on the 
table between two players. Players take turns remov­
ing (eating) one or two cookies. The player who eats 
the last cookie wins. How can you make sure that you 
win each time? 

Activity 13: Cookie Dough 
Objective: Calculate products and quotients, using 
estimation strategies and mental mathematics strate­
gies (Number Operations, Grade 3). 
Materials: Chocolate chips (or other small markers), 
one six-sided die 

This is a game for two or more players. Each 
player starts with 20 chocolate chips. The first 
player rolls a die and divides the chips into groups 
according to the value rolled. For example, assume 
a player rolls a three on his or her turn while owning 
20 chips. This player would divide the 20 chips into 
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six sets of three chips with two chips remaining. The 
remaining chips are given away to the next player, 
who now rolls the die. Each time, the leftovers are 
passed to the next player. Players each take several 
turns. The player with the most chips at the end of 
the game wins. 

Selina and the Bear Paw Quilt 
by Barbara Smucker 

This story is about a displaced Mennonite family 
during the American Civil War. Those of the Men­
nonite faith tried desperately to stay out of the conflict 
and were therefore mistreated by both the North and 
the South. As a result, many found that they had to 
relocate to Upper Canada. This is the story of Selina 
and how her family is driven apart by war when 
Selina's grandmother is forced to stay behind, unable 
to make the journey. To comfort her and to remind 
her forever of her grandmother, Selina is presented 
with the beautiful bear paw quilt. 

Activity 14: Mirror Quilts 
Objective: Recognize motion as a slide (translation), 
tum (rotation) or flip (reflection) (Transformations, 
Grade 5). 
Materials: Quilt pattern page, crayons 

Quilt patterns can be made by applying mathemat­
ical transformations to specific shapes or designs. For 
example, quilts can be designed so that adjacent 
squares are mirror images of each other (reflections) 
or so that adjacent squares are turned a quarter tum 
from one square to the next (rotations). In this activ­
ity, students are given a pattern for a quilt (such as 
the one shown). One student colours the left side of 
the page using crayons. This page is then passed to 
another student who colours the right side of the page 
so that it is a mirror image of the left. For a more 
challenging activity, ask students to construct quilt 
patterns or pictures that demonstrate rotations, reflec­
tions or dilations. 

Please refer to the quilt pattern sheets at the end 
of this article. 
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Activity 15: Pattern Block Quilt 
Objective: Create, extend and describe patterns, in­
cluding numerical and non-numerical patterns (Pat­
terns, Grade 2). 
Materials: Pattern blocks, paper 

In this problem-solving activity, students will at­
tempt to build a quilt design by covering a plain piece 
of paper entirely with a collection of pattern blocks 
arranged in a design. The student will write questions 
about the quilt, such as, How many yellow blocks 
were used? How many more blue blocks than green 
blocks were used? If this panel were only one of 12 
needed to complete the quilt, how many red blocks 
would be needed? Students will get a friend to try 
answering their questions. The friend may then at­
tempt to extend the quilt using the same pattern. 

Alexander, Who Used to Be Rich 
Last Sunday by Judith Viorst

Alexander is a lot like the rest of us: his money is 
all gone! Have you ever felt rich right after you were 
paid, and then slowly watched it all disappear as you 
paid bills, loans and everything (and everyone) else? 
This is the same thing that happens to Alexander. He 
starts with a dollar on Sunday but, by the next Sunday, 
all he has are bus tokens. Alexander's money simply 
disappears on bad debts, bubble gum and renting 
snakes. If you had a dollar, what would you spend it 
on? 

Activity 16: A Change of Heart 
Objective: Create and recognize that a given value 
of money can be represented in many different ways 
(Measurement, Grade 3). 
Materials: Coins 

Using a collection of coins, students try to solve 
the following problem: How many different ways are 
there to make 55¢ using only dimes and nickels? How 
many more ways are there if you can use pennies, 
nickels, dimes and quarters? 

Activity 17: Dollar 1-2-3 
Objective: Estimate, count and record collections of 
coins and bills up to $10 (Measurement, Grade 3). 
Materials: Coins, one six-sided die 

This game is played with two or more players. 
Place a large collection of coins (pennies, nickels, 
dimes and quarters) between the players. The first 

32 

player rolls the die and, based on the value rolled, 
takes that number of coins from the pile in the centre 
of the table and adds them to his or her collection. 
For example, if the player rolls a 5, he or she can take 
three nickels and two quarters, or any other combina­
tion of five coins. Play passes to the left. 

Players try to build a set of coins with a value of 
exactly $1. Players can trade in coins-two nickels 
for a dime, and so on. Players cannot take coins that 
would take the amount of their collection over $1. 
For instance, if the player rolls a 3 when his or her 
collection totals 99¢, the player simply passes the 
turn. After a player has collected exactly $1, he or 
she tries to collect another dollar. The first player to 
build $1, then $2 and finally $3 is the winner. 

Conclusion 

By simply using the main theme or idea of a story­
whether it is money or monsters-it is easy to de­
velop a wide variety of mathematical activities to 
enhance our instruction in the elementary grades. In 
the activities above, examples of games, manipula­
tives, applications and problem-solving activities can 
be found. Teachers should select books and stories 
that they find interesting because it is likely that their 
students will find them interesting, too. Consider 
asking your students to bring in some of their favou­
rite books. Perhaps they would enjoy the challenge 
of developing and sharing some activities of their 
own. By capitalizing on the inherent interest and 
motivation that these stories hold for students, we can 
introduce increased variety and excitement into our 
mathematics lessons. 
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A °' 
A. Craig Loewen. The University of Lethbridge

Find the smallest number 
that, when divided by each
of the values 2, 3, 4, 5, 6, 7,
8, 9 and 10, will -:::,.· ,, .. ,,,. 
give, in each case, ':'.: ''0��1· � ·.··

a remainder that �
is one less than
the divisor.
Hint: restate the problem in your own words. 

Source: Kaniecki, C, and L. E. Yunker. "Problem 
Solving for the High School Mathematics Student." 
Math Monograph 7 (1982): 49--60. 

Three cannibals and three 

missionaries are on the same side 

of the river. They have one boat 

that can hold only two people. 

How can they all cross the river 

safely knowing that any time the 

cannibals outnumber 

the missionaries, 

the missionaries 

will be eaten? 

Source: Adapted from http://partner.galileo.org/ 
schools/strathmore/math/fair/prob5.html. 

What is the least number 

of coins (the largest of 

which is a quarter) 

necessary to 

make any 

amount 

from 1 ¢

to 99¢? 

Source: Mathematics Teacher 82, no. 8 (1989): 626. 

Two cars each travelling at 60 kph at 

2 km apart. They begin travelling 

toward each other at the same time. 

A very fast fly flies from the bumper of 

one car to the bumper of the other at 

120 kph. As soon as it touches the 

bumper it turns around and heads 

back to the bumper of the first car. 

It continues back and forth 

until the two cars meet. 

How far does the 

fly travel? 

Source: Adapted from Fowler, J. C.

www2.spsu.edu/math/stinger/1-50/puz009.htm. 
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