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Algebra courses give instruction for adding or 
subtracting two rational functions, or ratios of poly­
nomials. One way to do this is to find a common 
denominator, rewrite each rational function using 
this common denominator, add or subtract the nu­
merators and simplify the result. In integral calculus, 
it is often necessary to reverse this process; that is, 
to rewrite a given rational function as a sum of sev­
eral simpler rational functions, or partial fractions 
(see, for instance, Stewart 2001, 40�7). It is possible 
to describe and justify a method for carrying out 
this rewriting at the level of a typical precalculus 
course (see, for instance, Dobbs and Peterson 1993, 
197-204). Because this method is designed to be
generally applicable, it tends to be rather time-con­
suming. Moreover, this method consists of several
steps, requires the user to introduce a considerable
amount of notation (variables that must be solved for
in systems of equations) and often taxes students'
memories and patience. Although some shortcuts
are known, they can fail to lead to a complete solu­
tion, such as when the denominator of the given ra­
tional function in lowest terms has a multiple root.
One currently fashionable way to address this situa­
tion is to use computer algebra systems (CAS) to find
partial-fraction decompositions. This article will in­
troduce a new paper-and-pencil algorithm for obtain­
ing partial-fraction decompositions. The next two sec­
tions will introduce this new approach as an iterative
method based on a few easy-to-remember strategies.

Like other paper-and-pencil algorithms for obtain­
ing partial-fraction decompositions, this method is 
quickest when applied to decomposing rational 
functions whose denominators are expressed as prod­
ucts of linear factors. This new method has the fol­
lowing advantages. When used on complex calculus 
problems and differential equations, technology is 
not required to combat impatience. The new method 
does not require the user to introduce any notation. 
Data whose denominators have multiple roots do not 
pose any additional difficulty. Like traditional ap­
proaches to partial-fraction decomposition, the new 
method can reinforce several topics in the typical 
precalculus course, including arithmetic operations 
on rational functions and factorization of quadratic 

delta-K, Volume 42, Number 1, December 2004 

polynomials. In addition, the new method can reinforce 
the binomial theorem and, if covered, mathematical 
induction. Moreover, its treatment of irreducible 
quadratic factors can reinforce arithmetic with com­
plex numbers. 

The New Method When 
Denominators Have Only 
Linear Factors 

The task is to decompose a rational function that 
is in lowest terms. In this section, we consider the 
case where the denominator of the given rational 
function has only linear factors. Notice that a linear 
factor ax+b can be rewritten as a(x-c), where 

c =_I!_. Thus, there is no harm in assuming that the 
a 

linear factors of the denominator are of the form x-d

for various constants d.

One paradigm will be enough to point the way. 
Our experience in algebra courses with the addition 
and subtraction of rational functions tells us that 

A B (A+B)x-(Ab+Ba) --+-- = -------.
x-a x-b (x-a)(x-b) 

Therefore, to rewrite 
I----as 

(x-a)(x-h) 

A B 
--+-­

x-a x-b' 

(A+B)x-(Ab+Ba) must equal I. In particular, the co­
efficient of x must be 1; that is, A+ B = o or, equiva­
lently, B =-A. Although this analysis has the flavour 
of the traditional method for partial-fraction decom­
position, all that needs to be remembered from the 
analysis thus far is that, if a'#- b, then 

I 

(x-a)(x-b) 

can be rewritten as 
A A 

x-a x-b

9 



for the constant A , which can be determined using 
the rules for the addition and subtraction of rational 
functions. For instance, to decompose 

l 
(x-2)(x+3) ' use 

A A 

x-2 x+3

where A(x+3)-A(x-2)= 1; that is, 5A = 1, or A= 2..
The upshot is the partial-fraction decomposition 5 

1 1/5 1/5 
-----

(x-2)(x+3) x-2 x+3

The above method is memorable, and can be sum­
marized with the following general formula: If a t:- b,
then 

1 _11(-b+a) 11(-b+a). (1.1) 
(x-a)(x-b) x-a x-b

Let us next consider the case that the given rational 
function has a constant numerator and denominator 
with more than two linear factors. If the denominator 
does not have a multiple root (that is, if the denomi­
nator does not have a repeated linear factor), the 
above reasoning only has to be repeated several times. 
More precisely, to decompose a rational function of 
the form 

I 
(x-a)g(x) 

decompose the simpler rational function -1- , mul­
g(x) 

l 
tiply the resulting sum of partial fractions by x -a , 
expand by using the distributive property and then 
decompose each of the resulting simpler rational 
functions. The success of the method depends on 
reducing the problem to a set of simpler rational 
functions at each step. The rigorous mathematical 
explanation is that the method uses mathematical 
induction on the number of linear factors in the de­
nominator. However, most students are fully con­
vinced (and should be) by the following kind of 
example. 

To obtain the partial-fraction decomposition of 
1 

(x- 2)(x+ l)(x-4) 
reason as follows. First, as in the general formula 
from the first decomposition problem, we have 

l -1/5 1/5 ----==--+--·(x+l)(x-4) x+l x-4

Next, multiplying through by -
1
-, we find that

x-2 
I I -1/ S 1/ S 

(x-2)(x+l)(x-4) x-2 ( x+I + x-4)

=-!..(---) +.!_( l ).5 (x-2)(x+l) 5 (x-2)(x-4) 
Finally, by again using the earlier general formula 
and combining like terms, we obtain 

_.!_(_!_Q_-�
)+

.!.(-1 /2 + �)5 x-2 x+I 5 x-2 x-4 

-1/6 1/15 1/10
= --+--+--

x-2 x+l x-4·

To handle nonconstant numerators, we only need 
to rewrite each occurrence of x in the numerator as 
(x-a) +a, where x-a is a factor of the denominator, 
and then to rewrite each occurrence of xn in the nu­
merator by using the binomial theorem to expand 
((x-a)+a)". In effect, we are rewriting the numera­
tor, which is a polynomial in the variable x , as a 
polynomial in the variable x - a . (This part of the 

method is an excellent preparation activity for calcu­
lus, in which students could learn, more generally, to 
approximate an n-times differentiable function by its 

nth Taylor polynomial centred at a.) Once again, the 

following sufficiently complicated example can be given 
to convince a class that the method works in general. 

Let's use the above strategy to find the partial­
fraction decomposition of 

3x2 -7x+S 
(x-2)(x + l)(x-4) 

The numerator is rewritten as 

3((x -2) + 2)2 -7((x -2) + 2) + 5 = 
3((x-2)2 +4(x-2) +4)-7(x-2)-9 =
3(x-2)2 +5(x-2)+3 . 

Thus, by again using what is known about addition 
and subtraction of rational functions and then cancel-
1 ing common factors of corresponding numerators 
and denominators, we find that 

3x2 -7x+5 3(x-2)2 +5(x-2)+3
(x-2)(x+ l)(x-4) (x-2)(x+ l)(x -4) 

3(x-2) 
(x+l)(x-4) 

5 3 +----+-----­
(x+l)(x-4) (x-2)(x+I)(x-4) · 

We have already seen how to decompose each of the 
last two terms on the right-hand side as sums of par­
tial fractions. The remaining term, 

3(x-2) 
(x+l)(x-4)' 
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is simpler than the original problem and can now be 
written as a sum of partial fractions by another ap­
plication of the above method, as follows: 

3(x-2) 3x-6 3((x + 1)-1)-6 
(x+l)(x-4) (x+l)(x-4) (x+l)(x-4) 

3(x+l)-9 3 9
=---- =--- ----

(x+l)(x-4) x-4 (x+l)(x-4)

How should we proceed if the denominator of the 
given rational function has a multiple root; that is, if 
it has a repeated linear factor? It is enough to indicate 
how to handle rational functions of the form 

l 
(x-a)"g(x)' 

where x - a is not a factor of g(x) (that is, where a is 
not a root of g(x)), because nonconstant numerators 
can be handled as above using the "x = (x -a)+ a" 
trick. To do so, factor x - a out of the denominator 
so that the problem is presented as 

_l_
( 

l )· 
x-a (x-ar-1g(x)

Notice that the second factor, 
1 

(x-a)"-1g(x)'
represents a simpler problem (inasmuch as its de­
nominator has a degree that is less than the degree of 
the original denominator). By mathematical induction 
on this degree (in practice, by repeatedly factoring 
linear factors out of the denominator), we can reduce 
the rational function to a sum of simpler rational 
functions that are, ultimately, already in partial-frac­
tion form or amenable to being rewritten with the 
help of the general formula from earlier. The follow­
ing example can be given to illustrate the method. 

Let's indicate how to use the above strategy to 
produce the partial-fraction decomposition of 

1 

(x-2)2(x+ 4)3 (x-l)

Note that the given denominator has degree 6. Factor 
one of the linear factors out of the denominator, such 
as x-2, so that the problem becomes rewriting 

_l_(_l_),
x-2 g(x) 

I 
where g(x) = (x-2)(x +4) 3(x+ 1) . Lurking within g(x)
is sure to be a simpler problem, which is either already 
in partial-fraction form or amenable to being treated 
by the general formula from earlier. By the general 
formula, 

1 1/3 I/3 
----=-----· 

(x-2)(x+I) x-2 x+l
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Therefore, in multiplying by __ l _, we have 
(x + 4)3 

l 1/3 1/3 

g(x) = (x-2)(x+4)3 (x+l)(x+4)3 ' 

and so the given rational function has been rewritten as 
l _ 1/3 1/3 

(x-2)g(x) - (x-2)2(x+4)3 
(x+l)(x-2)(x+4)3 

• 

Notice that both of the terms on the right-hand side 
have degree 5, and are thus simpler than the original 
data. By iterating the process once more, we come to a 
sum of terms, each having denominators with degree 4 
at most. Further iterations lead to the desired partial­
fraction decomposition. For reasons of space, the 
details of these calculations will be left to the reader. 

When Denominators Have 

Irreducible Quadratric Factors 

In this section, we will look at a new way of find­
ing the partial-fraction decomposition of a rational 
function in lowest terms whose denominator has at 
least one irreducible quadratic factor. We begin with 
a notational simplification, just like at the beginning 
of the oreceding section. Any quadratic oolynomial 
a.x2 +bx+ c can be rewritten as a(x2 + dx + e), where

b C d = - and e = -. Thus, we can assume that the ir-
a a 

reducible auadratic factors of the denominator are of 
the form x2 +bx+ c for various constants b and c. 

It would appear at first that, in order to continue 
using the method introduced in the preceding section, 
more than one formula analogous to the general for­
mula may need to be developed. This approach is 
rather similar to the classical method of introducing 
several variables and solving systems oflinear equa­
tions. For this reason, this section's problem is best 
handled by reducing it to that of the preceding section. 
This can be done, provided that you are prepared to 
use complex numbers as coefficients of various rel­
evant polynomials. If g(x) = x2 +bx+ c is an irreduc­
ible factor of the denominator, recall that g(x) can 
be factored as (x-1j)(x-r2), where r1 and r2 are the
roots of g(x). (If necessary, r, and r

2 
can be found

by using the quadratic formula.) Thus, if the de­
nominator is given as having been factored over the 
real numbers (as is usual in the classical method for 
partial-fraction decomposition), we can write that 
denominator as a product of linear factors, possibly 
with complex number coefficients. We can then pro­
ceed to find a partial-fraction decomposition exactly 
as in the preceding section. 

The price to be paid in using this method is that 
you must be willing to do a considerable amount of 
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arithmetic with complex numbers. Moreover, it is 
easy to lose heart during the process as to whether 
the final result will simplify and have only real-num­
ber coefficients. Be assured that this will always work 
out, in view of the general theorem guaranteeing 
partial-fraction decompositions over any field (see, 
for instance, Dobbs and Hanks 1992, 31-33). While 
keeping track of the various factors that arise, remem­
ber that the nonreal complex roots of any real poly­
nomial g(x) arise as pairs of complex numbers that 
have the same multiplicity as roots of g(x) (see, for 
instance, Dobbs and Hanks 1992, 54). 

Be warned that this method of handling irreducible 
quadratic factors can be time-consuming. However, 
as promised, it requires only the method of the pre­
ceding section coupled with the above formula for 
factoring quadratic polynomials and the ability to 
perform the arithmetic operations on complex num­
bers. We close with an example that illustrates the 
new method outlined in this section. 

Use the above method to find the partial-fraction 
decomposition of 

x2 -7x-9

(x2 +4)(x-3) 
Using the "x=(x-a)+a" trick, we can rewrite the 
numerator as 
((x -3)+ 3)2 - 7((x-3) +3)-9 = (x -3)2 -(x-3)-21. 
Therefore, by distributivity and cancelling, 

x2 -7x-9

(x
2 +4)(x-3) 

The first and second terms on the right-hand side are 
already in partial-fraction form. So, all we have left 
to do is find the partial-fraction decomposition of 

I 

(x
2 +4)(x-3) 

.� . 

Because the roots of x2 + 4 are ±2i. the denomina­
tor can be factored as (x + 2i)(x-2i)(x-3) . Next, by 
using the method of the preceding section and arith­
metic with complex numbers, we find 

1 1 
(x + 2i)(x -2i)(x -3) 

(ix 1 I , I (ix I 
) 

1 
4 2i+3 

-
3-2i� - 4 2i+3 x+2i +

(ix I ) I 1/13 (2+3i
) 

l (-2+3i
) 

I 

4 3 -2i X -2i = X -3 52 X + 2i 
+ 

52 X - 2i . 
Then, by adding the terms that involve nonreal num­
bers (the same way that any rational functions are 
added), the final form of the decomposition is 

I 1/13 -(2
+31\x-2z)+(-2+31)(x+21)

---- =-+ 52 ) 52 = 
(x2 + 4)(x-3) x -3 (x+ 2i)(x-2i) 

l 3--x--
_Ll_+ 13 13
X-3 X

2 +4
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