
Programming and Problem Solving with
the Tl-83 Plus: The Structured Search

A. Craig Loewen

Problem solving has always been one of the most
difficult areas of the mathematics curriculum to teach
well. Despite 25 years of research devoted to improv­
ing problem-solving skills, many students still
struggle with how to start a problem and how to be
flexible (that is, switching from an ineffective strat­
egy to a new one). Our students do not seem to have
a wide range of problem-solving strategies at their
disposal and instead focus on such strategies as guess­
and-test when no algorithm seems immediately avail­
able. Guess-and-test seems to have become even more
popular in an age when calculators and computers
aid in making quick, accurate computations.

Now, don't get me wrong. I'm not speaking against
guess-and-test as a strategy. It is a legitimate, recog­
nized and viable strategy, but in some ways it seems
a bit inelegant and it is often inefficient.

There are, of course, many different problem-solv­
ing strategies, and we know that more sophisticated
solvers combine these strategies. For example, the
elimination strategy works well only if you are able
to generate an effective and comprehensive list, and
drawing a picture usually helps identify an appropri­
ate formula. In general, all problem-solving strategies
become more powerful when they are blended with
other strategies. Add to that the power of the mini­
computer. When we can harness the ability of the
hand-held computer to quickly make repetitive com­
putations, we may further enhance several of these
strategies. The computer can be used to quickly gen­
erate lists, check conditions in the problem and
complete exhaustive searches. All this can be done
much more quickly than we can do on our own. In
general, with a few simple programming skills (which
are easily mastered by a high school student), we can
blend these strategies and tools to create something
we could call a structured search.

The Structured Search

In a structured search, we would set up a loop that
effectively generates a list of possible values that can

delta-K, Volume 42, Number 1, December 2004

then be tested against the conditions of the problem.
The TI-83 Plus gives us at least two efficient ways to
create this kind of loop. This simple program uses
the "for"-loop and writes the values 1-5 on the cal­
culator screen:

PROGRAM:ABA
:1➔A
:While A<6
:OisP A
:A+l➔A
:End
:■

This following program, which uses a "while"-loop,
does the same thing:

PROGRAM:ABA
:For(A,1,5)
:OisP A
:End
:■

Although the differences between the two types of
loops are quite small, the "for"-loop is a little more
elegant and much easier to enter. The "for"-loop also
forces a fixed number of repetitions of the commands
within the loop, whereas the second type of loop is
more flexible, continuing indefinitely until a condition
is met.

To complete the structured search, we also need
to know how to enter simple logical checks, which
are called "if'-statments. Let's modify our "for"-loop
program above to do the following:

• Consider all the values from 1 through 19, using
the command For(A, l , 19)

• Print on the screen all of the values of A that are
divisible by 3, using the command If A/3 =
int(N3):Disp A

15

Here is the program:

I

3
6
9

12
15
18

Done

Here is the screen display when the program is run:

PROGRAM:ABA
:For(A,1,20)
:If A/3=int.(A/3)
:Ois.P A
:End
:■

Knowledge of the other mathematical functions avail­
able on the Tl-83 Plus, together with these simple
commands (and a little exploration), will provide
us with another means of tackling a variety of
problems.

Cryptarithms
A common type of problem appearing in many

magazines and newspapers (and even on the Internet)
is cryptarithms. A cryptarithm is an arithmetic state­
ment where the digits have been replaced by letters.
Here is a classic cryptarithm:

ABCD
L._1
CDBA

In this problem, each of the letters A through D needs
to be replaced by a single digit to create a four-digit
number that, when multiplied by 4, produces the same
four digits in reverse order. Note that both As must
be the same digit, which is true for all four letters.

It is a lot of fun to solve this problem by hand, but
it is fun to solve it with a structured search, too. We
need to set up four loops (one for each variable, A,
B, C and D), use them to build the number ABCD,
multiply that value by 4 and see what happens.

• Is it possible that there are no solutions to this
problem? Is it possible there is more than one
solution?

• How would you approach this problem if you were
solving it without programming? What is a reason­
able strategy?

• How long would you estimate it would take to
solve this problem by hand?

16

Here is a structured search that could solve this problem:

PROGRAM:ABCD
:For(A,1,9)
:For(B,0,9)
:For(C,0,9)
:For(D,1�9)
:1000*A+l00*B+10
*C+D➔E
: 1000ll<D+H'.10*C+10
*B+A�F
:If E>t<4=F:DisP E

: End
: End

: End
: End
:■

• Why do the A and D loops run from 1 to 9, while
the B and C loops run from Oto 9?

• Could this program generate any extraneous solu-
tions? How could you tell?

• How many solutions does the program generate?
• How many values will this program consider in all?
• What does the line A x 1000 + B x 100 + C x 10

+ D ➔ Edo?
• What are the values that are stored in the variables

E and F?
• Why are there four "end"-statements at the bottom

of the program?
• Adapt the program above to solve this similar

problem: ABCD x 9 = DCBA.

Notice how long the calculator takes to run through
the entire list of possible solutions. An obvious dis­
advantage of the structured search is the time required
to execute it (although it is still much quicker than
doing it by hand). A significant advantage is that the
search has considered all possibilities, something we
would never be willing to do by hand.

But wait a minute! Does the program have the
computer test possibilities that are not reasonable? In
other words, is there a way to further limit the num­
ber of possibilities considered and thus speed up the
program? We already limited A to the values I
through 9 because O cannot appear as the lead digit.
However, consider that A must be either 1 or 2. If A
is 3 or greater, a digit will be carried into the 10,000s
place when A is multiplied by 4-and the product
must not involve more than four place values. This
one change significantly delimits the number of pos­
sibilities we need to consider. We can change the line
For(A, 1, 9) to read For(A, 1, 2).

• How many possibilities does this one change
eliminate?

• Are there other leners that could be further limited?

delta-K. Volume 42, Number 1, December 2004

Strangely, with this process, we are slowly moving
toward greater emphasis on another strategy: apply­
ing logical reasoning. Again, we see how strategies
become more powerful when blended. If we con­
tinue with this process, we may find that logical
reasoning leads us through to another, even more
elegant solution to the problem. This is the joy of
problem solving-identifying a number of ways to
attack a problem and implementing a broad range of
skills and strategies, moving gracefully between and
among them as the solution is built.

Another important idea emerges as we play with
this problem. A critical problem-solving skill is being
able to identify when a strategy is not appropriate or
does not apply. Unless we can significantly limit the
number of checks the program needs to make, it could
become a very tedious process. For example, when
a problem requires five or more variables, it would
probably be better to turn to a more powerful com­
puter to engage the search or turn to a different strat­
egy altogether.

Another Example

Let's look at another example of a cryptarithm to
explore how we can modify our program to check for
solutions:

AB
+ BA
CDC

The first thing we notice is that there are still four
variables, but neither A, B nor C can equal zero. We
will need to modify our "for"-loops. Obviously, we
also need to modify our "if'-statements.

• What would the new "if'-statements look like?
How many would we need?

• How many possible solutions could this search gen­
erate? How would we check for extraneous solutions?

One possible program looks like this:

PROGRAM:ABBA
For(A,1,9)
For(B,1,9)
For(C,1,9)
For(D,0�9)
11*A+11*B➔E
101*C+10*D➔F
If E;;::F:DisP A*1

000+B*100+C*10+0

:End
:End
:End
:End
:1

delta-K, Volume 42, Number I, December 2004

When run, the program generates several possible
solutions, but be sure to check for ineligible ones;
that is, solutions where two letters are assigned the
same digit.

Here, another important quality of the problem­
solving process is reinforced. Looking back is critical,
although it is often overlooked. It is tempting to think
that, because the program generated all of these re­
sults, they are all viable. This is not the case. Looking
back helps confirm which possible solutions are real
solutions. It is at the looking-back stage that we are
most likely to catch our mistakes (computational or
logical) and thus learn from our experience.

Challenges

• How many solutions are there to the equation ABC
+ CBA=DDD?

• Program your TI-83 Plus to solve the following
equation: ABCDE x 4 = EDCBA. Estimate how
long you think the calculator will require to gener­
ate its results. Use what you know from the ABCD
x 4 = DCBA problem. Can you think of ways to
limit the search?

• Try to build a routine in your program to eliminate
ineligible answers

• Try to generate your own substitution problems
that can be solved through a structured search.

A Money Problem

Consider another familiar problem that can be ef-
fectively solved using a structured search:

Uri has 48 coins in his pocket, all nickels and pennies.
Altogether, he has exactly $1.72 in change. How
many nickels and how many pennies does he have?

We could set up a system of linear equations to solve this
problem, but it is also fun to write a simple program as
an alternative solution. The program looks like this:

PROGRAM:CENTS
:For(N,.0,34)
:48-N➔P
:If 5*N+P;;::172:Di
SP N,P
:End
=•

• How are the dimensions of the N-loop (nickels)
determined?

• Why does this program require only one loop?
• How many possible solutions are there?
• Describe the connection between the system of

linear equations related to this problem and the
program above.

17

• Assume that Uri also has some dimes. Is there a
solution to this problem? How many solutions are
there to this problem? Construct a structured search
to solve this revised problem.

• Write a money problem of your own that could be
solved using a structured search.

Some Challenging Problems
There are many different problems that can be solved

using a variation of the structured search. Here are two
somewhat more challenging problems with related
programs. You may wish to try solving the problems
yourself with or without your calculator, or you may
find it interesting to work your way through the pro­
gram, trying to determine the effect of each line.

18

Find the smallest number that, in each case, pro­
duces a remainder that is one less than the divisor
when divided by each of the values 2 through 10.

PROGRRM:Rz
ClrHoPle
11+N
0➔C
While C=0
1➔C
ForCR,2,10)
N-int(N/A)*A+T
If T;cA-1:Then
0➔C:10➔A:N+l+N
OutPut(l,1,N)
End
End
End
DisP N
I

A perfect number is defined as a number that equals
the sum of all its factors. For example, the first
perfect number is 6 because its factors I, 2 and 3 have
a sum of 6. What are the next two perfect numbers?

PROGRAM:PERFECT
2➔C
ClrHoMe
For(A,2,500)
Out.Put(1, 1, A)
0➔T
ForCB,1,..fCA))
If fi/B-int...(A/8)
T+B+A/8"7T
End
It" .f(A)=int(.J"(A

)):T-..f(A)➔T
:If T-A=A:Then:O
utput(C,1,A):C+l
➔C:End
:End
=•

The topic of perfect numbers has captivated many
mathematicians over the centuries. It is worth reading
about these numbers and finding other algorithms that
have been defined for identifying them more easily.

Cryptarithms and Alphametics
Included below is a collection of cryptarithms and

alphametics. An alphametic is a special type of cryp­
tarithm in which the letters used to replace the digits
in an equation also form comprehensible words.
Sometimes the words themselves form phrases. Here
is a familiar alphametic:

SEND
+MORE
MONEY

It is not practical to solve the above alphametic
with a hand-held computer because it involves eight
different letters and thus eight different loops. How
many different possibilities would the calculator have
to consider in order to solve this problem?

The following p uzzles were taken from
www.freepuzzles.com.

How many solutions are there for each of the
following?
AB +B=BA
C+C+C=DC
WAS x S =ASAW
Ax C xAC=CCC

Here are two slightly more challenging puzzles
taken from the same website. Each of these problems
could also be solved with a structured search.

A 2 + B2 + c2 = 02 + E2
In the equation above, the letters represent con­
secutive positive integers. Find the corresponding
value for each letter.

(30 + 25)2 = 3,025
Break the number 3,025 into two parts, 30 and 25.
The square of (30 + 25) equals 3,025, as shown.
Two more numbers share the same property. Can
you find them?

The following website has a huge number of cryptarithrns
and alphametics, as well as an aid to solve the puzzles:
www.tkcs-collins.com/truman/alphamet/alphamet.shtml.

TO+GO=OUT
I+ DID =TOO

Conclusion
Doing problems and puzzles like these is a fun and

motivating activity that can be easily implemented
into the mathematics classroom. The structured search
provides another problem-solving tool for effec­
tively approaching these problems.

delta-K, Volume 42, Number 1, December 2004

	15 -18 Programming and Problem Solving with the Tl-83 Plus: The Structured Search

