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GUIDELINES FOR MANUSCRIPTS

delta-K is a professional journal for mathematics teachers in Alberta. It is published to

promote the professional development of mathematics educators, and
stimulate thinking, explore new ideas and offer various viewpoints.

Submissions are requested that have a classroom as well as a scholarly focus. They may include

personal explorations of significant classroom experiences;

descriptions of innovative classroom and school practices;

reviews or evaluations of instructional and curricular methods, programs or materials;
discussions of trends, issues or policies;

a specific focus on technology in the classroom; and

a focus on the curriculum, professional and assessment standards of the NCTM.
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1. All manuscripts should be typewritten, double-spaced and properly referenced.
2.
3. Pictures or illustrations should be clearly labelled and placed where you want them to appear in the article.

Submit work elecwonically, preferably in Microsoft Word format.

A caption and photo credit should accompany each photograph.
If any student sample work is included, please provide a release letter from the student’s parent allowing
publication in the journal.

. Limit your manuscripts to no more than eight pages double-spaced.
. A 250-350-word abstract should accompany your manuscript for inclusion on the Mathematics Council’s

website.

. Letters to the editor or reviews of curriculum materials are welcome.
. delta-K is not refereed. Contributions are reviewed by the editor(s), who reserve the right to edit for

clarity and space. The editor shall have the final decision to publish any article. Send manuscripts to
A. Craig Loewen, Editor, 414 25 Street S, Lethbridge, AB T1J 3P3; fax (403) 329-2412, e-mail loewen@uleth.ca.

Submission Deadlines

delta-K is published twice a year. Submissions must be received by August 31 for the fall issue and

December 15 for the spring issue.

MCATA Mission Statement

Providing leadership to encourage the continuing enhancement
of teaching, learning and understanding mathematics.
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EDITORIAL

This is my first issue of delta-K since I took over as editor from Klaus Puhlmann in the fall of 2003. I want
to thank the many people who have been so supportive during this transition, including ATA staff advisor Dave
Jeary, ATA publications supervisor Karen Virag, MCATA publications director Shauna Boyce and all the ex-
ecutivemembers of the Mathematics Council of the Alberta Teachers’ Association (MCATA). Your encourage-
ment and support have meant a great deal!

Of course, [ also want to express my thanks, appreciation and congratulations to Klaus Puhlmann as he
retires as editor after so many years of superior and dedicated service. We all owe Klaus this sincere acknowl-
edgement of his outstanding work. Thank you, Klaus!

At our last meeting, the MCATA executive voted to begin the process of making delta-K a refereed journal.
This move will bring delta-K (and, by extension, MCATA) increased recognition for its publishing efforts while
maintaining its traditional high standards and further enhancing its reputation.

This move will change guideline 8 in the guidetines for manuscripts on the inside front cover. Once delta-K
becomes arefereed journal, articles will be submitted for an initial overview to the editor, who will in turn send
the articles to two reviewers, each of whom has a special interest in mathematics education. Based on the re-
viewers’ recommendations, articles will appear in future issues of delta-K. The final decision to publish any
article remains with the editor. Guidelines for this process are not yet finalized but will become available in
upcoming months.

delta-K remains committed to encouraging and publishing high-quality articles pertaining to the profes-
sional development of mathematics educators, and articles that stimulate thinking and explore new ideas and
viewpoints. We continue to be interested in articles with a classroom or scholarly focus. Please feel free to
submit your ideas regarding mathematics instruction—in the form of articles, activities, letters or problems.
Our goal is to help teachers and other educators share their ideas and strategies with the aim of continually
supporting and refining mathematics instruction across the province.

I have selected some of my favourite problems for the last page of this issue. If you have a problem you
want to share, send it to me at loewen@uleth.ca. I’ll try to include it in the next issue. Enjoy!

A. Craig Loewen
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FROM YOUR COUNCIL

From the President’s Pen

The previous MCATA president, Cynthia Ballheim, has moved to Columbus, Ohio, and is teaching math-
ematics at a Catholic high school. Because of the distance and logistical problems, Cynthia found it too difficult
to continue to serve as president. She intends to stay in touch with MCATA and will be consulted as needed. I
have agreed to move from vice-president to serve as president until June 2004, when the executive positions
will be reviewed.

I have been a mathematics teacher for 29 years with the Edmonton Catholic School District, except for a
one-and-a-half-year secondment with Alberta Leaming. Currently, I am coordinator of mathematics and sci-
ences at Holy Trinity High School in Edmonton. I have served on the MCATA executive for four years, and I
hope to continue to provide the kind of leadership that Cynthia demonstrated during her many years of ser-
vice.

delta-K continues to be MCATA’s academic publication and is organized by our new editor, Craig Loewen
of the University of Lethbridge. The executive is moving toward making delta-K a refereed journal, as Craig
explained in his editorial. We look forward to reading the high-quality articles published in delta-K in the
future.

Speaking of reading, if you enjoy reading books that connect mathematics to society, nature and other areas
of life, I recommend the following:

» The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time, by Keith Dev-

lin (Basic, 2002)

e The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and

Adaptation, by Gary William Flake (MIT Press, 1998)

* Numbers in the Dark and Other Stories, by Italo Calvino (translated from the Italian by Tim Parks)

(Knopf, 1995)

Enjoy the books, and thank you for continuing to support MCATA.

Len Bonifacio
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FEATURE ARTICLES

Determining the Angles
Between Two Lines

David E. Dobbs

In preparing a recent lecture for a course on non-
Euclidean geometry, I needed a formula to determine
the angles formed by two intersecting lines in Euclid-
ean plane geometry. The relevant formulas in Propo-
sition 6.2 of The Poincaré Half-Plane: A Gateway to
Modern Geometry (Stahl 1993), the textbook for the
course, depended on methods not needed again until
the textbook’s coverage of the hyperbolic version of
the Pythagorean theorem (Theorem 8.3). I decided
to seek alternative formulas with minimal prerequi-
sites and the additional benefit of being easy to imple-
ment on modem calculators.

Because the task at hand would be meaningful for
a precalculus class, I consulted a current leader in that
market, Precalculus: Mathematics for Calculus
(Stewart, Redlin and Watson 2002). The relevant
method given in this textbook used the formula

u-v

il

where u and v are vectors in directions determined
by the given intersecting lines, and then used the
inverse cosine function and related angles (also
known as reference angles) to compute the angles in
question (p. 604, Example 2). The prerequisites for
this approach become available rather late in a pre-
calculus course; for instance, the above formula for
cos(8) is proved using the law of cosines (p. 603).
Therefore, I looked further for an accessible method
that could be implemented with relatively few key-
strokes on a calculator.

At first glance, it seemed that 4 First Year of Col-
lege Mathematics (Brink 1954, 359), a textbook of
50 years ago for the precursor of today’s precalculus
course, contained the answer for the angles deter-
mined by intersecting nonvertical lines having slopes
m, and m,, by use of the formula

tan() = ——

cos(0) =

m, —m,
1+mm,

Unfortunately, in this formula, § can be negative
(p. 358), contrary to our natural desire to determine
angles between 0 and z. (Of course, as is appropriate
for precalculus and beyond, we are measuring angles
in radians.)

I modernized the formula from Brink (1954) by
developing some accessible, calculator-friendly for-
mulas (see the theorem later in the article). Part (a)
of the theorem concerns the case where two nonver-
tical lines intersect, and part (b) addresses the situa-
tion where one of the intersecting lines is vertical.
This theorem can be presented as enrichment mate-
rial quite early in a precalculus course because its
only prerequisites are a pair of facts from geometry
(equality of corresponding angles cut from parallel
lines by a transversal, and relation of an external
angle of a triangle to the remote interior angles of the
triangle), slope, the slope-intercept equation of a
nonvertical line, angle of inclination of a line, the
definitions of the tangent and inverse tangent func-
tions, and the usual expansion formula for tan(« — v).
For the sake of completeness, the next section begins
with a proposition thatrecalls the connection between
the slope and the angle of inclination of a nonvertical
line. The closing remark provides an example com-
paring the speed of applicability of the three methods
mentioned above.

The centrality of the tangent function in trigonom-
etry (and thus, nowadays, in precalculus) has been
implicit for millennia, at least since the time of Tha-
les. I have written a number of articles (Dobbs 1984a,
1988, 1991), suitable for use in a precalculus course,
explaining how the tangent function can be used to
give new proofs of various facts presented in typical
high school geometry and precalculus courses. In
several such notes, investigations using analytic (as
opposed to synthetic) methodology have developed
new results, as well (Dobbs 1984c, 1984d). This ar-
ticle is intended as another contribution to this pro-
gram. In using it,the reader may wantto consult Dobbs
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(1984b) for a self-contained proof of the expansion
formula for tan(z * v) that is more accessible than
the proof in standard textbooks in that it is indepen-
dent of the expansion formulas for sin(¥ * v) and
cos(u T v). Finally, note the central role of the for-
mula for tan(z £ v), asit figures in a characterization
of the tangent function (Dobbs 1989, Theorem 3),
a result later used by the College Board and Educa-
tional Testing Service as the basis for the final ques-
tion on the Advanced Placement Calculus BC ex-
amination in May 1993.

Formulas Based on the
Inverse Tangent Function

We begin by recalling the definition of what will
be our key tool. If L is a line, then the angle of incli-
nation of L is defined as the angle ¢ between L and
the positive x-axis such that 0 < ¢ < z. If L has posi-
tive slope, then 0 < ¢ < 7/2, as in Figure 1.

Figure 1
Acute Angle of Inclination

If L has negative slope, then /2 < ¢ <, as in Figure 2.

Figure 2
Obtuse Angle of Inclination

\# .

If L has slope equal to 0, then L is horizontal and it
is conventional to take the angle of inclination of L
to be 0. Last, if the slope of L is undefined (that is, if
L is vertical), then ¢ = 7/2. Part (a) of the following

delta-K, Volume 41, Number 2, June 2004

proposition is well known (see Brink 1954, 357);
parts (b) and (c) are also essentially known and will
be useful later in the proof of the theorem.

ProrosITION. Let L be anonvertical line having slope

m and angle of inclination @. Then,

(a) tan(p) =m.

(b) If ¢ is an acute angle, then @ = tan™'(m).

(c) Ifois an obtuse angle, then ¢ = T — tan™'(-m)
=mn + tan”’ (m).

Proor. (a) If ¢ is acute, then tan(¢) and m are the
same ratio of two sides of a right triangle having
@ as one of its angles. Suppose next that ¢ is obtuse,
with related angle 6. Then, the preceding reasoning
gives that tan(d) = —m. Moreover, tan(p) = —tan(6)
by the definition of the tangent function, as given
in Brink (1954, 200, 233). The assertion follows
easily. (The preceding argument was tailored for
classes whose definition of the trigonometric func-
tions is, like that in Brink [1954], based on angles
in standard position and related angles. An alterna-
tive proof should be given to classes whose defini-
tion of the trigonometric functions is based on the
unit circle.)

(b) The assertion in (b) follows from (a) and the
definition of the inverse tangent function.

(c) Suppose that ¢ is obtuse. Let 8 be the related
angle of ¢. Since ¢ + 8 = =, it follows that @ is
an acute angle. Also, as noted in the proof of
(a), tan(d) = —m. Then @ = tan~!(-m) = —tan"!(m), the
first equality holding by the definition of the inverse
tangent function and the second equality holding
because tan' is an odd function. Substituting these
facts into the equation ¢ = 7 — @ leads to the assertions
in (c), to complete the proof. 0

The formulation of our main result ignores the case
of perpendicular lines because this case can be han-
dled directly. Indeed, if L, and L, are coplanar lines
having slopes m, and m,, respectively, every precal-
culus course covers the fact that L and L, are per-
pendicular if and only if 1 + m m, = 0. Moreover, a
vertical line L is perpendicular to a coplanar non-
vertical line L, having slope m, (at their point of in-

2
tersection) if and only if m, = 0.

THEOREM. Let L and L, be two intersecting non-
perpendicular lines in the Euclidean plane. Then, (a)
suppose that L and L, are each nonvertical, having
slopes m, and m,, respectively. Then, the two acute
angles formed by L, and L, at their point of intersec-
tion are each given by

i }1:'"_
1+mm,| |’




and the two obtuse angles formed by L and L, at
their point of intersection are each given by

1+ mym, ]
(b) Suppose that L, is vertical and that L, has slope
m,. Ifm, > 0, then the two acute angles formed by L,
and L, at their point of intersection are each given
by W2 — tan”'(m,), and the two obtuse angles formed
by L, and L, at their point of intersection are each
given by /2 + tan”'(m,). If m, < 0, then the two acute
angles formed by L, and L, at their point of intersec-
tion are each given by n/2 + tan”'(m,), and the two
obtuse angles formed by L, and L, at their point of
intersection are each given by w/2 — tan™'(m,).
Proor. (a) Four angles are formed at the intersection of
L, and L,. Since vertically opposite angles are congru-
ent, it suffices to determine one of these angles, say a.
The other three angles of intersection are thena, 7 — a
and 7 — a. It is convenient to distinguish six cases.
Case 1. 0 <m, <m,, with a acute. The data are de-
picted in Figure 3.

m —m
T —tan™’ ! 2

Figure 3
Case 1

L
Q, Lg

,
]
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!
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By abasic fact about triangles in Euclidean geometry,
the exterior angle ¢, is the sum of the two remote
interiorangles, @ and ¢,, and so a = ¢, - @,. Moreover,
by part (a) of the proposition, tan(e,) = m, and

tan(p,) = m,. Therefore, by the expansion formula

for tan(u — v), we have that
) ~ tan(p,)—tan(p,)
tan(a) = tan(e, - ¢,) = 1+ tan(¢, ) tan(ep, )
o —m, m —nt,

N 1+ mm, 1+ mpm,

Since a is an acute angle, the definition of the inverse

tangent function ensures that
a = tan™'(tan(a))

in this case, so the asserted formula for a has been

established.

CasE 2. m < m, <0, with a acute. The data are
depicted in Figure 4.

Figure 4
Case 2

The exterior angle ¢, is the sum of the two remote
interior angles, aand ¢, and so a = ¢, — ¢,. Combin-
ing part (a) of the proposition, the expansion for-
mula for tan(x — v) and the definition of the inverse
tangent function as above, we see that
m,—m, _ [ml —-m,

\l + m;m,

tan(a) =
1 +m,m,

and a = tan"!(tan(a)). The asserted formula for «
follows.

Case 3. m, < 0 < m,, with a acute. The data are
depicted in Figure S.

Figure 5
Case 3

/1

Lo

4N\
7 A
(3

I' \
(7 Tk (0L S

As in the analysis for Case 2, we infer that

Mo P _ iml —

1+m,m, |1 + mym,

(The last equality holds since m, — m and 1 + m,m,
are both negative, but it is not really necessary to
observe this, because we need only appeal to the fact
that any acute angle has a positive tangent.) Case 3

can now be completed in the earlier cases by appeal-
ing to the definition of the inverse tangent function.

tan(a) =

delta-K, Volume 41, Number 2, June 2004



Case 4. m, < 0 < m,, with a obtuse. The data are
depicted in Figure 6.

Figure 6
Case 4

Ly

2

i S - S
As in the analyses for Cases 2 and 3, we infer that
m, —m m, —m
tan(a) = ———1 =—| ! .,
1+ m,m, |l+m]m2

the last equality holding since obtuse angles have
negative tangents. Next, note what was effectively
established in part (c) of the proposition—that any
obtuse angle a satisfies

a=x —tan™'(Jtan(a)|);
this can also be seen as a consequence of the basic
facts about related angles (see Brink 1954, 233, Rule).
Combining the assembled information leads to the
asserted description of a.

Case 5. 0 = m, < m, with a acute. The data are
depicted in Figure 7.

Figure 7
Case 5

/I
P .

Relative to the transversal L , the parallel lines L, and

the x-axis cut off exterior corresponding angles a and

@,. Therefore, by a fundamental result in Euclidean

geometry, a = ¢,. Hence, by part (b) of the proposition,

", —

a=tan"'(m ) = tan™ -
1+ mm,

and the asserted description of a follows easily.

delta-K, Volume 41, Number 2, June 2004

Caste 6. m, < m, = 0, with a obtuse. The data are
depicted in Figure 8.

Figure 8
Case 6

Ly

% Ly

T

As in the analysis of Case 5, we see that a and ®,
are exterior corresponding angles and, hence,
equal (in measure). In particular, part (a) of the
proposition yields that tan(a) = m,. Then, since a 1s
obtuse, a fact recalled in the analysis of Case 4---or
an application of part (c) of the proposition—yields
that
a = n —tan"'(Jtan(a)|) = 7 — tan”'(|m,|).

Since m, = 0, the asserted description of a now fol-
lows easily.

(b) The opening comments in the proof of (a) are
enough to prove the assertions concerning the acute
angles of intersection a. Let ¢, denote the angle of
inclination of L,. Suppose first that m, > 0, as in
Figure 9.

Figure 9
L, Vertical and L, with Positive Slope

L
Ly

Y

)
< & i

Since m, > 0, we have that ¢, is an acute angle, so
part (b) of the proposition gives @, = tan™'(m,). There-
fore, since a and ¢, are complementary, we have
a=nr/2 - @, = n/2 —tan"'(m,), as asserted.

Finally, suppose that m, <0, as in Figure 10.




Figure 10
L, Vertical and L, with Negative Slope
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We have the exterior angle ¢, equal to the sum of the
two interior remote angles, a and /2. Since ¢, is
obtuse, we could now complete the proof by using
the fact recalled in the analyses of Cases 4 and 6. For
variety, we argue instead through part (c) of the
proposition. This givesthat ¢, = z + tan™'(m,). There-
fore, a = @, — #/2 = (x + tan”'(m,)) - @/2 = 7/2 +
tan™'(m,), to complete the proof. o

Remark. Consider the lines L, and L, with Cartesian

equations 2x — 3y +4=0and 5x + 6y + 7 =0, respec-

tively. Solving for y, we obtain the equations in slope-
4 7

: f = + — — P

intercept form as y 54 3 and y i

respectively. Therefore, the slopes of the given lines

are the coefficients of x in slope-intercept form:

m, = % and m, = — % . Implementing part (a) of the

theorem (with the aid of a TI-86 graphing calculator),
we see that the radian measure of an acute angle
formed by L, and L, at their point of intersection is

= 1.28274087974,

and so an obtuse angle formed by L, and L, is given
approximately by the supplement of the preceding
value:

- 128274087974 = 1.85885177385.

Notice that, in implementing the theorem, we need
no diagram and there are no ambiguities. In particu-
lar, because of the absolute value symbol appearing
in the formulas in part (a) of the theorem, it does not
matter which line we called L, and which L,. In ad-
dition, the above narrative displays the relatively few
calculations and keystrokes needed in this routine
application of the theorem.

Let us compare the above work with how the
methods in Brink (1954, 359) and Stewart, Redlin
and Watson (2002, 604) would handle the same
problem.

First, we consider the method from Brink (1954, 359),

using the formula
m, —m,
tan(6) = - -

1+mm,
With the above values of m, and m,, we find that

tan(d) = '2§7= 3.375. One such @ is tan"'(3.375) =
1.28274087974, the acute angle that we found using
the theorem; thus, by calculating the supplement of
6, one would also find the obtuse angles formed by
L and L,

However, one should not conclude that Brink’s
(1954, 359) method is as useful in general as that
in part (a) of the theorem. What if we interchanged
the labels on the lines L, and L,? We would then be
led to consider an angle @ such that tan(8) = -3.375.
This @ is neither the acute nor the obtuse angle that
we are seeking! Moreover, a calculator cannot come
to the immediate rescue, because the inverse tangent
of this fis negative. Granted, with a careful diagram
and some thought about related angles, a skilled user
ofthis method could eventually find the desired acute
and obtuse angles. In contrast, a user of the theorem
need never worry about such matters, because the
case analyses in the proof of the theorem took care
of them once and for all.

Next, we consider the currently popular vectorial
method in Stewart, Redlinand Watson (2002, 604). To
apply this method, we first need to find a vector u
in a direction determined by Z, and a vector v ina
direction determined by L,. To find u, we first find
two points on L , say the 1ntercepts of L onthe x- and
y-axes. Setting one variable equal to 0 in an equation
for L and solving for the other variable, we are thus
led to the points P (0, k) ) and P ( -2,0)on L.A sult-
able u is then the vector P g =<-2,5 5 >;
some notational conventions would write this vector
as (-2,
work with an equation for L, would find a suitable

4 < - ..
—5) or -2 —%j . A similar amount of

V to be the vector < - g e >, Applying the formula
on page 604, we are then led to an angle 6 such that

A

Iulll (2] L7
(V6
~(0.284088329691.

Onesuch@iscos™(0.284088329691)~1.28274087974,

the acute angle that we found using the theorem; thus,

by calculating the supplement of &, one would also
find the obtuse angles formed by L, and L,.
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As one might suspect from the above discussion,
this method can be made as useful in general as that
in the theorem, but one would need the following
additional provisos. If the calculated value of cos(6)
is positive (resp., negative), then taking the inverse
cosine of this number produces the acute (resp., ob-
tuse) angle(s) formed at the point of intersection of
L and L,

The method in Stewart, Redlin and Watson (2002,
604) does have an advantage: it does not need to
consider separately the case in which one of the
intersecting lines is vertical, as we did in part (b)
of the theorem. However, as the above example il-
lustrates, the number of calculations and keystrokes
needed to implement this method is considerably
greater than the corresponding effort in applying
the theorem.

Last, I indicate another aspect, which I view as a
drawback, of this method. Notice that if we inter-
change the labels on the points P, and P, considered
above, then # is replaced with —u and the calcu-
lated value of cos(f) changes to the negative of the
previous value. Thus, this method cannot guarantee
a priori whether the first angle 0 that it finds is going
to be acute or obtuse. As explained above, this am-
biguity can be removed, at the possible cost of cal-
culating a supplementary angle, after observing the
sign of the calculated value of cos(d). By way of
contrast, no such thought or supplementary calcula-
tion (pun intended) is needed in applying the theorem;
once again, the point is that the case analyses in the
proof of the theorem took care of such issues once
and for all.

delia-K, Volume 41, Number 2, June 2004

If time is short, a classroom presentation covering
the main points given above could be based on the
proposition; the statement of the theorem; cases 1, 4
and 6 from the proof of the theorem; and the part of
the remark in which the theorem is applied.
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Sums of Arithmetic Sequences:
Several Problems and a Manipulative

A. Craig Loewen

An extremely powerful and important link exists
between manipulatives and problemsolving. Through
the use of manipulatives, we come to understand
mathematics; through problem solving, we are chal-
lenged to apply what we have learned.

Consider the following four problems:

1. There are 50 people at a party. Each person shakes
hands once with each of the other people. How
many handshakes occur in total?

2. How many diagonals are in a regular hectagon (a
polygon with 100 sides)?

3. Bricks are stacked to create a pyramid like the one
shown below. How many bricks would be required
to build a pyramid 75 rows tall?

4. As in the well-known Christmas song, on the first
day of Christmas, my true love gives me one par-
tridge in a pear tree. On the second day, my true
love gives me two turtledoves. If my true love
continues for a full year (365 days) to give me one
gift more each day than the previous day, how
many gifts will [ receive in all?

Though these problems look unlike on the surface,
they share at least one important quality: the solution
to each requires summing a series of consecutive
whole numbers.

A Historical Note

A story about a famous mathematician, Carl Fried-
rich Gauss, tells how Gauss, while still a schoolboy,
was required to sum the numbers 1-100 as a punish-
ment. He finished the task far ahead of his classmates.
It seems that Gauss realized that by grouping the
numbers he could identify a pattern and thus sim-
plify his work:

Sum=1+2+3+...+98+99+ 100

=(1+100)+((@2+99)+...+(50+51)
=101+ 101 +...+101.
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There are 50 pairs, each totalling 101. Thus,

Sum =50 % 101
=5,050.

There is a similar way to understand and attack
this problem. Below the first equation, write the equa-
tion in reverse order, then add the two equations:

Sum=1+2+...+99+ 100
Sum=100+99+ ., . +2+1
2-Sum=101+101+...+101 + 101

Because we know that the equation has a hundred
101s, we can write

2-Sum=100 x 101
=50 %101
=5,050.

Starting with a simpler problem, let’s look at a
manipulative that shows why this might work.

Solve a Simpler Problem

Consider the following task: Find the sum of the
numbers 1-7.

A familiar manipulative such as Cuisenaire Rods
can be used to model this task. Take one each of the
seven shortest rods and arrange them in a staircase
as shown:

The total length of all the stairs is equal to the sum
we are trying to find. Also, because each rod has a
width of 1 unit, the area of the staircase is equal to
that sum.

Now arrange a second staircase as shown:

r T
L. [

——
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Slide the two staircases together to create a rectangle.

» What are the length and width of this rectangle?

» How does the area of the rectangle compare with
the sum we are trying to find?

» What is the largest such staircase you could
build?

+ Using graph paper, draw a staircase showing the sum
of the numbers 1-20. Draw the related rectangle.

 Could the same process be used regardless of the
number of stairs? Why?

» Describe how you could find the sum of the count-
ing numbers up to any given value.

* Write a formula to show how this sum could be
easily calculated.

Through this manipulative and exploration, we
come to see that the sum of 7 counting numbers start-
ing at 1 is

Sum = n(n+1) _

Applying What We Know

Now we can easily apply what we have learned to
the original four problems.

In the first problem, the first person at the party
will shake hands with 49 people, the second person
will shake 48 hands and so on. Thus, the solution to
the first problem is

Sum=49+48+47+...+2+1

_49(49 +1)
= 5 :
Likewise, the solution to the third problem is
Sum= 1305+ 1)
The solution to the fourth problem is
Sum = _365(3;5 +1) _

But be careful! The solution to the second problem
is a bit trickier. We know that a hectagon has 100
sides, so it is tempting to think that we can just use
Gauss’s answer for the second problem. But the cor-
rect answer is not 5,050!

Imagine the vertices of a hectagon spread evenly
around a large circle. We can begin to connect these
vertices two at a time to create our diagonals. There
will be 99 lines from the first vertex to each of the
other 99 vertices, 98 lines from the second vertex and
so on. This implies that the final answer is half of
99 x 100. But again, it isnot! In drawing these lines, we
have included the edges of the hectagon itself, and
these edges are not diagonals (by definition, diagonals
must pass through the interior of the figure). So, we
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must remember to subtract the 100 edges of the
hectagon to reach our final answer. Thus, the number
of diagonals in a regular hectagon is

Diagonals = 99—(9%+—1—) —100.

Note that, even when we have a useful formula, we
must still think carefully to apply it appropriately.

One Step Further:
Extending What We Know

Now, let’s return to the third problem and imagine
a pyramid of bricks like tlie one shown:

LT T ITT]

LITTTTTT]

This is the same type of pyramid except the first
row has something other than a single brick.

Onceagain, we can apply our manipulative to this
sequence. First, build a staircase starting with the
Cuisenaire Rod 3 units in length, and use each of the
rods to a length of 8 units.

I

S |

* What are the length and width of this rectangle?
How are the length and width determined?

* How does the area of the rectangle compare to the
sum we are seeking?

+ If you knew only the length of the first stair and
the length of the last stair, could you predict how
many stairs there are in all?

* How could we use our first formula,

n(n+1)
2 ’
to generate a formula for this problem?

11




« Rewrite the Christmas problem so that my true love
gives me something other than one gift on the first day.
Apply your revised formula to solve this problem.

Other Variations

We can vary these problems in many other ways
to increase the challenge. For example, let’s assume
that my true love gives me two gifts on the first day,
four gifts on the second day, six gifts on the third day
and so on. How many gifts would [ receive in 12 days?

This problem differs from the others in that the
successive values in our sequence increase by two
rather than one:

Sum=2+4+6+... +24,

In general terms, the first sequences we added were
oftheform 1, 2, 3,.. ., n.

Next, we considered sequenceslike ¢, ¢+ 1,¢c+2,
L.,ctn

This last problem introduces another sequence:
a,2a,3a,.. . na.

The next logical step is to consider the sequence
¢,c+a,c+2a,c+3a,... c+na Inthissequence,
we can begin at a value other than I, and the differ-
ence between successive elements in the sequence
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can be a value other than 1. For example, in the se-
quence 6, 10,14, 18,22, ..., c=6and a=4.

» What would a pyramid of bricks that followed the
fourth sequence above (a # 1 and ¢ # 1) look like?
Generate several examples.

« How are the four types of sequences related?

» Develop a formula for finding the sum of a se-
quence suchas 7,12, 17, .. ., 717.

Conclusion

Our most powerful leamning experiences are those
in which we explore and experiment in a meaningful
context. Manipulatives help us to see not only how
but also why something works. Also, students need
opportunities to apply mathematics through problem
solving. It is not necessary or even desirable to treat
manipulatives and problem solving separately. When
problem solving is incorporated in a manipulative
activity, we can provide many dynamic leaming op-
portunities for our students.

A. Craig Loewen, editor of delta-K, is an associate professor of
mathematics education and assistant dean of Student Program
Services in the Faculty of Education at the University of Leth-
bridge in Lethbridge, Alberta
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Developing Three Distinct Number
Patterns from a Single Diagram

David R. Duncan and Bonnie H. Litwiller

Mathematics is in large part a study of relationships
and patterns. Teachers are always on the lookout for
settings in which these relationships and patterns can
be discovered and considered. Finding several pat-
terns in a single setting is a serendipitous occurrence.

Consider the following set of points:

Figure 1
Row 1
Row 2 s e
Row 3 5w e
Row4 5 dw w4
Row 5 a =S
Row 6 S & @ .
Row 7 4 @ O T TR ‘
Row 8 & ® el WP @ e wmu @

We will discuss three problems in this setting.

Problem 1
How many points does Figure 1 contain? Rows 1,
2,3,...,8contain, respectively, 1,2, 3, ..., 8 points.

Consequently, the eight rows together contain | + 2
+3+4+4+5+6+7+ 8§ points. Your students may
recognize this to be the eighth triangular number.

Problem 2

Figure 2 displays the same set of points as Figure 1
but with connecting pathways superimposed.

Figure 2
Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8 /

In how many ways can you proceed downward from

Row 1 to Row 8§, following only the indicated paths?

We can break this task into a series of seven con-

secutive tasks:

+ Task 1: You can proceed from Row 1 to Row 2
using either of two paths.

* Task 2: From any point in Row 2, you can proceed
to Row 3 using either of two paths.
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* Task 3: From any point in Row 3, you can proceed
to Row 4 using either of two paths.

* Tasks 4-7: From any point in each of Rows 4-7,
you can proceed to the next row using either of
two paths.

Using the fundamental principle of counting, we find
that the number of ways to perform Tasks 1-7 is
2:2-2-2-2-2-2=2" Thus, there are 27, or 128,
distinct paths from Row 1 to Row 8.

Problem 3

Let us again consider Figure 1. In Problem 2, we
were restricted to only two pathways from each point
to the following row. Suppose that we abandon that
condition and proceed directly from a point in one
row to any point in the next row. In how many ways
can you proceed from Row 1 to Row 8 under these
more flexible rules?

* Task 1: You can proceed from Row I to Row 2
using either of two paths.

» Task 2: From any point in Row 2, you can proceed
to Row 3 using any one of three paths (remember
that you can go directly to any of the three points
1n Row 3).

* Task 3: From any point in Row 3, you can proceed
to Row 4 using any one of four paths.

* Task 4: From any point in Row 4, you can proceed
to Row 5 using any one of five paths.

» Task 5: From any pointin Row 5, you can proceed
to Row 6 using any one of six paths.

» Task 6: From any pointinRow 6, you can proceed
to Row 7 using any one of seven paths.

+ Task 7: From any point in Row 7, you can proceed
to Row 8 using any one of eight paths.

Again using the fundamental principle of counting,
we find that the number of ways to perform Tasks
1-7i1s2-3-4-5-6-7-8, or 8. Thus, there are
exactly 8!, or 40,320, distinct ways of proceeding
from Row 1 to Row 8.

We have been using a set of eight rows of points
for Problems 1-3. If Figure 1 were extended to #» rows
of points formed in the same way, the answers to the
three problems would be as follows.
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Problem 1

How many points does the figure contain? There
are ] +2+3+4+ ...+ n(thenthtriangular number).

Recall that the nth triangular number is ﬁgn; D .

Problem 2

How many paths can you take from Row 1 to Row n
when each point is connected to two points in the

following row? You can take &2:2...2 2,
such paths_ n—1factors
Problem 3

In how many ways can you proceed from Row 1|
to Row # if the paths of Problem 2 need not be
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followed? You canproceedin2 -3-4-... n, orn!,
such ways.

These three results represent three fundamentally
different categories of mathematical formulations:
summations, exponentials and factorials.

Have your students check out these formulas
for specific values of n by drawing the figures and
counting whatever the problem calls for. Can you
and your students find other problems arising from
Figure 17

David R. Duncan and Bonnie H. Litwiller are professors of
mathematics at the University of Northern lowa in Cedar Falls,
Jowa.
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A Focus on Fostering Number Sense
Makes a Lot of Sense

Werner Liedtke

Number sense is the most important pre- and
corequisite for numeracy. Number sense contributes
to flexible thinking in numerical situations and the
ability to solve problems. Without a conscientious
focus on fostering number sense through key aspects
of the curriculum (the teacher, resources, materials
and so on), it is unlikely that most students will de-
velop this sense. Consideration of number sense must
go beyond unit topics and should, whenever possible,
be part of the ongoing program. When students are
not able to make sense of the numbers being
manipulated, mathematics learning becomes rote
or, as research shows, overwhelming and anxiety
inducing.

In A Handbook on Rich Learning Tasks, Flewelling
and Higginson (2001) label the term rote learning an
oxymoron (p. 24), identify rote learmning as a major
source of anxiety (p. 28) and suggest that it is an
impediment to problem solving (p. 26). The authors
state, “Rote-learning-plus-practice techniques train
problem solvers as well as paint-by-numbers tech-
niques train artists” (p. 27).

Inthisarticle, I identify the important components
of number sense and illustrate them through examples
using two-digit numbers. Most of these ideas can
easily be adapted to other whole numbers and to frac-
tions, decimals and integers.

Visualization

When students hear or see a two-digit number, they
should be able to visualize the number. In responses
to interview questions about numbers, students ut-
tered phrases such as “I see itin my brain” and “I see
it in my mind.” For example, when they hear the
words thirty-four or see the numeral 34, students
should be able to “see” the smallest number of base-
10 blocks, dimes and pennies, or $10 and $1 bills
needed to represent that number.

To develop this sense, students should learn to
make as many groups of 10 as possible from the
number, recording the result in a box titled “Tens.”
What is left goes in a box titled “Leftover Ones.” To
enhance the association of digits with the appropriate
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place values, the students record the digits again
below and beside these boxes.

Some resources suggest that the main reason for
grouping by tens and ones is that it is faster and
easier. Nothing could be further from the truth. For
children in the early grades, it is much faster to count
by ones and easier, or less work, not to group the
objects. In fact, the main reason for adopting this
procedure is that it allows us to use only 10 digits (an
accident of nature?) to record an infinite number of
number names.

Flexible Thinking

Students learn that, using only tens and ones, they
can show two-digit numbers in at least two ways. For
example, students can be given the following
problem:

What are the different ways to show 42 using tens
and ones? How do you know that you have found
them all?

Students can solve and even create riddles such as
the following:

I have only dimes and pennies. I have six
coins. How much money do I have? How do you
know that you have recorded all the possible
answers?

Connecting

Students should be shown that two-digit numbers
connect to many aspects of their experience—money,
games, books on shelves, book orders, children in
classrooms and so on.

Relating

When we talk about or compare two-digit numbers,
we use terms such as greater than, less than, close
to, between, far apart, ones place, tens place, odd,
even, sum of the digits and so on. Teachers can solve
and create riddles for missing, hidden or secret num-
bers on a 99 chart (see Figure I).
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Figure 1

99 Chart
0 1 2 3 4 5 6 7 | 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 2 | 3 34 35 36 37 | 38 39
0 4 2 | a3 a4 45 46 47 | 48 49
50 51 52 53 54 55 56 57 | 8 59
60 61 62 63 64 | 65 66 67 68 69
70 71 72 73 75 76 71 | 78 79
0 8 8 8 84 8 8 8 | 8 89
% 91 92 93 94 95 % 97 | 98 99

Over the years, I have collected many excellent
secret-number riddles created by Grades 1-7 students.
Samples provided by the same group of students over
a period of time indicate that sophistication and ac-
curacy increase as students are given more opportu-
nities to create riddles.

The following is an example of a secret-number hunt:

The number . . .
.. is less than 54.
.. 1s not between 36 and 54.
.. does not have a 3 in the tens place.
. is greater than one dozen.
. has an odd number as the sum of its digits.

As hmts of this type are presented, one at a time,
students look at the 99 chart and are invited to respond
to the questions, “Which number(s) do you think it
could not be?” and “Which number do you think it
could be?”

Estimating

A key strategy for learning how to estimate in-
volves using a referent—in this case, a group of 10
or 10 fingers. For example, when students are asked
to look at a group of objects and estimate how many
objects there are, they use their fingers as a referent
and pretend to put the objects in groups of 10. They
then report their estimates to the nearest ten (that is,
“About __ tens”). For a variation, rather than record-
ing an estimate, students could be given three
choices, asked to select the best estimate and be ready
to justify their choice. Should any estimates be
deemed unreasonable or illogical? Teachers should
take great care in assessing estimates. Number sense
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develops slowly, and estimates may ditfer greatly
from student to student. Labelling an estimate, if it
is an estimate, as illogical seems illogical to me.

Resources for teachers include ideas for estimation
tasks that pose a question such as “How many marbles
are in the jar?” The greatest value of these types of
tasks lies not in the numerical responses provided by
the students but, rather, in the strategies students use
to arrive at their responses and in the follow-up dis-
cussion comparing the strategies.

Subitizing

The term subitizing refers to the ability to recog-
nize the numerousness of small sets and to attach the
appropriate name to the sets without having to count
each member. I would like to think that a type of
subitizing is possible for two-digit numbers. After
students have had many opportunities to represent
two-digit numbers in different ways, the teacher could
try the following task:

Ask three children to come to the front of the room.
Ask two of them to hold up 10 fingers each and
one of them to hold up four fingers (whispering in
their ears so the rest of the students can’t hear).
Then, ask the remaining students, “How many
fingers do you see?”

Depending on their previous experiences, many stu-
dents will be able to identify the number without
having to count each finger. As they look at the num-
bers displayed, students will also reach a stage at
which they can state numbers that are one more, one
less, 10 more, 10 less, or even double or half of the
numbers shown.
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Mental Calculation

The task described under the category of subitizing
involved visualization or aspects of mental calculation.

It is discouraging to encounter students who, when
asked to describe how they might proceed to find an
answer without using pencil and paper, explain some-
thing that 1s the same as a recorded algorithm. That
is not the intent or the goal of mental calculation.
Opportunities for flexibility exist, and different levels
of number sense can be accommodated. For example,
the teacher can give students the following task:

Let’s pretend that we have 24 books and we order
13 more. How many books will we have?

After two groups of students have been asked to
represent these two numbers at the front of the room,
different ways to find the answer without using pen-
cil and paper can be illustrated. An interesting discus-
sion canrevolve around the question, “Which starting
point did you like best? Why?”

Practice

As I pointed out earlier, rote practice is of little
value. In Future Basics: Developing Numerical
Power, Charles and Lobato (1998, 17) state that “ap-
propriate practice can promote the development of
numer