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EDITORIAL 
-----------------------------

This is my first issue of delta-K since I took over as editor from Klaus Puhlmann in the fall of 2003. I want 
to thank the many people who have been so supportive during this transition, including AT A staff advisor Dave 
Jeary, ATA publications supervisor Karen Virag, MCATA publications director Shauna Boyce and all the ex
ecutive members of the Mathematics Council of the Alberta Teachers' Association (MCATA). Your encourage
ment and support have meant a great deal! 

Of course, I also want to express my thanks, appreciation and congratulations to Klaus Puhlmann as he 
retires as editor after so many years of superior and dedicated service. We all owe Klaus this sincere acknowl
edgement of his outstanding work. Thank you, Klaus! 

At our last meeting, the MCATA executive voted to begin the process of making delta-Ka refereed journal. 
This move will bring delta-K (and, by extension, MCATA) increased recognition for its publishing efforts while 
maintaining its traditional high standards and further enhancing its reputation. 

This move will change guideline 8 in the guidelines for manuscripts on the inside front cover. Once delta-K 
becomes a refereed journal, articles will be submitted for an initial overview to the editor, who will in tum send 
the articles to two reviewers, each of whom has a special interest in mathematics education. Based on the re
viewers' recommendations, articles will appear in future issues of delta-K. The final decision to publish any 
article remains with the editor. Guidelines for this process are not yet finalized but will become available in 
upcoming months. 

delta-K remains committed to encouraging and publishing high-quality articles pertaining to the profes
sional development of mathematics educators, and articles that stimulate thinking and explore new ideas and 
viewpoints. We continue to be interested in articles with a classroom or scholarly focus. Please feel free to 
submit your ideas regarding mathematics instruction-in the form of articles, activities, letters or problems. 
Our goal is to help teachers and other educators share their ideas and strategies with the aim of continually 
supporting and refining mathematics instruction across the province. 

I have selected some of my favourite problems for the last page of this issue. If you have a problem you 
want to share, send it to me at locwen@uleth.ca. I'll try to include it in the next issue. Enjoy! 

A. Craig Loewen
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FROM YOUR COUNCIL 
----------------------

From the President's Pen 

The previous MCATA president, Cynthia Ballheim, has moved to Columbus, Ohio, and is teaching math
ematics at a Catholic high school. Because of the distance and logistical problems, Cynthia found it too difficult 
to continue to serve as president. She intends to stay in touch with MCATA and will be consulted as needed. I 
have agreed to move from vice-president to serve as president until June 2004, when the executive positions 
will be reviewed. 

I have been a mathematics teacher for 29 years with the Edmonton Catholic School District, except for a 
one-and-a-half-year secondment with Alberta Learning. Currently, I am coordinator of mathematics and sci
ences at Holy Trinity High School in Edmonton. I have served on the MCATA executive for four years, and I 
hope to continue to provide the kind of leadership that Cynthia demonstrated during her many years of ser
vice. 

delta-K continues to be MCATA's academic publication and is organized by our new editor, Craig Loewen 
of the University of Lethbridge. The executive is moving toward making delta-Ka refereed journal, as Craig 
explained in his editorial. We look forward to reading the high-quality articles published in delta-K in the 
future. 

Speaking of reading, if you enjoy reading books that connect mathematics to society, nature and other areas 
of life, I recommend the following: 
• The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time, by Keith Dev

lin (Basic, 2002)
• The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and

Adaptation, by Gary William Flake (MIT Press, 1998)
• Numbers in the Dark and Other Stories, by Italo Calvino (translated from the Italian by Tim Parks)

(Knopf, 1995)

Enjoy the books, and thank you for continuing to support MCATA.

Len Bonifacio 
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FEATURE ARTICLES 
-----------------------

Determining the Angles 
Between Two Lines 

David E. Dobbs 

In preparing a recent lecture for a course on non
Euclidean geometry, I needed a formula to determine 
the angles formed by two intersecting lines in Euclid
ean plane geometry. The relevant formulas in Propo
sition 6.2 of The Poincare Half Plane: A Gateway to
Modern Geometry (Stahl 1993), the textbook for the 
course, depended on methods not needed again until 
the textbook's coverage of the hyperbolic version of 
the Pythagorean theorem (Theorem 8.3). I decided 
to seek alternative formulas with minimal prerequi
sites and the additional benefit of being easy to imple
ment on modem calculators. 

Because the task at hand would be meaningful for 
a precalculus class, I consulted a current leader in that 
market, Precalculus: Mathematics for Calculus
(Stewart, Redlin and Watson 2002). The relevant 
method given in this textbook used the formula 

U ·V 

cosce) 
= lullvl ,

where ii and v are vectors in directions determined 
by the given intersecting lines, and then used the 
inverse cosine function and related angles (also 
known as reference angles) to compute the angles in 
question (p. 604, Example 2). The prerequisites for 
this approach become available rather late in a pre
calculus course; for instance, the above formula for 
cos(0) is proved using the law of cosines (p. 603). 
Therefore, I looked further for an accessible method 
that could be implemented with relatively few key
strokes on a calculator. 

At first glance, it seemed that A First Year of Col
lege Mathematics (Brink 1954, 359), a textbook of 
50 years ago for the precursor of today's precalculus 
course, contained the answer for the angles deter
mined by intersecting nonvertical lines having slopes 
m

1 
and m

2
, by use of the formula 

4 

m -m 

tan(0) = I 2 

I +m
1
m

2 

Unfortunately, in this formula, 0 can be negative 
(p. 358), contrary to our natural desire to determine 
angles between O and ,r. (Of course, as is appropriate 
for precalculus and beyond, we are measuring angles 
in radians.) 

I modernized the formula from Brink ( 1954) by 
developing some accessible, calculator-friendly for
mulas (see the theorem later in the article). Part (a) 
of the theorem concerns the case where two nonver
tical lines intersect, and part (b) addresses the situa
tion where one of the intersecting lines is vertical. 
This theorem can be presented as enrichment mate
rial quite early in a precalculus course because its 
only prerequisites are a pair of facts from geometry 
( equality of corresponding angles cut from parallel 
lines by a transversal, and relation of an external 
angle of a triangle to the remote interior angles of the 
triangle), slope, the slope-intercept equation of a 
nonvertical line, angle of inclination of a line, the 
definitions of the tangent and inverse tangent func
tions, and the usual expansion formula for tan(u - v). 
For the sake of completeness, the next section begins 
with a proposition that recalls the connection between 
the slope and the angle of inclination of a nonvertical 
line. The closing remark provides an example com
paring the speed of applicability of the three methods 
mentioned above. 

The centrality of the tangent function in trigonom
etry (and thus, nowadays, in precalculus) has been 
implicit for millennia, at least since the time of Tha
les. I have written a number of articles (Dobbs 1984a, 
1988, 1991 ), suitable for use in a precalculus course, 
explaining how the tangent function can be used to 
give new proofs of various facts presented in typical 
high school geometry and precalculus courses. In 
several such notes, investigations using analytic (as 
opposed to synthetic) methodology have developed 
new results, as well (Dobbs 1984c, 1984d). This ar
ticle is intended as another contribution to this pro
gram. In using it, the reader may want to consult Dobbs 

delta-K, Volume 41, Number 2, June 2004 



( 1984b) for a self-contained proof of the expansion 
formula for tan(u ± v) that is more accessible than 
the proof in standard textbooks in that it is indepen
dent of the expansion formulas for sin(u ± v) and 
cos(u ± v). Finally, note the central role of the for
mula for tan(u ± v), as it figures in a characterization 
of the tangent function (Dobbs I 989, Theorem 3), 
a result later used by the College Board and Educa
tional Testing Service as the basis for the final ques
tion on the Advanced Placement Calculus BC ex
amination in May 1993. 

Formulas Based on the 
Inverse Tangent Function 

We begin by recalling the definition of what will 
be our key tool. If Lis a line, then the angle of incli
nation of L is defined as the angle cp between L and 
the positive x-axis such that 0 :S cp < n. If L has posi
tive slope, then 0 < cp < n/2, as in Figure 1. 

Figure 1 

Acute Angle of Inclination 

X 

If L has negative slope, then n/2 < cp < n, as in Figure 2. 

Figure 2 

Obtuse Angle of Inclination 

L 

X 

If L has slope equal to 0, then L is horizontal and it 
is conventional to take the angle of inclination of L 
to be 0. Last, if the slope of Lis undefined (that is, if 
L is vertical), then <p = n/2. Part (a) of the following 
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proposition is well known (see Brink 1954, 357); 
parts (b) and (c) are also essentially known and will 
be useful later in the proof of the theorem. 

PROPOSITION. Let L be a nonveracal line having slope 
m and angle of inclination <p. Then, 

(a) tan(cp) = m.
(b) If <pis an acute angle, then <p = tan- 1 (m).
(c) Jf c.p is an obtuse angle, then <p = re - tan-1(-m)

= rr + tan-1 (m). 

PROOF. (a) If <pis acute, then tan( <p) and m are the 
same ratio of two sides of a right triangle having 
<pas one of its angles. Suppose next that cp is obtuse, 
with related angle 0. Then, the preceding reasoning 
gives that tan(0) = -m. Moreover, tan(cp) = -tan(0) 
by the definition of the tangent function, as given 
in Brink (1954, 200, 233). The assertion follows 
easily. (The preceding argument was tailored for 
classes whose definition of the trigonometric func
tions is, like that in Brink [ 1 954], based on angles 
in standard position and related angles. An alterna
tive proof should be given to classes whose defini
tion of the trigonometric functions is based on the 
unit circle.) 

(b) The assertion in (b) follows from (a) and the
definition of the inverse tangent function. 

( c) Suppose that cp is obtuse. Let 0 be the related
angle of <p. Since cp + 0 = n, it follows that 0 is 
an acute angle. Also, as noted in the proof of 
(a), tan(0) = -m. Then 0 = tan- 1(-m) = -tan· 1(m), the 
first equality holding by the definition of the inverse 
tangent function and the second equality holding 
because tan- 1 is an odd function. Substituting these 
facts into the equation cp = 1C- 0 leads to the assertions 
in (c), to complete the proof. o 

The formulation of our main result ignores the case 
of perpendicular lines because this case can be han
dled directly. Indeed, if L

1 
and L

2 
are coplanar lines

having slopes m
1 
and m

2
, respectively, every precal

culus course covers the fact that L
1 

and L
2 

are per
pendicular if and only if I + m

1
m

2 
= 0. Moreover, a 

vertical line L
1 

is perpendicular to a coplanar non
vertical line L

2 
having slope m

2 
(at their point of in

tersection) if and only if m
2 

= 0. 

THEOREM. Let L
1 

and L
2 

be two intersecting non
perpendicular lines in the Euclidean plane. Then, (a) 
suppose that L

1 
and L

2 
are each nonvertical, having 

slopes m
1 

and m
2
, respectively. Then, the two acute

angles formed by L
1 
andL

2 
at their point of intersec-

tio::�: r:�h:.::r 
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and the two obtuse angles formed by L
1 

and L
2 

at 
their point of intersection are each given by 

n - tan-1 ( m1 -
m2 i] ·

1 +m1
m2 

(b) Suppose that L 1 is vertical and that L2 has slope
m

2
• Jfm

2 
> 0, then the two acute angles formed by L

1 

and L
2 

at their point of intersection are each given 
by n/2 - tan-1 (m

2
), and the two obtuse angles formed 

by L1 and L2 at their point of intersection are each 
given by rr/2 + tan-1 (m

i
). If m

2 
< 0, then the two acute 

angles formed by L 1 andL
2 
at their point of intersec

tion are each given by n/2 + tan-1 (m
2

), and the two 
obtuse angles formed by L1 and L2 at their point of 
intersection are each given by n/2 - tan-1 (m2). 

PROOF. ( a) Four angles are formed at the intersection of 
L

1 
and Lr Since vertically opposite angles are congru

ent, it suffices to determine one of these angles, say a. 
The other three angles of intersection are then a, Tr - a 
and Tr - a. It is convenient to distinguish six cases. 

CASE 1. 0 < m
2 

< m
1
, with a acute. The data are de

picted in Figure 3. 

Figure 3 

Case 1 

/£1/ 

j7L2 

,'' 
, I , '

/ I , ' 
, I 

/ ' 
, I , ',' ' , '

,' ' , '
/ 'P2 : 'Pl 

By a basic fact about triangles in Euclidean geometry, 
the exterior angle <p

1 
is the sum of the two remote 

interior angles, a and <p
2

, and so a = <p
1 
- <p

2
• Moreover, 

by part (a) of the proposition, tan(<p
1
) = m1 and

tan( <p
2
) = mr Therefore, by the expansion formula 

for tan(u - v), we have that 
tan( <p

1 )- tan( <p2 ) tan(a) = tan(<p
1 
- <p2) = 1 + tan(<p

1
)tan(<p2) 

Since a is an acute angle, the definition of the inverse 
tangent function ensures that 

a = tan-1(tan(a)) 
in this case, so the asserted formula for a has been 
established. 

6 

CASE 2. m
1 

< m
2 

< 0, with a acute. The data are 
depicted in Figure 4. 

Figure 4 

Case 2 

X 

The exterior angle <p
2 
is the sum of the two remote 

interior angles, a and <p
1
, and so a = <p

2 
- <p

1
• Combin

ing part (a) of the proposition, the expansion for
mula for tan(u - v) and the definition of the inverse 
tangent function as above, we see that 

m -m m -m tan(a) = 2 I = I 2 

1 + m
2
m

1 
1 + m

1
m

2 

and a = tan- 1(tan(a)). The asserted formula for a
follows. 

CASE 3. m
2 

< 0 < m
1
, with a acute. The data are

depicted in Figure 5. 

Figure 5 

Case3 

I \ 
I \ 

I \ 
I \ 

' 'Pl ' 'P2 
X 

As in the analysis for Case 2, we infer that 

m2 -mi m1 -m2 tan(a) = -''-----'- = 1----1. 

l+m2m1 l+m1m2 

(The last equality holds since m
2 
- m

1 
and 1 + m

2
m

1 

are both negative, but it is not really necessary to 
observe this, because we need only appeal to the fact 
that any acute angle has a positive tangent.) Case 3 
can now be completed in the earlier cases by appeal
ing to the definition of the inverse tangent function. 
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CASE 4. m
1 

< 0 < m
1

, with a obtuse. The data are depicted in Figure 6. 
Figure 6 
Case4 

r.pz X As in the analyses for Cases 2 and 3, we infer that m -m m -m tan(a) = i I = - I 2 ' 

1 + m
2
m, 1 + m

1
m

2 the last equality holding since obtuse angles have negative tangents. Next, note what was effectively established in part ( c) of the proposition-that any obtuse angle a satisfies a = n - tan- 1(ltan(a)\);this can also be seen as a consequence of the basic facts about related angles (see Brink 1954, 233, Rule). Combining the assembled information leads to the asserted description of a. 
CASE 5. 0 = m

1 
< ml' with a acute. The data are depicted in Figure 7. 

, , , 
,/ 

/r.p1 

,, 

Figure 7 
Case5 

z 
,/ L2 

X Relative to the transversal L
1
, the parallel lines L

2 
and the x-axis cut off exterior corresponding angles a and <p1• Therefore, by a fundamental result in Euclidean geometry, a = <p

1
• Hence, 

(
by ;

1

� �� o
J
fthe proposition, 

a= tan- 1(m ) = tan- 1 -�-� 
, I } + nl/122 and the asserted description of a follows easily. 
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CASE 6. m 1 < m
1 

= 0, with a obtuse. The data are depicted in Figure 8. 
Figure 8 
Case6 

Q 

X As in the analysis of Case 5, we see that a and <p
1 are exterior corresponding angles and, hence, equal (in measure). In particular, part ( a) of the proposition yields that tan(a) = m

1
• Then, since a is obtuse, a fact recalled in the analysis of Case 4--or an application of part ( c) of the proposition-yields that a = n - tan- 1 (ltan(a)\) = n- tan- 1(lm 1 1). Since m

2 
= 0, the asserted description of a now follows easily. 

(b) The opening comments in the proof of (a) areenough to prove the assertions concerning the acute angles of intersection a. Let <p
1 

denote the angle of inclination of L
2

. Suppose first that m
1 

> 0, as in Figure 9. 
Figure 9 

L, Vertical and ½ with Positive Slope 

I L1 / 

17L2 

/o 
, I 

/ I 
, I 

/ ' 
, I 

, I 
/ I 

, I 
/ ' 

, 1 
,, ' 

, ' 
,' ' 

,,' '-P2 : 

Since m
1 

> 0, we have that <p
1 

is an acute angle, so part (b) of the proposition gives <p
2 
= tan- 1(m). Therefore, since a and <p

1 
are complementary, we have a = n/2 - <p

1 
= n/2 - tan-1(m), as asserted. Finally, suppose that m

2 
< 0, as in Figure 10. 
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Figure 10 

L
1 

Vertical and L
2 

with Negative Slope 

a 

,, 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 

I \ '{)2 We have the exterior angle <p
2 
equal to the sum of the two interior remote angles, a. and 1C!2. Since <p

2 
is obtuse, we could now complete the proof by using the fact recalled in the analyses of Cases 4 and 6. For variety, we argue instead through part (c) of the proposition. This gives that cp

2 
= n + tan- 1 (m

2
). Therefore, a. = <p

2 
- 1C!2 = (1C + tan-1 (m

2
)) - n/2 = 1C!2 +tan- 1(m

2
), to complete the proof. □ REMARK. Consider the lines L, and L

2 
with Cartesian equations 2x - 3y + 4 = 0 and Sx + 6y + 7 = 0, respectively. Solving for y, we obtain the equations in slope. 2 4 5 7 mtercept form as y = - x + - and y = - - x - -

3 3 6 6 ' respectively. Therefore, the slopes of the given lines are the coefficients of x in slope-intercept form: m
1 
= 3- and m

2 
= - 2. . Implementing part (a) of the3 6 theorem (with the aid of a TJ-86 graphing calculator), we see that the radian measure of an acute angle formed by L

1 
and L

2 
at their point of intersection is 

tan-1[ � 2 -;_5 l:::::1.28274087974,
l+-·-

3 6 and so an obtuse angle formed by L, and L
2 

is given approximately by the supplement of the preceding value: 
7[ - 1.28274087974::::: 1.85885177385. Notice that, in implementing the theorem, we need no diagram and there are no ambiguities. In particular, because of the absolute value symbol appearing in the formulas in part (a) of the theorem, it does not matter which line we called L

1 
and which L

r 
In addition, the above narrative displays the relatively few calculations and keystrokes needed in this routine application of the theorem. Let us compare the above work with how the methods in Brink (I 954, 359) and Stewart, Redlin and Watson (2002, 604) would handle the same problem. 

8 

First, we consider the method from Brink (I 954,359), using the formula 
m1 -m2 tan(0) = 
1 + m1m2With the above values of m 

I 
and m

2
, we find that 27 tan(0) = s= 3.375. One such 0 is tan-1(3.375) :::::l .28274087974, the acute angle that we found usingthe theorem; thus, by calculating the supplement of0, one would also find the obtuse angles formed byL

1 
and L

2
• However, one should not conclude that Brink's (1954, 359) method is as useful in general as that in part (a) of the theorem. What if we interchanged the labels on the lines L, and L) We would then be led to consider an angle 0 such that tan(0) = -3.375. This 0 is neither the acute nor the obtuse angle that we are seeking! Moreover, a calculator cannot come to the immediate rescue, because the inverse tangent of this 0 is negative. Granted, with a careful diagram and some thought about related angles, a skilled user of this method could eventually find the desired acute and obtuse angles. In contrast, a user of the theorem need never worry about such matters, because the case analyses in the proof of the theorem took care of them once and for all. Next, we consider the currently popular vectorial method in Stewart, Redlin and Watson (2002, 604). To apply this method, we first need to find a vector ii in a direction determined by L

1 
and a vector v in a direction determined by L

r 
To find ii, we first find two points on L

1
, say the intercepts of L

1 
on thex- and y-axes. Setting one variable equal to O in an equation for L, and solving for the other variable, we are thus 

4 led to the points P
1
(0, 3) and P

2
(-2, 0) on L,. A suit-- - 4 able u is then the vector P

1
P

2 
= < -2, - 3 >;some notational conventions would write this vector ( 2 4) 2 7 4 -: A . ·1 fas - , - - or - z - - J . s1m1 ar amount o 3 3 work with an equation for L

2 
would find a suitable v to be the vector< - !.... , !... >. Applying the formula 5 6 on page 604, we are then led to an angle 0 such that 

7 4 7 

U · V 
-2 -5 -3 6cos(0) = luiivl 

=

(- 2)2 + (-� J �(-; J + (¾J ::::: 0.284088329691. One such 0iscos-l(0.284088329691)::::: 1.28274087974, the acute angle that we found using the theorem; thus, by calculating the supplement of 0, one would also find the obtuse angles formed by L, and L
2

• 
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As one might suspect from the above discussion, 
this method can be made as useful in general as that 
in the theorem, but one would need the following 
additional provisos. If the calculated value of cos(0) 
is positive (resp., negative), then taking the inverse 
cosine of this number produces the acute (resp., ob
tuse) angle(s) formed at the point of intersection of 
L

1 
and L

2
• 

The method in Stewart, Redlin and Watson (2002, 
604) does have an advantage: it does not need to
consider separately the case in which one of the
intersecting lines is vertical, as we did in part (b)
of the theorem. However, as the above example il
lustrates, the number of calculations and keystrokes
needed to implement this method is considerably
greater than the corresponding effort in applying
the theorem.

Last, I indicate another aspect, which I view as a 
drawback, of this method. Notice that if we inter
change the labels on the points P

1 
and P

2 
considered 

above, then ii is replaced with - ii and the calcu
lated value of cos( 0) changes to the negative of the 
previous value. Thus, this method cannot guarantee 
a priori whether the first angle 0 that it finds is going 
to be acute or obtuse. As explained above, this am
biguity can be removed, at the possible cost of cal
culating a supplementary angle, after observing the 
sign of the calculated value of cos( 0). By way of 
contrast, no such thought or supplementary calcula
tion (pun intended) is needed in applying the theorem; 
once again, the point is that the case analyses in the 
proof of the theorem took care of such issues once 
and for all. 
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If time is short, a classroom presentation covering 
the main points given above could be based on the 
proposition; the statement of the theorem; cases 1, 4 
and 6 from the proof of the theorem; and the part of 
the remark in which the theorem is applied. 
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Sums of Arithmetic Sequences: 
Several Problems and a Manipulative 

A. Craig Loewen

An extremely powerful and important link exists 
between manipulatives and problem solving. Through 
the use of manipulatives, we come to understand 
mathematics; through problem solving, we are chal
lenged to apply what we have learned. 

Consider the following four problems: 

1. There are 50 people at a party. Each person shakes
hands once with each of the other people. How
many handshakes occur in total?

2. How many diagonals are in a regular hectagon (a
polygon with 100 sides)?

3. Bricks are stacked to create a pyramid like the one
shown below. How many bricks would be required
to build a pyramid 75 rows tall?

4. As in the well-known Christmas song, on the first
day of Christmas, my true love gives me one par
tridge in a pear tree. On the second day, my true
love gives me two turtledoves. If my true love
continues for a full year (365 days) to give me one
gift more each day than the previous day, how
many gifts will I receive in all?

Though these problems look unlike on the surface,
they share at least one important quality: the solution 
to each requires summing a series of consecutive 
whole numbers. 

A Historical Note 
A story about a famous mathematician, Carl Fried

rich Gauss, tells how Gauss, while still a schoolboy, 
was required to sum the numbers 1-100 as a punish
ment. He finished the task far ahead of his classmates. 
It seems that Gauss realized that by grouping the 
numbers he could identify a pattern and thus sim
plify his work: 

Sum = I + 2 + 3 + ... + 98 + 99 + I 00 
= ( l + I 00) + (2 + 99) + ... + (50 + 51) 
= 101 +IOI+ ... + 101. 

There are 50 pairs, each totalling 10 I. Thus, 

Sum = SOx 101 
= 5,050. 

There is a similar way to understand and attack 
this problem. Below the first equation, write the equa
tion in reverse order, then add the two equations: 

Sum = 1 + 2 + ... + 99 + I 00 
Sum = I 00 + 99 + ... + 2 + l 

2 · Sum = 10 I + IO 1 + ... + l 0 1 + 101 

Because we know that the equation has a hundred 
10 l s, we can write 

2 · Sum = l 00 x 10 l 
=50x 101 
= 5,050. 

Starting with a simpler problem, let's look at a 
manipulative that shows why this might work. 

Solve a Simpler Problem 

Consider the following task: Find the sum of the 
numbers 1-7. 

A familiar manipulative such as Cuisenaire Rods 
can be used to model this task. Take one each of the 
seven shortest rods and arrange them in a staircase 
as shown: 

The total length of all the stairs is equal to the sum 
we are trying to find. Also, because each rod has a 
width of 1 unit, the area of the staircase is equal to 
that sum. 

Now arrange a second staircase as shown: 
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Slide the two staircases together to create a rectangle. 
• What are the length and width of this rectangle?
• How does the area of the rectangle compare with

the sum we are trying to find? 
• What is the largest such staircase you could

build? 
• Using graph paper, draw a staircase showing the sum

of the numbers 1-20. Draw the related rectangle. 
• Could the same process be used regardless of the

number of stairs? Why? 
• Describe how you could find the sum of the count

ing numbers up to any given value. 
• Write a formula to show how this sum could be

easily calculated. 
Through this manipulative and exploration, we

come to see that the sum of n counting numbers start
ing at 1 is 

Sum= 
n(n + 1) .

2 

Applying What We Know 
Now we can easily apply what we have learned to 

the original four problems. 
In the first problem, the first person at the party 

will shake hands with 49 people, the second person 
will shake 48 hands and so on. Thus, the solution to 
the first problem is 

Sum = 49 + 48 + 47 + ... +2 + 1 
_ 49(49 + I)
- 2 

Likewise, the solution to the third problem is 

Sum= 75(75 
+ 

1)
2 

The solution to the fourth problem is 

Sum= 365(365 + 1) .

But be careful! The solution to the second problem 
is a bit trickier. We know that a hectagon has I 00 
sides, so it is tempting to think that we can just use 
Gauss's answer for the second problem. But the cor
rect answer is not 5,050! 

Imagine the vertices of a hectagon spread evenly 
around a large circle. We can begin to connect these 
vertices two at a time to create our diagonals. There 
will be 99 lines from the first vertex to each of the 
other 99 vertices, 98 lines from the second vertex and 
so on. This implies that the final answer is half of 
99 x l 00. But again, it is not! In drawing these lines, we 
have included the edges of the hectagon itself, and 
these edges are not diagonals (by definition, diagonals 
must pass through the interior of the figure). So, we 
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must remember to subtract the 100 edges of the 
hectagon to reach our final answer. Thus, the number 
of diagonals in a regular hectagon is 

Diagonals = 
99(9� + 

1) - I 00.

Note that, even when we have a useful formula, we 
must still think carefully to apply it appropriately. 

One Step Further: 
Extending What We Know 

Now, let's return to the third problem and imagine 
a pyramid of bricks like the one shown: 

This is the same type of pyramid except the first 
row has something other than a single brick. 

Once again, we can apply our manipulative to this 
sequence. First, build a staircase starting with the 
Cuisenaire Rod 3 units in length, and use each of the 
rods to a length of 8 units. 

I 
I 

I 
I 

I 
I 

Like before, add a second staircase to form a rectangle. 

I 
I 

I 
I 

I 
I 

• What are the length and width of this rectangle?
How are the length and width determined? 

• How does the area of the rectangle compare to the
sum we are seeking?

• If you knew only the length of the first stair and
the length of the last stair, could you predict how 
many stairs there are in all? 

• How could we use our first formula,
n(n + l) 

2 

to generate a formula for this problem? 
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• Rewrite the Christmas problem so that my true love
gives me something other than one gift on the first day. 
Apply your revised formula to solve this problem.

Other Variations 

We can vary these problems in many other ways 
to increase the challenge. For example, let's assume 
that my true love gives me two gifts on the first day, 
four gifts on the second day, six gifts on the third day 
and so on. How many gifts would I receive in 12 days? 

This problem differs from the others in that the 
successive values in our sequence increase by two 
rather than one: 

Sum= 2 + 4 + 6 + ... + 24. 

In general terms, the first sequences we added were 
of the form 1, 2, 3, ... , n.

Next, we considered sequences like c, c + I, c + 2, 
... , c+n.

This last problem introduces another sequence: 
a, 2a, 3a, ... , na. 

The next logical step is to consider the sequence 
c, c + a, c + 2a, c + 3a, ... , c + na. In this sequence, 
we can begin at a value other than I, and the differ
ence bet:\veen successive elements in the sequence 

12 

can be a value other than 1. For example, in the se
quence 6, IO, 14, 18,22, ... ,c = 6anda = 4. 

• What would a pyramid of bricks that followed the
fourth sequence above ( a f. I and cf. I) look like?
Generate several examples.

• How are the four types of sequences related?
• Develop a formula for finding the sum of a se

quence such as 7, 12, 17, ... , 717.

Conclusion 

Our most powerful learning experiences are those 
in which we explore and experiment in a meaningful 
context. Manipulatives help us to see not only how 
but also why something works. Also, students need 
opportunities to apply mathematics through problem 
solving. It is not necessary or even desirable to treat 
manipulatives and problem solving separately. When 
problem solving is incorporated in a manipulative 
activity, we can provide many dynamic learning op
portunities for our students. 

A. Craig Loewen, editor of delta-K, is an associate professor of
mathematics education and assistant dean of Student Program
Services in the Faculty of Education at the University of Leth
bridge in Lethbridge, Alberta
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Developing Three Distinct Number 
Patterns from a Single Diagram 

David R. Duncan and Bonnie H. Litwiller 

Mathematics is in large part a study of relationships 
and patterns. Teachers are always on the lookout for 
settings in which these relationships and patterns can 
be discovered and considered. Finding several pat
terns in a single setting is a serendipitous occurrence. 

Consider the following set of points: 

Figure 1 
Row I 
Row2 
Row3 
Row4 
Row 5 
Row6 
Row7 
Row8 

We will discuss three problems in this setting. 

Problem 1 

How many points does Figure 1 contain? Rows 1, 
2, 3, ... , 8 contain, respectively, 1, 2, 3, ... , 8 points. 
Consequently, the eight rows together contain l + 2 
+ 3 + 4 + 5 + 6 + 7 + 8 points. Your students may
recognize this to be the eighth triangular number.

Problem 2 

Figure 2 displays the same set of points as Figure I 
but with connecting pathways superimposed. 

Row I 
Row2 
Row3 
Row4 
Row 5 
Row6 
Row7 
Row8 

Figure 2 

In how many ways can you proceed downward from 
Row I to Row 8, following only the indicated paths? 
We can break this task into a series of seven con
secutive tasks: 

• Task 1: You can proceed from Row 1 to Row 2
using either of two paths.

• Task 2: From any point in Row 2, you can proceed
to Row 3 using either of two paths.
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• Task 3: From any point in Row 3, you can proceed
to Row 4 using either of two paths.

• Tasks 4-7: From any point in each of Rows 4-7,
you can proceed to the next row using either of
two paths.

Using the fundamental principle of counting, we find 
that the number of ways to perform Tasks 1-7 is 
2 · 2 · 2 · 2 · 2 · 2 · 2 = l7. Thus, there are 27

, or 128, 
distinct paths from Row I to Row 8. 

Problem 3 

Let us again consider Figure 1. In Problem 2, we 
were restricted to only two pathways from each point 
to the following row. Suppose that we abandon that 
condition and proceed directly from a point in one 
row to any point in the next row. In how many ways 
can you proceed from Row 1 to Row 8 under these 
more flexible rules? 

• Task 1: You can proceed from Row I to Row 2
using either of two paths.

• Task 2: From any point in Row 2, you can proceed
to Row 3 using any one of three paths (remember
that you can go directly to any of the three points
in Row 3).

• Task 3: From any point in Row 3, you can proceed
to Row 4 using any one of four paths.

• Task 4: From any point in Row 4, you can proceed
to Row 5 using any one of five paths.

• Task 5: From any point in Row 5, you can proceed
to Row 6 using any one of six paths.

• Task 6: From any point in Row 6, you can proceed
to Row 7 using any one of seven paths.

• Task 7: From any point in Row 7, you can proceed
to Row 8 using any one of eight paths.

Again using the fundamental principle of counting, 
we find that the number of ways to perform Tasks 
1-7 is 2 · 3 · 4 · 5 · 6 · 7 · 8, or 8 ! . Thus, there are
exactly 8!, or 40 ,320, distinct ways of proceeding
from Row 1 to Row 8.

We have been using a set of eight rows of points 
for Problems 1-3. If Figure 1 were extended ton rows 
of points formed in the same way, the answers to the 
three problems would be as follows. 

13 



Problem 1 

How many points does the figure contain? There 
are 1 + 2 + 3 + 4 + ... + n (the nth triangular number). 

n(n + 1) 
Recall that the nth triangular number is ---

2 

Problem 2 

How many paths can you take from Row l to Row n 
when each point is connected to two points in the 

� 11 
. ? y k 2 . 2 . 2 ... 2

2 I 10 owmg row. ou can ta e '----v-------' , or •- , 
such paths. n-1 factors 

Problem 3 

In how many ways can you proceed from Row l

to Row n if the paths of Problem 2 need not be 

14 

followed? You can proceed in 2 · 3 · 4 · ... · n, or n!, 
such ways. 

These three results represent three fundamentally 
different categories of mathematical formulations: 
summations, exponentials and factorials. 

Have your students check out these formulas 
for specific values of n by drawing the figures and 
counting whatever the problem calls for. Can you 
and your students find other problems arising from 
Figure 1? 

David R. Duncan and Bonnie H. Litwiller are professors of 
mathematics at the University of Northern Iowa in Cedar Falls, 
Iowa. 
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A Focus on Fostering Number Sense 
Makes a Lot of Sense 

Werner Liedtke 

Number sense is the most important pre- and 
corequisite for numeracy. Number sense contributes 
to flexible thinking in numerical situations and the 
ability to solve problems. Without a conscientious 
focus on fostering number sense through key aspects 
of the curriculum (the teacher, resources, materials 
and so on), it is unlikely that most students will de
velop this sense. Consideration of number sense must 
go beyond unit topics and should, whenever possible, 
be part of the ongoing program. When students are 
not able to make sense of the numbers being 
manipulated, mathematics learning becomes rote 
or, as research shows, overwhelming and anxiety 
inducing. 

In A Handbook on Rich Learning Tasks, Flewelling 
and Higginson (200 I) label the tenn rote learning an 
oxymoron (p. 24), identify rote learning as a major 
source of anxiety (p. 28) and suggest that it is an 
impediment to problem solving (p. 26). The authors 
state, "Rote-learning-plus-practice techniques train 
problem solvers as well as paint-by-numbers tech
niques train artists" (p. 27). 

In this article, I identify the important components 
ofnumbcr sense and illustrate them through examples 
using two-digit numbers. Most of these ideas can 
easily be adapted to other whole numbers and to frac
tions, decimals and integers. 

Visualization 
When students hear or see a two-digit number, they 

should be able to visualize the number. In responses 
to interview questions about numbers, students ut
tered phrases such as "I see it in my brain" and "I see 
it in my mind." For example, when they hear the 
words thirty-four or see the numeral 34, students 
should be able to "see" the smallest number ofbase-
10 blocks, dimes and pennies, or $10 and $ l bills 
needed to represent that number. 

To develop this sense, students should learn to 
make as many groups of IO as possible from the 
number, recording the result in a box titled "Tens." 
What is left goes in a box titled "Leftover Ones." To 
enhance the association of digits with the appropriate 
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place values, the students record the digits again 
below and beside these boxes. 

Some resources suggest that the main reason for 
grouping by tens and ones is that it is faster and 
easier. Nothing could be further from the truth. For 
children in the early grades, it is much faster to count 
by ones and easier, or less work, not to group the 
objects. In fact, the main reason for adopting this 
procedure is that it allows us to use only IO digits (an 
accident of nature?) to record an infinite number of 
number names. 

Flexible Thinking 

Students learn that, using only tens and ones, they 
can show two-digit numbers in at least two ways. For 
example, students can be given the following 
problem: 

What are the different ways to show 42 using tens 
and ones? How do you know that you have found 
them all? 

Students can solve and even create riddles such as 
the following: 

I have only dimes and pennies. I have six 
coins. How much money do I have? How do you 
know that you have recorded all the possible 
answers? 

Connecting 

Students should be shown that two-digit numbers 
connect to many aspects of their experience-money, 
games, books on shelves, book orders, children in 
classrooms and so on. 

Relating 

When we talk about or compare two-digit numbers, 
we use terms such as greater than, less than, close 
to, between, Jar apart, ones place, tens place, odd, 
even, sum of the digits and so on. Teachers can solve 
and create riddles for missing, hidden or secret num
bers on a 99 chart (see Figure I). 
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Figure 1 

99 Chart 

0 I 2 3 4 

10 11 12 13 14 

20 21 22 23 24 

30 31 32 33 34 

40 41 42 43 44 

50 51 52 53 54 

60 61 62 63 64 

70 71 72 73 74 

80 81 82 83 84 

90 91 92 93 94 

Over the years, I have collected many excellent 
secret-number riddles created by Grades 1-7 students. 
Samples provided by the same group of students over 
a period of time indicate that sophistication and ac
curacy increase as students are given more opportu
nities to create riddles. 

The following is an example of a secret-number hunt: 

The number ... 
... is less than 54. 
. . . is not between 36 and 54 . 
. . . does not have a 3 in the tens place. 
... is greater than one dozen . 
. . . has an odd number as the sum of its digits. 

As hints of this type are presented, one at a time, 
students look at the 99 chart and are invited to respond 
to the questions, "Which number(s) do you think it 
could not be?" and "Which number do you think it 
could be?" 

Estimating 

A key strategy for learning how to estimate in
volves using a referent-in this case, a group of IO 
or IO fingers. For example, when students are asked 
to look at a group of objects and estimate how many 
objects there are, they use their fingers as a referent 
and pretend to put the objects in groups of 10. They 
then report their estimates to the nearest ten (that is, 
"About_ tens"). For a variation, rather than record
ing an estimate, students could be given three 
choices, asked to select the best estimate and be ready 
to justify their choice. Should any estimates be 
deemed unreasonable or illogical? Teachers should 
take great care in assessing estimates. Number sense 

16 

5 6 7 8 9 

15 16 17 18 19 

25 26 27 28 29 

35 36 37 38 39 

45 46 47 48 49 

55 56 57 58 59 

65 66 67 68 69 

75 76 77 78 79 

85 86 87 88 89 

95 96 97 98 99 

develops slowly, and estimates may differ greatly 
from student to student. Labelling an estimate, if it 
is an estimate, as illogical seems illogical to me. 

Resources for teachers include ideas for estimation 
tasks that pose a question such as "How many marbles 
are in the jar?" The greatest value of these types of 
tasks lies not in the numerical responses provided by 
the students but, rather, in the strategies students use 
to arrive at their responses and in the follow-up dis
cussion comparing the strategies . 

Subitizing 
The term subitizing refers to the ability to recog

nize the numerousness of small sets and to attach the 
appropriate name to the sets without having to count 
each member. I would like to think that a type of 
subitizing is possible for two-digit numbers. After 
students have had many opportunities to represent 
two-digit numbers in different ways, the teacher could 
try the following task: 

Ask three children to come to the front of the room. 
Ask two of them to hold up 10 fingers each and 
one of them to hold up four fingers (whispering in 
their ears so the rest of the students can't hear). 
Then, ask the remaining students, "How many 
fingers do you see?" 

Depending on their previous experiences, many stu
dents will be able to identify the number without 
having to count each finger. As they look at the num
bers displayed, students will also reach a stage at 
which they can state numbers that are one more, one 
less, l O more, 10 less, or even double or half of the 
numbers shown. 
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Mental Calculation 

The task described under the category of subitizing 
involved visualization or aspects of mental calculation. 

It is discouraging to encounter students who, when 
asked to describe how they might proceed to find an 
answer without using pencil and paper, explain some
thing that is the same as a recorded algorithm. That 
is not the intent or the goal of mental calculation. 
Opportunities for flexibility exist, and different levels 
of number sense can be accommodated. For example, 
the teacher can give students the following task: 

Let's pretend that we have 24 books and we order 
13 more. How many books will we have? 

After two groups of students have been asked to 
represent these two numbers at the front of the room, 
different ways to find the answer without using pen
cil and paper can be illustrated. An interesting discus
sion can revolve around the question, "Which starting 
point did you like best? Why?" 

Practice 

As I pointed out earlier, rote practice is of little 
value. In Future Basics: Developing Numerical 
Power, Charles and Lobato ( 1998, 17) state that "ap
propriate practice can promote the development of 
numerical power." Number sense is an important 
aspect of this numerical power. The authors define 
appropriate, in this case, as something involving 
reasoning, communicating, connecting and problem 
solving. One of their examples asks students to explain 
through words and pictures two different ways to find 
the solution to 43 - I 8 without using a calculator. 

The calculator can be used in fostering the devel
opment of number sense-if it is used in ways other 
than to check answers (which leads students to ask, 
"Why did we not use the calculator in the first 
place?"). Students have to think about the numbers 
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when, for example, a question asks them to think of 
four different ways to enter the numbers to get the an
swer and to record how these numbers were entered. 
Pointing out incorrect answers and determining what 
went wrong and why can make students think about 
the numbers (for example, "Someone got an answer 
of 4,318. What do you think happened?"). 

Conclusion 

With a little imagination, teachers can generate 
high-order questions that will provoke students to 
think about the numbers they are working with and, 
thus, further develop a sense of number. The time and 
effort required to select and modify activities to make 
them more appropriate or effective in developing 
number sense will pay great dividends, because such 
tasks also foster self-confidence and a positive 
attitude. 
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Working Toward Mathematical Literacy 

Anne MacQuarrie 

As a former math illiterate, I knew there had to be 
a way to present math so that everybody, even people 
like me, could understand it. I was determined to find 
a way to teach all children to love math and appreci
ate it as a real and living thing. 

I came to my love of math rather late in life-in 
my 30s, if I remember correctly. Before that, math 
seemed a giant ogre in the classroom, lying in wait 
for me with its convoluted operations that occurred 
for no discernable reason and its numerals that were 
supposed to be numbers (I thought the word two re
ferred only to two items, not to the numeral 2). 
I thought I was being punished for not being very 
smart. It turned out I was being tricked. 

When it finally occurred to me that math is all 
about patterns, I became a zealot. I started seeing 
math everywhere, and it was beautiful and exciting. 
I needed to pass the message on, and my classroom 
was where I began trying to convert mathophobes to 
mathophiles. Some children will get math and love 
it no matter how it is presented. I was more concerned 
about those children whose math flowers were still 
shaded buds in the gardens of their minds. Those buds 
needed sunshine in order to open. 

For several years, MCATA has been working on 
developing mathematical literacy-promoting under
standing of big ideas and recognizing that arithmetic 
is the grammar and spelling of mathematical thinking. 
I try hard to develop math literacy in the children I 
teach. Here, I share a story about my Grades 2/3 
class. 

A Calgary Herald story about the results of the 
Grade 9 provincial achievement test in mathematics 
included a sample question that went like this: 

A farmer and his son left the barn to do a fence 
check on their property. They walked in opposite 
directions-the farmer at 4 km/h and his son at 3 .5 
km/h. How long did it take until they were 2.5 km 
apart? 

The possible answers were 1/5 hour, 1/3 hour, 3 hours 
and 5 hours. Could it be any more fun? I decided to 
do the question with my Grades 2/3 class-not using 
algebra (we don't usually get that tricky in the lower 
grades) but, instead, considering the question, What 
is a reasonable answer? 
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First, we converted 3.5 and 2.5 into fractions (3½ 
and 2 ½). I emphasized that a decimal is just another 
way of writing a fraction and demonstrated that 5/10 
is the same as J /2. 

We then considered the clock. I drew a clock on 
the board and broke it into quarters, and the children 
counted off the minutes for each quarter. We consid
ered how fast the farmer and his son were walking. 
By labelling each section of the clock with "J km," 
I helped the children easily recognize that 4 km/h (the 
farmer's pace) means I km in 15 minutes. I asked the 
children if the son, who was walking slower than his 
father, could have gone l km in 15 minutes, as his 
father had. As a test, I had two students walk away 
from each other in the classroom. The longer the 
students walked, the farther they got from each other, 
and the faster person got farther from the start point 
in the same time period. The children agreed that the 
son wouldn't have walked as far as his father in 15 
minutes. On the board, I drew a diagram showing two 
stick figures walking in opposite directions. Knowing 
that in 15 minutes the farmer had walked I km and 
his son had walked less than 1 km, the children con
cluded that after 15 minutes the farmer and his son 
were less than 2 km from each other. 

Referring to the clock again, I drew five circles on 
the board to represent each hour in the answer 
choices. I asked the children how I could show that 
the farmer was going 4 km/h and was instructed to 
put "4 km" in each circle. Some children multiplied 
and some added, but they all agreed that if the 
farmer travelled 4 km in l hour, he went 12 km in 3 
hours and 20 km in 5 hours. The children told me that 
3 hours and 5 hours were much too long because the 
farmer and his son only had to be 2½ km, not 12 or 
20 km, from each other. I erased the choices of 3 
hours and 5 hours from the board and, in so doing, 
demonstrated to the children a test-taking strategy 
that they can use in the future. 

We were left with the answer choices of 1/5 hour 
and I /3 hour and, therefore, bad to undertake the job 
of comparing the size of fractions. We talked about 
what the denominator means, and the children 
chanted our fraction mantra: "The number on the 
bottom is the number of equal-sized pieces the whole 
thing is broken into." We reviewed what happens to 
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the size of the pieces when the denominator gets big
ger. We talked about what the fraction is called when 
you break something into five equal pieces. We 
looked at the clock again to see what it could tell us 
about the relationship between 60 (the number of 
minutes in an hour) and 5 (the number of pieces we 
had to break the hour into to get fifths). We could see 
that, counting by fives starting at the top of the clock, 
12 sets of 5 are 60. Because I always have the children 
give me four math sentences for every fact, we also 
determined that 5 sets of 12 are 60, 60 broken into 
sets of I 2 is 5, and 60 broken into sets of 5 is 12. I 
wrote the sentences on the board in standard algo
rithmic form, explaining again that this is how the 
words look in the language of mathematics. We de
termined that each fifth was worth 12 minutes because 
that was the size of each piece when you broke 60 
into 5 equal parts. We looked at the quarters on the 
first clock and found the difference between the 15-
minute quarters and the 12-minute fifths. The fifth 
was three minutes less than the quarter-not enough 
time for the farmer to go 1 km. If 12 minutes wasn't 
enough time for the farmer to travel I km, it cer
tainly wasn't enough time for the son, and together 
they would have travelled less than 2 km. Thus, we 
had to reject 1/5 hour as a possible answer. That left 
us with 1/3 hour as the only possible answer. 

Obviously, the procedure did not go that smooth
ly or quickly, so, please, all you elementary general
ists out there who say, "I could never do that," believe 
me when I say, "Yes, you can!" I did not give the 
children the answers. I got excited. I jumped up and 
down. I got the children moving around, and they got 
excited, too. I asked and probed and made them con
struct meaning, drawing on their own experiences 
and actions. I talked about patterns-the basis of all 
mathematics-and urged the children to find the 
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patterns in the problem. By drawing on their knowl
edge, I was able to stimulate the children to put things 
together. Not all of them got all parts of the problem, 
but they all got some of it. In this Grade 9 test ques
tion, I was able to find something for even the least 
developed math mind in Grades 2/3 while addressing 
the needs of the other students, including the most 
capable. 

The children were thrilled that they had solved a 
Grade 9 test question and that most of them had un
derstood it. They all understood that the answer had 
to be reasonable and that 3 hours and 5 hours were 
not reasonable answers. Comparing the fractions was 
a far more rigorous task, but most of the children were 
able to make some meaning out of it. 

Math should be something that excites, not terri
fies, children. The more broadly based a problem is, 
the more willing children are to try it. I always stress 
to them that, although they may not be able to do 
everything, there will always be something in a prob
lem that they can grasp. It is important for children 
to see that math is not the ogre in the corner or the 
demon in the red notebook who is out to get them. 
They also need to see math as numbers and shapes 
and forms, not just numerals arranged in algorithms. 
They need lots of practice estimating so that they can 
learn to discern a reasonable solution. 

Math is everywhere, and it is beautiful! 

Anne MacQuarrie, editor of t he Mathematics Council Newsletter, 

has a B.Sc. from Mc Master University and a B.Ed.from the Uni
versity of Calgary. For JO years, she has taught Grades 1-6 with 
the Calgary Board of Education (CB£). She currently teaches 
a Grades 2/3 class at Sunnyside Community School in Calgary, 
Alberta. She has done several workshops for the CBE on teaching 
mathematics for meaning and has presented at MCATA and Early 
Childhood Education Council (ECEC) conferences. 
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COMMUNICATING MATHEMATICS _______ _ 

An E-Conversation with a Math Olympian 

Robert Wong 

Recently, MCATA asked me to do a write-up on 
Robert Barrington Leigh, a medal winner in both the 
2003 International Mathematical Olympiad (IMO) 
and the 2003 International Physics Olympiad. Two 
questions came to mind: Where is Robert Barrington 
Leigh? and, What can I ask him that various news 
media haven't already asked? With Andy Liu's help, 
I was able to find the whereabouts of the famous 
Edmontonian: Robert is now in his first year of study 
of mathematics at the University of Toronto. A face
to-face conversation with him would have been dif
ficult, so e-mail it was. I thought it would be best if 
I asked questions from a student perspective. After 
brainstorming with my students and collaborating 
with Shauna Boyce, MCATA publications director, I 
came up with a set of questions. What follows is my 
e-mail conversation with Robert Barrington Leigh. 

ROBERT WoNG: What math topics did you have to 
work with in the IMO? 

ROBERT BARRJNGTON LEIGH: The problems I solved 
during this year's competition-two out of six-con
cerned geometry (the usual: circles, lines and angles) 
and number theory (properties of whole numbers). 
There were also one algebra question and two more 
number theories. The hardest problem concerned 
powers of prime numbers. Significantly, the IMO 
considers calculus postsecondary material; thus, I 
didn't feel obliged to study it! The problems chosen 
for the Olympiad are generally more difficult when 
tackled with calculus than without. 

RW: How competitive was the Olympiad? Was it 
stressful? 

RBL: The Olympiads are organized to be as 
friendly as possible: we write the contest within a few 
days of our arrival and then we try to concentrate on 
enjoying ourselves and making friends for the rest of 
the event. I particularly recall playing a card game 
with members of the Chinese team, who seemed just 
as relaxed as the Canadians. Understandably, though, 
some of us were anxious while the questions were 
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being marked and right before the results were 
posted. In addition to the opportunity to meet other 
students, the International Olympiads provide the 
opportunity to explore a new country and culture. I 
was fortunate this year to visit Tokyo, because I do 
not often travel outside Canada and certainly had 
never left the Western Hemisphere. I think it's es
sential to have a sense of the scale and diversity 
of our planet, and, although the abstract field of 
mathematics might not seem the best field in which 
to develop such an understanding, the IMO lets stu
dents engage in both mathematics and cultural 
exploration. 

In general, the Olympiad was not stressful-even 
the 270-minute exams were more relaxed than one 
might expect. Ifl had panicked, I would have made 
more mistakes than usual, and I would certainly have 
had no room in my thought processes to discover 
solutions. Thus, the exam is a mixed bag of explora
tion, insight and occasionally frantic writing. 

RW: What kind of recognition have you received 
as a result of the competition? 

RBL: Articles about the Olympiads were published 
in Edmonton, Calgary and Ban ff newspapers, and I 
was heard on an Edmonton radio show last spring. 

RW: Did you spend much time outside of school 
working on or studying math topics? 

RBL: Certainly. I have never been content with 
learning only what I am being taught officially-and 
there are always contests to study for. One useful tool 
has been a correspondence program for high school 
students organized by Ed Barbeau of the University 
of Toronto: every month he sends out a problem set 
and marks everyone's solutions. Moreover, over the 
past few years I have been invited to many math 
camps, which are, perhaps surprisingly, almost as 
much fun as they are instructive. These camps include 
the Alberta summer camp held alternately in Edmon
ton and Calgary, a corresponding national camp at 
the University of Western Ontario, a spring camp at 
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the University of Waterloo, a January camp for IMO 
contenders at York University and a July training 
camp for the IMO itself that was held this year in 
Calgary and Banff. I am deeply grateful to the profes
sors and university departments involved and to the 
sponsors of these camps: ESSO, the Canadian Math
ematical Society and the Pacific Institute for the 
Mathematical Sciences. 

RW: What are your career plans? Is math a part of 
those plans? 

RBL: Most likely math will be my principal focus 
for decades to come. I am not yet certain how I will 
manage to incorporate this focus in a career. 

RW: What are you studying now? 
RBL: I am enrolled in a math-physics double 

major (with greater emphasis on math), but I think 
I'll also pursue the odd computer science course. 
Right now, I'm taking second-year math and physics, 
a first-year computer science course and a sociology 
seminar for first-year students. 

RW: What have been your accomplishments in the 
last three years? 

RBL: 

• Placed first for Alberta in the 2001 Canadian Open
Math Challenge

• Placed first for Alberta in the 2003 Alberta High
School Math Competition

• Received an honourable mention in the 2002
Canadian Mathematical Olympiad and placed third
in 2003

• Placed third in the 2002 Leonardo da Vinci
Competition

• Placed eighth in the 2002 Canadian Association
of Physicists High School Prize Exam and first
in 2003

• Placed third for Alberta in the 2003 Chemical
Institute of Canada National High School Chem
istry Examination

• Placed ninth for Alberta in the 2003 University of
Toronto National Biology Competition

• Won the bronze award at the 2002 International
Mathematical Olympiad in Glasgow, U .K.
(22 points out of  42; tied l l 3th-132nd of
480 participants) and the bronze award in 2003 in
Tokyo (18 points out of 42; tied 107th-l23rd of
457 participants)

• Won the silver award at the 2003 International
Physics Olympiad in Taipei, Taiwan (28. 7 points
out of 50; 38th place out of 239)

• Participated, as a member of the three-person
University of Toronto team, in the 2003 William
Lowell Putnam Mathematical Competition
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(a North American math competition for univer
sity students) on December 6, 2003 

RW: How many articles or books have you written 
and published? 

RBL: A few years ago, I published two articles 
with Richard Ng, with help from Andy Liu of the 
University of Alberta-"Zigzag" and "Minimizing 
Aroma Loss" (which was reprinted in delta-K, Vol
ume 38, Number 1, December 2000). I am in the 
process of helping Professor Liu with a book of 
translated problems and solutions from a Hungarian 
math competition (Hungarian Problem Book IV). 

RW: Were your parents good at math? 
RBL: Yes, I would say that interest in math runs 

in the family. My father was my first math teacher and 
the one who could teach me best for many years. 

RW: When did you start working on math 
problems? 

RBL: Sadly, I don't remember that far back, but 
in Grade I I was asking my teacher for enrichment 
to the math curriculum. In Grade 5, I wrote my first 
multiple-choice math contest, and in Grade 6 I joined 
a math club organized by Professor Liu. There I 
discovered a long-answer math contest called the 
International Tournament of the Towns, which I 
enjoyed immensely despite its being slightly above 
my level. 

RW: How many hours of math did you do in a 
week in elementary, junior high and senior high? 

RBL: About three-I certainly don't remember 
in elementary. Also, sometimes I'm not expressly 
working on math but am just thinking about a prob
lem-in the shower or what have you. But, naturally, 
I wished I had more time for math than was 
available. 

RW: What do you enjoy doing when you have free 
time? Hobbies? 

RBL: Apart from math and chatting with friends, 
I enjoy music, in particular playing the piano, as well 
as cross-country skiing and running. Edmonton has 
a supportive Nordic ski club that I've belonged to 
since elementary school. Also, I have a casual inter
est in computer programming-my brother-in-law is 
a software developer. 

RW: What kinds of books do you read? 
RBL: Like many people, I must confess that I 

ought to be reading a much greater variety and volume 
of books than I do. Currently my reading agenda 
consists of math books-recreational and other
wise-and other science-related nonfiction, fiction 
and biography. 
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RW: Who's your mentor in math? 
RBL: Without a doubt my mentor is Professor 

Andy Liu, an award-winning mathematics educator 
at the University of Alberta, who even tutored 
me privately in Grade 11. I have been in contact 
with him since Grade 6 through his math club, and 
most recently he was the leader for the 2003 IMO 
team. Professor Liu not only has been a dedicated 
mathematics tutor and friend but also has introduced 
me to many other young mathematicians and, 
crucially, shown me how rewarding a career in math 
can be. 

RW: How do you prepare for math tests and 
contests? 

RBL: The same way as anyone else does: I famil
iarize myself with the standard problem-solving 
techniques and then I attempt to solve sample prob
lems. Ifl get stuck on a problem, I either move on to 
the next or look up the solution in case the same ap
proach can be applied elsewhere. In a contest, the 
range of insights needed for different problems is 
much broader; therefore, knowing the solution to a 
particular problem is less valuable than it might be 
on a school test. Seeing the solutions to many sample 
problems is still helpful, but solving them myself 
is key. 

RW: What are your educational and career 
goals? 

RBL: Learn a great deal of math and physics. I 
have no idea-save the world ... . 
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RW: Do you have any advice for others who want 
to excel in math? 

RBL: Find others with the same goal; it's more 
exciting when you challenge each other to excel. 
There are so many good math problems on the 
Internet and in the library that I'll never run out 
of them. The Canadian Mathematical Society also 
has some great resources, such as Dr. Barbeau's 
Mathematical Olympiads Correspondence Program 
(www.cms.math.ca/Competitions/MOCP/info.html), 
especially if you need someone to mark your solu
tions-an important part of training. 

I must stress that, without practice, speed and 
creativity in math diminish over time. 

RW: What would you say to people who do not 
like or who struggle with math? 

RBL: Well, I certainly don't hold it against them: 
though I pick up mathematical ideas faster than 
average, I find other skills difficult and, therefore, 
unpleasant. On the other hand, mathematics is diverse 
enough that someone may abhor one branch but ap
preciate the charm of another. Puzzles created by 
Binary Arts Inc.-for example, Rush Hour-tend 
to be friendly tools for exercising the mathematical 
parts of one's brain without even noticing. 

Robert Wong. MCATA webmaster, teaches at Vernon Ba,ford 
Junior High School in Edmonton, Alberta. 

This interview was previously posted on the MCATA website 
(,vww.mathteachers.ab.ca). Minor editorial changes have been 
made in this version. 
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A Letter to Jim About the Other, 
Not-So-Magic Square 

A. Craig Loewen

We are all familiar with the traditional magic 
square, the one in which we must fit the digits 1-9 
such that all rows, columns and diagonals have the 
same sum. But some time ago my friend Jim intro
duced me to the other magic square: 

A B 

1. Calculate the area of the square.
2. Cut out the four pieces and rearrange them

to make the rectangle.
3, Calculate the area of the rectangle. 
4. Explain the difference in the areas-or is it

magic?

Jim asked, "Is there a mathematical explanation for 
this activity?" After exploring the problem, I wrote 
the following letter in response to him. 

Dear Jim, 
The problem seems a little familiar to me, but if 

I've forgotten the problem, I've also forgotten the 
solution! I wound up playing with it for a few hours 
this afternoon. Here are my thoughts and notes. 

Understand the Problem 

My intuition and my belief in the laws of conserva
tion force me to doubt that the shapes grow simply 
by my moving them. So, let's study the square first. 
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We know that the square is made up of four 
pieces with shapes and dimensions as in the figures 
below (two trapezoids and two triangles): 

3 

5 

5 � 

We can calculate the areas of the trapezoids and the 
triangles to see if they add up to 64 or to 65. Maybe 
that will help us discover the trick: 

Area trapezoid= (0.5)( II_ top + II_ bottom)(height) 
= (0.5)(3 + 5)(5) 
= 20 

Area triangle = (0.5)(base)(height) 
= (0.5)(8)(3) 
= 12 

Area square = (2)(area trapezoid)+ (2)(area triangle) 
= (2)(20) + 2( 12) 
= 64 

Of course, this answer makes sense, because the 
square was 8 units on its side. We could have calculated 
this area a whole lot faster simply by squaring one of the 
sides, but I wanted to know if the areas of the pieces 
added up! We'd better look at the rectangle now. 

We know that the rectangle is made up of the same 
four parts, so it should also have an area of 64 square 
units. We can calculate the area of the rectangle using 
the length-times-width formula, but first we need to 
find the length and width of the rectangle. The length 
of the rectangle is the sum of the longest sides of 
pieces A and D, which is 13 units. The height of the 
rectangle is the same as the height of piece A, which 
is 5 units. So, 

Area rectangle = (length)(width) 
= (13)(5) 
= 65. 

Well, for all the world, it looks like we have gained 
I square unit simply by rearranging the pieces! There 
is definitely something fishy about this rectangle! 
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Develop a Plan and Carry It Out 

We had better take a closer look at the rectangle and 
label some points so that we can see what is going on: 

M 
R 

T 

Q w 

First, let's extend the line RS until it meets the line 
QU. We'll call that point W(as shown in the diagram 
above). We know that both line MN and line TU are 
5 units long. If this is a genuine rectangle, the length 
of line RW should also be 5 units. But how can we 
calculate the length of line RW? Well, we know the 
length of line RS ( 3  units), so all we need to do is 
calculate the length ofline SW We can do this using the 
properties of similar triangles. Here is our triangle: 

:�u 
w 

Let's make a list of what we know: f. PQ = 3 units, 
f. QU = 8 units and I! UW = 5 units. Now we can
construct our ratio:

/!SW _ f.PQ 
f. UW - £UQ

esw 3 
----

5 8 

Solving for £ SW, we find that it is 1.875 units. 
Wait a minute! That means that the length of RW is 
4.875 units ... but it's supposed to be 5 units! In 
other words, our figure is not a true rectangle-at 
least, it's not a uniform, solid rectangle as it appears 
to be. Therefore, the fonnula for calculating the area 
of a rectangle (length times width) doesn't apply 
here. 

But I still don't know exactly what is going on. It 
is worth investigating further. I'm wondering what 
happens when the two pieces (the triangle and the 
trapezoid) are put together. While trying to draw these 
shapes on the computer, I have become suspicious of 
their slopes. Consider this figure: 

M 

5 

3 

N L...-__ 5;__ _ __,1 ___ __;_8 ____ -=- u

Q 
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If line MU is indeed a straight line, then the slope of 
line MP must equal the slope of line PU: 

rise nse 
slope PU = -- slope MP= --

run run 
3 2 

= 8 = 5 

= 0.375 = 0.4 

Here it is! The slopes are dangerously similar, but 
they are not the same. If the slope of PU is less 
than the slope of MP, the two shapes do not form a 
true triangle. The segment from Mto Ubends toward 
Q at P So, when we add another of these tricky 
triangles, putting the four pieces together, we are 
actually leaving a little gap! This gap is just too small 
to notice when we cut out the shapes and move 
them around. The inaccuracy of our paper model 
hides that 1 square unit. That is the real magic of this 
magic square! 

Looking Back 

Well, now I know why I had so much trouble draw
ing these shapes on my computer in the first place. 
Look what happens when I accurately draw the shapes 
with the help of my computer, rotate them and put 
them together to form a rectangle: 

We can see a small area distributed neatly through 
the centre of the figure. Because I know the area of 
the rectangle and the areas of each of the four shapes, 
it makes sense that the gap has an area of 1 square 
unit: 

Area of gap= area rectangle - (2)(area trapezoid) 
- (2)(area triangle)

= 65 - (2)(20) - 2(12) 
= I. 

It would be fun to find another way to calculate 
(and perhaps verify) the area of the gap in the rect
angle. One such way is to identify the coordinates of 
this tiny shape (a quadrilateral) and use the following 
formula: 

Area= (X1Y1 + X1Y3 + ... + XnY1 )- (Y1X2 + Y2X3 + ... + Y,,X,)
2 
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To identify the coordinates, we need only superimpose
the rectangle onto a Cartesian coordinate system:

a''�--=���: . I l · <5.3> t ···¾,,,,,.. I ia 2> 

.. .. . .. . • I ... ,,.<,,-.;.;,�,,,'.:'--,.� .
·-·•·········· •.... I ...... : ...... ·-···-----·-· ( 13,0) 

We can define the points as follows: (x
l'y1

) = (0, 5),
(x2, y2) = (5, 3), (x3, y3) = (13, 0) and (x

4
, y4) = (8, 2).

To use this formula, we should define the points in
sequence in a counter-clockwise order. Now we can
substitute the values in the formula:

Area
of gap

(x,yz + X1 Y3 
+ .r,Y, + __ .r.y,-(y,x2 

+ Y2X3 
+ Y,X, + Y.X,) 

2 
(0-3+ 5-0+13 · 2 +8 ,5)-(5 · 5+ 3 .13 + 0-8+ 2-0) 

2 

= 

(0+0+26+40)-(25+39+0+0) 

= 

66-64
2

2 
2

= I. 

2 

Now I have a problem for you to try. I don't know
the source of this problem, but I think a student gave
it to me a long time ago. It has definite similarities to
the problem you sent me (both in the problem itself
and in its solution). Here it is: 

The fourparts are 
moved ftfOUnd in 
the figure bebw. 

Thepdons am exadtytfle 
same as !hoseusefi aboYe. 

What is the source of this 
hde? 
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I had a great time playing with this problem today,
Jim! And the answer to your question is, yes, there
is a mathematical explanation. It turns out that
your square is not magical, but my afternoon really
was fun!

A Few Notes 

Keep well,
Craig

It is sometimes surprising that a problem can so
totally capture our interest that time slips away as we
play, think and explore. But, as I look back over this
problem and my solution to it, I am struck by other,
more important questions.

Owning a Problem 

What can we do to help our students bite into a
problem? When I started working on this problem,
I was so sure that something was amiss-I square
unit can't just disappear!-that I couldn't let it go
until I could provide an adequate explanation.
How can we help our students develop this sense
of internal insistence? Maybe this sense is a pre
cursor to that infinitely important and highly desir
able sense of achievement we feel when we solve
the problem!

Finding Time 

How do we find time for any form of real problem
solving in our classrooms? I really did spend an
afternoon playing with this problem. I wanted to
try several methods and see if I could come up
with a good, sensible explanation. But I wonder if
the volume and busyness of our curriculum (which
supposedly values problem solving above all else)
leaves adequate space for anything other than
direct instruction based on algorithms, formulas
and facts.

The Role of Technology 

How can we increase the use of technology as a
tool in the mathematics classroom? In at least one
way, my computer was an important tool in solving
this problem. Only with the aid of my computer could
I construct a drawing accurate enough to reveal the
small gap. The software I used was not particularly
complex or expensive; it was a simple drawing pack
age. Our students should be taught to integrate tech
nology flexibly, using the available software to in
crease their problem-solving power.

25 



Communication in the Classroom 

How can we better integrate communication in 
the math classroom? In part, what made this problem 
fun for me was sharing it with a friend. What does 
this tell me about the need for collaboration, coop
eration and communication? And what does this tell 
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me about how my class time and, indeed, my class
room space might be better arranged? 

A. Craig Loewen, editor of delta-K, is an associate professor of
mathematics education and assistant dean of Student Program
Services in the F acuity of Education at the University of Leth bridge
in Lethbridge, Alberta.
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TEACHING IDEAS 

Activities for the Middle School Math 
Classroom: Games Using Manipulatives 

A. Craig Loewen

We have all taught students who can do mathemat
ics yet who do not really understand that mathemat
ics. Such students succeed with one problem or task, 
but if given a similar but slightly altered or camou
flaged task, they are lost. They have probably focused 
on the routines or procedures (algorithms) associated 
with concepts but have not really learned the concepts 
themselves. It is entirely too easy for students to see 
mathematics as a disconnected collection of algo
rithms rather than a meaningful body of knowledge 
overflowing with connections and integrally related 
to life outside the classroom. Often our students are 
happy to learn only the algorithms (until their mem
ories are taxed), and we lapse into the contentment 
of teaching to this inclination. The students' focus on 
algorithms is probably related to a desire to quickly 
finish or avoid homework. 

But if there is so much more to mathematics than 
algorithms, what more is there to know? Or, in other 
words, what does it mean to understand mathematics? 
The answer to this question is neither short nor simple. 
However, it is fair to say that incorporating manipu
latives in our mathematics instruction usually repre
sents a genuine intent to teach for meaning and to go 
beyond the first level of instruction, the algorithm. 

When we teach with manipulatives, we allow 
students to learn through more senses and to literally 
see mathematics in action. Manipulatives lend them
selves to exploration, conversation and investigation. 
In general, we use manipulatives to provide a repre
sentation of a concept that enables learning at a 
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greater depth. The use of manipulatives enables con
ceptual learning as opposed to procedural or algorith
mic learning. 

However, like any other useful instructional 
method, manipulatives are not meant to stand alone. 
Let's remember that we want our students to know 
the algorithms in addition to the concepts underpin
ning those algorithms. A well-balanced program in
cludes opportunities to explore ideas; draw conclu
sions; and formulate, test and practise algorithms. 
Manipulative-based games provide motivation and a 
wonderful learning context in which students can 
work together to explore ideas, generate new ideas 
and practise what they have learned. 

Here are some considerations for integrating games 
in your math classroom: 

• Where possible and appropriate, include manipu
latives in your games. Students must learn how to
work with representations and tools, and games
provide a motivating and nonthreatening environ
ment in which to do so.

• Consider collecting student game sheets, cards and
notes as a way to catch student errors. Be sure to
watch the students play the games, and note where
misconceptions become evident.

• Be prepared for a more active, noisier classroom.
Motivating activities such as games are often
noisier than traditional activities.

Note: The objectives in the following games are based 
on outcomes from Alberta Learning's (1996, 1997) 
mathematics program of studies. 
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Fraction Relay 

Objective: Represent and describe proper 
fractions (Number [Number Concepts], 
Grade 5, Outcome 7) 
Materials: Base-IO blocks (small set for each 
team), hi-lo cards, 6--10 fraction cards 
Players: Two or more teams 

Rules 

1. Before introducing the game, the teacher
must make a hi-lo card for each team and
6--IO fraction cards. Hi-lo cards are index
cards labelled "Too high" on one side and
"Too low" on the other. Fraction cards are
index cards with a fraction on one side. The

fractions should be of the form x

-for example,� or _3i__. l,OOO 

1,000 1,000 
2. Each team selects one member to start. This

person comes to the front of the classroom
with the starters from the other teams. The
teacher shows the starters the first fraction
card.

3. The starters return to their teams to help
their teammates build the fraction using the
base-IO blocks. The starter may not talk but
may give his or her teammates clues by
showing them the appropriate side of the
hi-lo card.

4. Once the team has built the fraction, a team
member other than the starter comes to the 
front of the room and tells the teacher the 
fraction. If the fraction is correct, the 
teacher shows the player the next fraction 

Froction Cords 

J()O 

� 1000 

to be built. This player now uses the hi-lo card to provide clues to his or her teammates as they try to build 
the fraction (as in Step 3). 

5. The team that works through the whole set of fraction cards first wins.

Adaptations 

1. Instead of limiting the fractions to the form _x_, use fractions of the form -2._, such as _7_ ,
or 854 l,QQO 10 n 

56 
100 

1,000 
2. Play several rounds with every team working on the same fraction at the same time. The team that wins the

most rounds wins the game.
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Risky Patterns 

Objective: Construct and expand patterns in 
two and three dimensions, concretely and 
pictorially (Patterns and Relations [Patterns], 
Grade 5, Outcome 3) 

Materials: Tiles, a six-sided die 

Players: Two or more 

Rules 

1. Players will attempt to construct the first six 
elements in the sequence I, 3, 5, 7, .... 

2. On a tum, a player rolls the die and then
adds the specified number of tiles to col
umns representing the elements in the se
quence (see the figure at right). He or she
may complete a column and start a new
column on the same tum. Alternatively, the
player may remove the specified number of
tiles from an incomplete column belonging
to an opponent. The player may not both
add tiles to his or her own columns and
remove tiles from an opponent's column on
the same tum.

3. The first player to construct all six columns
WtnS. 

Adaptations 

1. Have students construct other sequences,
such as 2, 4, 6, 8, .. . (six columns);

■ 
1 3 5 7 

Safe Vulnerable 

I, I, 2, 3, 5, ... (seven columns); 1, 2, 4, 7, 11, ... (six columns); 5, 2, 6, 3, 7, 4, ... (nine columns).
2. Change the rules so that a player can add to only one column on a tum and must complete one column before

starting another ( constructing the columns in sequence).
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Shaping Up 

Objective: Build, represent and describe 
geometric objects and shapes (Shape and 
Space [3-D Objects and 2-D Shapes], Grade 5, 
Outcome 15) 

Materials: Toothpicks, mini-marshmallows, 
the Shaping Up spinner mat, an overhead 
spmner 

Players: Two or more 

Rules 

1. In the first round of this game, players
will race to build a cube out of eight
marshmallows and I 2 toothpicks.

2. On a turn, a player spins the spinner and
adds toothpicks or marshmallows accord
ing to the result of the spin. If the spinner
lands on Lose a Turn, the player adds
nothing to the shape. If it lands on Your
Choice!, the player may choose to add
either one or two marshmallows or one
or two toothpicks.

3. If the spinner lands on something the
player does not need, play passes to the
left.

4. After the player has built the
cube, he or she starts building
the triangular prism out of
six marshmallows and nine
toothpicks.

5. After the player has built the triangular
prism, he or she starts building the square pyramid.

6. The first player to build all three geometric shapes wins.

Adaptations 

.. , ,,'. !: · , 

.. : , ' -:(;;:_;: �::·�· 
?: -:\�:/F��r 

1. Change the rules so that, if the player does not need the part spun, his or her opponent (or the player to the
left) may use it instead.

2. Build a spinner that changes the odds of landing on certain elements.
3. Have the students build compound shapes (for example, a clock tower comprising a cube with a square

pyramid on top).
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Spin to Win 

Objective: Describe events using the vo
cabulary of probability: always, more likely, 
equally likely, less likely, never and so on 
(Statistics and Probability [Chance and 
Uncertainty], Grade 5, Outcome I 0) 

Materials: Spin to Win spinner mat, an 
overhead spinner, pattern blocks 

Players: Two or more 

Rules 

I. On a turn, a player selects one of the three
spinner mats (shown at right) and spins
the spinner. T he player then adds the
block specified by the spinner to his or
her set. (Here, the diamond represents the
blue block, the quadrilateral represents
the red block and the hexagon represents
the yellow block.) If the player rejects the
block, any other opponent can claim it.

2. When a player has three blue blocks or
two red blocks, he or she may trade them
for one yellow block.

3. The first player to collect four yellow
blocks wins. (The player must collect
exactly four yellow blocks-that is, he
or she may not accept any block that
would build a collection greater than four
yellow blocks).

Adaptations 

I. Change the rules so that a player must
trade up to a yellow block before starting 
to gather blocks for another yellow block. 
In other words, if a player starts collect-

.,_,.._·,••,::, : ·,;_. "h 

·"" -- .. ,., .... _ ·•- ..... -I .. " .,. 
- :;2):::il!��!�ft.�r•�-

.. ,-__, ,,.,.,,.,•,,,>. 

-�- -�,-.,.,.:. ,•:, • .,.,;-. • .,, ('' ... ., , > • • ,,. • 

.--�. :�t.: t?:�·,-.\:.:; ):.�:-\\;::;� .. i,:., 
. ' �-: ;.:<f·; .· •:;, _i 

ing blue blocks, he or she must complete the collection (three blue blocks) before accepting a red block. 
2. Change the spinners to include green blocks.
3. Change the game such that a player tries to build (in sequence) the first 15 elements in the following

pattern:

delta-K, Volume 41, Number 2, June 2004 31 



So Very Close! 

Objective: Detennine the volume of an ob
ject by measuring the displacement of a liquid 
by that object (in cubic centimetres or in mil
lilitres) (Shape and Space [Measurement], 
Grade 6, Outcome 8) 

Materials: So Very Close! game board, a 
graduated cylinder or beaker, water, five 
objects of various sizes 

Players: Any number 

Rules 

I. To begin the game, the players will need
to agree on five objects that can be im
mersed in water and that fit inside the
graduated cylinder or beaker.

2. Each player estimates the amount of water
(in cubic centimetres or in millilitres) that
will be displaced by the object.

3. After players have recorded their esti
mates, each object is immersed in water
and the displacement is detennined.

4. Each player records the displacement and
calculates the positive difference between his
or her estimate and the actual displacement.

5. After the displacements for all five objects
have been measured, each player sums the
differences from his or her five estimates.
The player with the lowest sum wins.

Adaptations 

I. Change the rules so that a player scores
one point if his or her estimate is within
IO mL of the actual measurement. After
five rounds, the player with the most points
wms.

Estimate Actual 

Actual 

2. To increase the challenge of estimating, use some regular objects (such as cubes), some irregular objects,
some objects that float and some objects that don't float.

3. Change the scoring so that a player scores a point when his or her estimate is closer than the previous
estimate.
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Tangled Angles 

Objective: Classify given angles as acute, 
right, obtuse, straight and reflex angles 
(Shape and Space [Measurement], Grade 6, 
Outcome 12) 

Materials: A geoboard, elastic bands, an 
overhead spinner, the Tangled Angles spinner 
mat 

Players: Two or more 

Rules 

l .  To play this game, players take turns spin
ning the spinner on the spinner mat (shown
at right). 

2. On a tum, a player takes an elastic band
and, using any three pegs on the geoboard,
builds the type of angle specified by the
spinner. For example, if the spinner lands
on Acute, the player might build an angle
like the following:

i- i�

1! 
{ �•i,,, ·�·''� 

Players must follow these rules when 
building angles: 
• The arms of any two angles must not

cross each other.
• A peg must not be used to build more than one angle (that is, once a peg is used, it is no longer available

for use in another angle).
• The arm of any angle may span more than two pegs, but all such pegs are considered used and, therefore,

no longer available.
3. Play continues until a player does not have pegs in the appropriate orientation to build the specified angle.

This player must then drop out of the game. The last remaining player in the game wins.

Adaptations 

l. Replace the angle types on the spinner with specific angles for players to build and measure.
2. Have students play cooperatively to see how many angles they can build before the requisite collection of

pegs is no longer available.
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Tangram Checkers 

Note: The idea for the original version of this 
game belongs to James Reynolds. 

Objective: Create, analyze and describe de
signs using translations (slides), rotations 
(turns) and reflections (flips) (Shape and Space 
[Transformations], Grade 7, Outcome 11) 

Materials: The Tangram Checkers checker
board, tangrams (two sets, different colours) 

Players: Two 

Rules 

1. To start the game, each player places the
appropriate triangular tangram pieces ( one
medium-sized triangle and two small-sized
triangles) on the dark spaces on his or her
side of the checkerboard.

2. On a turn, a player may make one of the
following moves:
• Slide one piece one space horizontally,

vertically or diagonally.
• Flip one piece over an identified line of

reflection (which must be an edge of the
piece to be moved).

• Rotate one piece a quarter-tum clockwise
or counter-clockwise around any corner
of that tangram piece.

3. Before a player may move a piece, the
player must identify the move he or she will
be making, including identifying the corner
used in the rotation or the edge used in the
reflection.

4. Two tangram pieces must never overlap, and no part of a tangram piece may rest off the checkerboard.
5. The first player to reposition his or her triangles in the home positions originally occupied by the opponent

wins.

Adaptations 

I. Substitute or include shapes other than triangles.
2. Place a tangram silhouette in the centre of the checkerboard and ask players to build it together (following

the same rules).
3. Modify the board by adding home positions on the right and left sides of the checkerboard. Play the same

game with four players.
4. Darken some spaces on the checkerboard to represent obstacles around which players must navigate.
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Tic-Frac-Toe 

Objective: Convert, mentally, among frac
tions, decimals and percentages to facilitate 
the solution of problems (Number [Number 
Operations], Grade 7, Outcome 21) 
Materials: Tic-Frac-Toe game board, two
colour chips, bingo chips, a four-sided die, a 
six-sided die, a calculator 
Players: Two 

Rules 

I. In this game, players will build models of
fractions using the two-colour chips. For
example, the fraction shown below repre
sents 3/8:

The players will then convert the fractions 
to percentages (mentally or with the aid of 
a calculator). 

2. Players start with no chips. On a tum, a
player rolls either the four-sided die or the
six-sided die. The player then adds to or
removes from his or her set the same num
ber of chips as the value rolled. For ex
ample, if the player rolls a 2, he or she may
add two chips with the red side up or two �li-·<:,·�-'"-..11-,-1,:-.,,1,;.,,.,,.,"',... .. ,t,.�,,::('l.;\-,;·;;:sci;Rt,,�;;;;"!;,,.i,,P
chips with the white side up. Alternatively,
the player may remove two red chips or two
white chips. If the value rolled is not favour-
able, the player may pass the tum. A player may not add or remove a combination of red and white chips.

3. When the player has built a new fraction, he or she converts the fraction to its equivalent percentage and
places a bingo chip on the corresponding value on the game board (shown at right). Play passes to the left.

4. If the appropriate percentage is already occupied, the player passes his or her tum.
5. If a player is shown (with the calculator) to have converted incorrectly, his or her chip is removed from the

game board and the player passes the tum.
6. The first player to get three chips in a row-vertically, horizontally or diagonally-wins.

Adaptations 

I. Replace the percentages on the game board with their decimal equivalents.
2. Change the rules such that, if a player creates a fraction for a percentage that is already occupied, the

player can steal the space, replacing the chip with his or her own. Four chips in a row wins.
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Transformation Puzzle 

Objective: Create, analyze and describe de
signs using translations (slides), rotations 
(turns) and reflections (flips) (Shape and Space 
[Transfonnations ], Grade 7, Outcome 11) 
Materials: 16 gram cubes ( four each of four 
colours) 
Players: One 

Rules 

1. To begin the game, the player takes the 16 cubes 
and builds four squares, each comprising
four blocks (one block of each colour) as
shown below:

2. The player now arranges the four sets in a
larger square like the starting arrangement
shown in the figure at right.

3. Each of the following counts as a single
move:
• Turning a set of four blocks a quarter-tum

clockwise or counter-clockwise
• Flipping a set of four blocks vertically

or horizontally
• Flipping two adjoining sets of four blocks

vertically or horizontally
• Turning the entire puzzle (all four sets of

four blocks) a quarter-tum clockwise or
counter-clockwise

1 move 1 move 

3 moves 3 moves 

• Flipping the entire puzzle (all four sets of four blocks) vertically or horizontally
• Switching two adjoining sets of four blocks without changing their orientation

l move

3 moves 

4. Using the prescribed number of moves (and returning the blocks to the starting arrangement before begin
ning each puzzle), the player tries to re-create each of the patterns shown at right.

Adaptations 

1. Substitute different combinations of blocks, as below:

� 

2. Increase the number of moves required.
3. Have students make cards showing patterns requiring up to three moves. The students then exchange decks

of cards with other players and race to see who can solve each other's pattern puzzles first, working through
the decks in sequence.
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Geoboard Algebra 
Objective: Solve and verify one- and two-step, 
first-degree equations (Patterns and Relations 
[Variables and Equations], Grade 8, Outcome 5) 

Materials: Geoboard Algebra game board, 
geoboards, elastic bands, a four-sided die, a 
six-sided die, an eight-sided die, a pencil 

Players: Two or more 

Rules 

1. On a turn, a player selects a die and rolls it.
The player may now enter the value rolled
in any of the blanks in the Equation column
of the game board (shown at right). A value
can only be entered into an equation if it
constructs a whole number root (for ex
ample, 3x + I = IO is acceptable whereas
3x + 2 = 10 is not). Players will have to think
carefully before entering any value.

2. Play continues until an equation has both
missing values entered.

3. When both values for an
equation are determined, the • • • • •

• • • • • 

player models his or her • • • • •
equation using the geoboard, • • • • •

·�·thus demonstrating the value
of the variable in the com
pleted equation. The player scores points
equal to the value of the variable. The ex
ample shows 2a + 3 = 15, and the player
scores six points for determining that a = 6.

4. Players continue completing and solving
equations until one player has solved all seven
equations. Players now total their points.
The player with the most points wins.

5. If a player cannot ( or chooses not to) enter a rolled value, the player passes that tum.

Adaptations 

POINTS 

I. Change the rules such that a player must enter a value on every turn. If an equation does not have a whole
number root, then the player scores no points.

2. Omit the geoboard model and allow roots that are not whole numbers.
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A Page of Problems 

A. Craig Loewen

High School 

Herb the Hobo is 3/7 of the 
way across a railroad bridge 
when he hears a train whis
tle behind him. If he runs 
forward, he can jump off the 
bridge just in front of the 
train. Ifhe turns around and 
runs back toward the train, 
he can also jump off the bridge just in front of 
the train. If the train is travelling at 35 km/h, 
how fast must Herb run? 

Source: C. Kantccki and L. E. Yunker, "Problem Solving 

for the High School Mathematics Student," in Problem 

Solving in the Mathematics Classroom. Math Monograph 

No. 7 (Edmonton, Alta.: MCATA, 1982), edited by S. 

Rachlin, 49-60. 

Junior High 

Substitute a different digit for each letter to 
make the following statement true: 

MATH 

� IS 

FUN 
How many solutions can you find? How 

many solutions are there? 

Elementary 

How many ways can you make up 55¢ using 
only nickels and dimes? 

How many ways can you do so if you can use 
quarters, too? 

High School 

In the following decimal, how many 2s are there 
before the I 00th 3? 

Source: M.A. Sobel and E. M. Maletsky, Teaching Math

ematics: A Source book of A id�, Activities, and Strategies, 

2nd ed. (Englewood Cliffs, N.J.: Prentice Hall, 1988). 

A. Craig Loewen, editor of delta-K, is an associate professor of mathematics education and assistant dean of Student Program Services
in the Faculty of Education at the University of Lethbridge in Lethbridge, Alberta.

Please submit problems for future issues to loewen@uleth.ca. 
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