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Determining the Angles 
Between Two Lines 

David E. Dobbs 

In preparing a recent lecture for a course on non­
Euclidean geometry, I needed a formula to determine 
the angles formed by two intersecting lines in Euclid­
ean plane geometry. The relevant formulas in Propo­
sition 6.2 of The Poincare Half Plane: A Gateway to
Modern Geometry (Stahl 1993), the textbook for the 
course, depended on methods not needed again until 
the textbook's coverage of the hyperbolic version of 
the Pythagorean theorem (Theorem 8.3). I decided 
to seek alternative formulas with minimal prerequi­
sites and the additional benefit of being easy to imple­
ment on modem calculators. 

Because the task at hand would be meaningful for 
a precalculus class, I consulted a current leader in that 
market, Precalculus: Mathematics for Calculus
(Stewart, Redlin and Watson 2002). The relevant 
method given in this textbook used the formula 

U ·V 

cosce) 
= lullvl ,

where ii and v are vectors in directions determined 
by the given intersecting lines, and then used the 
inverse cosine function and related angles (also 
known as reference angles) to compute the angles in 
question (p. 604, Example 2). The prerequisites for 
this approach become available rather late in a pre­
calculus course; for instance, the above formula for 
cos(0) is proved using the law of cosines (p. 603). 
Therefore, I looked further for an accessible method 
that could be implemented with relatively few key­
strokes on a calculator. 

At first glance, it seemed that A First Year of Col­
lege Mathematics (Brink 1954, 359), a textbook of 
50 years ago for the precursor of today's precalculus 
course, contained the answer for the angles deter­
mined by intersecting nonvertical lines having slopes 
m

1 
and m

2
, by use of the formula 

4 

m -m 

tan(0) = I 2 

I +m
1
m

2 

Unfortunately, in this formula, 0 can be negative 
(p. 358), contrary to our natural desire to determine 
angles between O and ,r. (Of course, as is appropriate 
for precalculus and beyond, we are measuring angles 
in radians.) 

I modernized the formula from Brink ( 1954) by 
developing some accessible, calculator-friendly for­
mulas (see the theorem later in the article). Part (a) 
of the theorem concerns the case where two nonver­
tical lines intersect, and part (b) addresses the situa­
tion where one of the intersecting lines is vertical. 
This theorem can be presented as enrichment mate­
rial quite early in a precalculus course because its 
only prerequisites are a pair of facts from geometry 
( equality of corresponding angles cut from parallel 
lines by a transversal, and relation of an external 
angle of a triangle to the remote interior angles of the 
triangle), slope, the slope-intercept equation of a 
nonvertical line, angle of inclination of a line, the 
definitions of the tangent and inverse tangent func­
tions, and the usual expansion formula for tan(u - v). 
For the sake of completeness, the next section begins 
with a proposition that recalls the connection between 
the slope and the angle of inclination of a nonvertical 
line. The closing remark provides an example com­
paring the speed of applicability of the three methods 
mentioned above. 

The centrality of the tangent function in trigonom­
etry (and thus, nowadays, in precalculus) has been 
implicit for millennia, at least since the time of Tha­
les. I have written a number of articles (Dobbs 1984a, 
1988, 1991 ), suitable for use in a precalculus course, 
explaining how the tangent function can be used to 
give new proofs of various facts presented in typical 
high school geometry and precalculus courses. In 
several such notes, investigations using analytic (as 
opposed to synthetic) methodology have developed 
new results, as well (Dobbs 1984c, 1984d). This ar­
ticle is intended as another contribution to this pro­
gram. In using it, the reader may want to consult Dobbs 
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( 1984b) for a self-contained proof of the expansion 
formula for tan(u ± v) that is more accessible than 
the proof in standard textbooks in that it is indepen­
dent of the expansion formulas for sin(u ± v) and 
cos(u ± v). Finally, note the central role of the for­
mula for tan(u ± v), as it figures in a characterization 
of the tangent function (Dobbs I 989, Theorem 3), 
a result later used by the College Board and Educa­
tional Testing Service as the basis for the final ques­
tion on the Advanced Placement Calculus BC ex­
amination in May 1993. 

Formulas Based on the 
Inverse Tangent Function 

We begin by recalling the definition of what will 
be our key tool. If Lis a line, then the angle of incli­
nation of L is defined as the angle cp between L and 
the positive x-axis such that 0 :S cp < n. If L has posi­
tive slope, then 0 < cp < n/2, as in Figure 1. 

Figure 1 

Acute Angle of Inclination 

X 

If L has negative slope, then n/2 < cp < n, as in Figure 2. 

Figure 2 

Obtuse Angle of Inclination 

L 

X 

If L has slope equal to 0, then L is horizontal and it 
is conventional to take the angle of inclination of L 
to be 0. Last, if the slope of Lis undefined (that is, if 
L is vertical), then <p = n/2. Part (a) of the following 
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proposition is well known (see Brink 1954, 357); 
parts (b) and (c) are also essentially known and will 
be useful later in the proof of the theorem. 

PROPOSITION. Let L be a nonveracal line having slope 
m and angle of inclination <p. Then, 

(a) tan(cp) = m.
(b) If <pis an acute angle, then <p = tan- 1 (m).
(c) Jf c.p is an obtuse angle, then <p = re - tan-1(-m)

= rr + tan-1 (m). 

PROOF. (a) If <pis acute, then tan( <p) and m are the 
same ratio of two sides of a right triangle having 
<pas one of its angles. Suppose next that cp is obtuse, 
with related angle 0. Then, the preceding reasoning 
gives that tan(0) = -m. Moreover, tan(cp) = -tan(0) 
by the definition of the tangent function, as given 
in Brink (1954, 200, 233). The assertion follows 
easily. (The preceding argument was tailored for 
classes whose definition of the trigonometric func­
tions is, like that in Brink [ 1 954], based on angles 
in standard position and related angles. An alterna­
tive proof should be given to classes whose defini­
tion of the trigonometric functions is based on the 
unit circle.) 

(b) The assertion in (b) follows from (a) and the
definition of the inverse tangent function. 

( c) Suppose that cp is obtuse. Let 0 be the related
angle of <p. Since cp + 0 = n, it follows that 0 is 
an acute angle. Also, as noted in the proof of 
(a), tan(0) = -m. Then 0 = tan- 1(-m) = -tan· 1(m), the 
first equality holding by the definition of the inverse 
tangent function and the second equality holding 
because tan- 1 is an odd function. Substituting these 
facts into the equation cp = 1C- 0 leads to the assertions 
in (c), to complete the proof. o 

The formulation of our main result ignores the case 
of perpendicular lines because this case can be han­
dled directly. Indeed, if L

1 
and L

2 
are coplanar lines

having slopes m
1 
and m

2
, respectively, every precal­

culus course covers the fact that L
1 

and L
2 

are per­
pendicular if and only if I + m

1
m

2 
= 0. Moreover, a 

vertical line L
1 

is perpendicular to a coplanar non­
vertical line L

2 
having slope m

2 
(at their point of in­

tersection) if and only if m
2 

= 0. 

THEOREM. Let L
1 

and L
2 

be two intersecting non­
perpendicular lines in the Euclidean plane. Then, (a) 
suppose that L

1 
and L

2 
are each nonvertical, having 

slopes m
1 

and m
2
, respectively. Then, the two acute

angles formed by L
1 
andL

2 
at their point of intersec-

tio::�: r:�h:.::r 
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and the two obtuse angles formed by L
1 

and L
2 

at 
their point of intersection are each given by 

n - tan-1 ( m1 -
m2 i] ·

1 +m1
m2 

(b) Suppose that L 1 is vertical and that L2 has slope
m

2
• Jfm

2 
> 0, then the two acute angles formed by L

1 

and L
2 

at their point of intersection are each given 
by n/2 - tan-1 (m

2
), and the two obtuse angles formed 

by L1 and L2 at their point of intersection are each 
given by rr/2 + tan-1 (m

i
). If m

2 
< 0, then the two acute 

angles formed by L 1 andL
2 
at their point of intersec­

tion are each given by n/2 + tan-1 (m
2

), and the two 
obtuse angles formed by L1 and L2 at their point of 
intersection are each given by n/2 - tan-1 (m2). 

PROOF. ( a) Four angles are formed at the intersection of 
L

1 
and Lr Since vertically opposite angles are congru­

ent, it suffices to determine one of these angles, say a. 
The other three angles of intersection are then a, Tr - a 
and Tr - a. It is convenient to distinguish six cases. 

CASE 1. 0 < m
2 

< m
1
, with a acute. The data are de­

picted in Figure 3. 

Figure 3 

Case 1 
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j7L2 
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,' ' , '
/ 'P2 : 'Pl 

By a basic fact about triangles in Euclidean geometry, 
the exterior angle <p

1 
is the sum of the two remote 

interior angles, a and <p
2

, and so a = <p
1 
- <p

2
• Moreover, 

by part (a) of the proposition, tan(<p
1
) = m1 and

tan( <p
2
) = mr Therefore, by the expansion formula 

for tan(u - v), we have that 
tan( <p

1 )- tan( <p2 ) tan(a) = tan(<p
1 
- <p2) = 1 + tan(<p

1
)tan(<p2) 

Since a is an acute angle, the definition of the inverse 
tangent function ensures that 

a = tan-1(tan(a)) 
in this case, so the asserted formula for a has been 
established. 

6 

CASE 2. m
1 

< m
2 

< 0, with a acute. The data are 
depicted in Figure 4. 

Figure 4 

Case 2 

X 

The exterior angle <p
2 
is the sum of the two remote 

interior angles, a and <p
1
, and so a = <p

2 
- <p

1
• Combin­

ing part (a) of the proposition, the expansion for­
mula for tan(u - v) and the definition of the inverse 
tangent function as above, we see that 

m -m m -m tan(a) = 2 I = I 2 

1 + m
2
m

1 
1 + m

1
m

2 

and a = tan- 1(tan(a)). The asserted formula for a
follows. 

CASE 3. m
2 

< 0 < m
1
, with a acute. The data are

depicted in Figure 5. 

Figure 5 

Case3 

I \ 
I \ 

I \ 
I \ 

' 'Pl ' 'P2 
X 

As in the analysis for Case 2, we infer that 

m2 -mi m1 -m2 tan(a) = -''-----'- = 1----1. 

l+m2m1 l+m1m2 

(The last equality holds since m
2 
- m

1 
and 1 + m

2
m

1 

are both negative, but it is not really necessary to 
observe this, because we need only appeal to the fact 
that any acute angle has a positive tangent.) Case 3 
can now be completed in the earlier cases by appeal­
ing to the definition of the inverse tangent function. 
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CASE 4. m
1 

< 0 < m
1

, with a obtuse. The data are depicted in Figure 6. 
Figure 6 
Case4 

r.pz X As in the analyses for Cases 2 and 3, we infer that m -m m -m tan(a) = i I = - I 2 ' 

1 + m
2
m, 1 + m

1
m

2 the last equality holding since obtuse angles have negative tangents. Next, note what was effectively established in part ( c) of the proposition-that any obtuse angle a satisfies a = n - tan- 1(ltan(a)\);this can also be seen as a consequence of the basic facts about related angles (see Brink 1954, 233, Rule). Combining the assembled information leads to the asserted description of a. 
CASE 5. 0 = m

1 
< ml' with a acute. The data are depicted in Figure 7. 

, , , 
,/ 

/r.p1 

,, 

Figure 7 
Case5 

z 
,/ L2 

X Relative to the transversal L
1
, the parallel lines L

2 
and the x-axis cut off exterior corresponding angles a and <p1• Therefore, by a fundamental result in Euclidean geometry, a = <p

1
• Hence, 

(
by ;

1

� �� o
J
fthe proposition, 

a= tan- 1(m ) = tan- 1 -�-� 
, I } + nl/122 and the asserted description of a follows easily. 
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CASE 6. m 1 < m
1 

= 0, with a obtuse. The data are depicted in Figure 8. 
Figure 8 
Case6 

Q 

X As in the analysis of Case 5, we see that a and <p
1 are exterior corresponding angles and, hence, equal (in measure). In particular, part ( a) of the proposition yields that tan(a) = m

1
• Then, since a is obtuse, a fact recalled in the analysis of Case 4--or an application of part ( c) of the proposition-yields that a = n - tan- 1 (ltan(a)\) = n- tan- 1(lm 1 1). Since m

2 
= 0, the asserted description of a now fol­lows easily. 

(b) The opening comments in the proof of (a) areenough to prove the assertions concerning the acute angles of intersection a. Let <p
1 

denote the angle of inclination of L
2

. Suppose first that m
1 

> 0, as in Figure 9. 
Figure 9 

L, Vertical and ½ with Positive Slope 
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Since m
1 

> 0, we have that <p
1 

is an acute angle, so part (b) of the proposition gives <p
2 
= tan- 1(m). There­fore, since a and <p

1 
are complementary, we have a = n/2 - <p

1 
= n/2 - tan-1(m), as asserted. Finally, suppose that m

2 
< 0, as in Figure 10. 
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Figure 10 

L
1 

Vertical and L
2 

with Negative Slope 

a 

,, 
I \ 
I \ 
I \ 
I \ 
I \ 
I \ 

I \ '{)2 We have the exterior angle <p
2 
equal to the sum of the two interior remote angles, a. and 1C!2. Since <p

2 
is obtuse, we could now complete the proof by using the fact recalled in the analyses of Cases 4 and 6. For variety, we argue instead through part (c) of the proposition. This gives that cp

2 
= n + tan- 1 (m

2
). There­fore, a. = <p

2 
- 1C!2 = (1C + tan-1 (m

2
)) - n/2 = 1C!2 +tan- 1(m

2
), to complete the proof. □ REMARK. Consider the lines L, and L

2 
with Cartesian equations 2x - 3y + 4 = 0 and Sx + 6y + 7 = 0, respec­tively. Solving for y, we obtain the equations in slope­. 2 4 5 7 mtercept form as y = - x + - and y = - - x - -

3 3 6 6 ' respectively. Therefore, the slopes of the given lines are the coefficients of x in slope-intercept form: m
1 
= 3- and m

2 
= - 2. . Implementing part (a) of the3 6 theorem (with the aid of a TJ-86 graphing calculator), we see that the radian measure of an acute angle formed by L

1 
and L

2 
at their point of intersection is 

tan-1[ � 2 -;_5 l:::::1.28274087974,
l+-·-

3 6 and so an obtuse angle formed by L, and L
2 

is given approximately by the supplement of the preceding value: 
7[ - 1.28274087974::::: 1.85885177385. Notice that, in implementing the theorem, we need no diagram and there are no ambiguities. In particu­lar, because of the absolute value symbol appearing in the formulas in part (a) of the theorem, it does not matter which line we called L

1 
and which L

r 
In ad­dition, the above narrative displays the relatively few calculations and keystrokes needed in this routine application of the theorem. Let us compare the above work with how the methods in Brink (I 954, 359) and Stewart, Redlin and Watson (2002, 604) would handle the same problem. 

8 

First, we consider the method from Brink (I 954,359), using the formula 
m1 -m2 tan(0) = 
1 + m1m2With the above values of m 

I 
and m

2
, we find that 27 tan(0) = s= 3.375. One such 0 is tan-1(3.375) :::::l .28274087974, the acute angle that we found usingthe theorem; thus, by calculating the supplement of0, one would also find the obtuse angles formed byL

1 
and L

2
• However, one should not conclude that Brink's (1954, 359) method is as useful in general as that in part (a) of the theorem. What if we interchanged the labels on the lines L, and L) We would then be led to consider an angle 0 such that tan(0) = -3.375. This 0 is neither the acute nor the obtuse angle that we are seeking! Moreover, a calculator cannot come to the immediate rescue, because the inverse tangent of this 0 is negative. Granted, with a careful diagram and some thought about related angles, a skilled user of this method could eventually find the desired acute and obtuse angles. In contrast, a user of the theorem need never worry about such matters, because the case analyses in the proof of the theorem took care of them once and for all. Next, we consider the currently popular vectorial method in Stewart, Redlin and Watson (2002, 604). To apply this method, we first need to find a vector ii in a direction determined by L

1 
and a vector v in a direction determined by L

r 
To find ii, we first find two points on L

1
, say the intercepts of L

1 
on thex- and y-axes. Setting one variable equal to O in an equation for L, and solving for the other variable, we are thus 

4 led to the points P
1
(0, 3) and P

2
(-2, 0) on L,. A suit-- - 4 able u is then the vector P

1
P

2 
= < -2, - 3 >;some notational conventions would write this vector ( 2 4) 2 7 4 -: A . ·1 fas - , - - or - z - - J . s1m1 ar amount o 3 3 work with an equation for L

2 
would find a suitable v to be the vector< - !.... , !... >. Applying the formula 5 6 on page 604, we are then led to an angle 0 such that 

7 4 7 

U · V 
-2 -5 -3 6cos(0) = luiivl 

=

(- 2)2 + (-� J �(-; J + (¾J ::::: 0.284088329691. One such 0iscos-l(0.284088329691)::::: 1.28274087974, the acute angle that we found using the theorem; thus, by calculating the supplement of 0, one would also find the obtuse angles formed by L, and L
2

• 
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As one might suspect from the above discussion, 
this method can be made as useful in general as that 
in the theorem, but one would need the following 
additional provisos. If the calculated value of cos(0) 
is positive (resp., negative), then taking the inverse 
cosine of this number produces the acute (resp., ob­
tuse) angle(s) formed at the point of intersection of 
L

1 
and L

2
• 

The method in Stewart, Redlin and Watson (2002, 
604) does have an advantage: it does not need to
consider separately the case in which one of the
intersecting lines is vertical, as we did in part (b)
of the theorem. However, as the above example il­
lustrates, the number of calculations and keystrokes
needed to implement this method is considerably
greater than the corresponding effort in applying
the theorem.

Last, I indicate another aspect, which I view as a 
drawback, of this method. Notice that if we inter­
change the labels on the points P

1 
and P

2 
considered 

above, then ii is replaced with - ii and the calcu­
lated value of cos( 0) changes to the negative of the 
previous value. Thus, this method cannot guarantee 
a priori whether the first angle 0 that it finds is going 
to be acute or obtuse. As explained above, this am­
biguity can be removed, at the possible cost of cal­
culating a supplementary angle, after observing the 
sign of the calculated value of cos( 0). By way of 
contrast, no such thought or supplementary calcula­
tion (pun intended) is needed in applying the theorem; 
once again, the point is that the case analyses in the 
proof of the theorem took care of such issues once 
and for all. 
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If time is short, a classroom presentation covering 
the main points given above could be based on the 
proposition; the statement of the theorem; cases 1, 4 
and 6 from the proof of the theorem; and the part of 
the remark in which the theorem is applied. 
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