
A Letter to Jim About the Other, 
Not-So-Magic Square 

A. Craig Loewen

We are all familiar with the traditional magic 
square, the one in which we must fit the digits 1-9 
such that all rows, columns and diagonals have the 
same sum. But some time ago my friend Jim intro
duced me to the other magic square: 

A B 

1. Calculate the area of the square.
2. Cut out the four pieces and rearrange them

to make the rectangle.
3, Calculate the area of the rectangle. 
4. Explain the difference in the areas-or is it

magic?

Jim asked, "Is there a mathematical explanation for 
this activity?" After exploring the problem, I wrote 
the following letter in response to him. 

Dear Jim, 
The problem seems a little familiar to me, but if 

I've forgotten the problem, I've also forgotten the 
solution! I wound up playing with it for a few hours 
this afternoon. Here are my thoughts and notes. 

Understand the Problem 

My intuition and my belief in the laws of conserva
tion force me to doubt that the shapes grow simply 
by my moving them. So, let's study the square first. 
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We know that the square is made up of four 
pieces with shapes and dimensions as in the figures 
below (two trapezoids and two triangles): 

3 

5 

5 � 

We can calculate the areas of the trapezoids and the 
triangles to see if they add up to 64 or to 65. Maybe 
that will help us discover the trick: 

Area trapezoid= (0.5)( II_ top + II_ bottom)(height) 
= (0.5)(3 + 5)(5) 
= 20 

Area triangle = (0.5)(base)(height) 
= (0.5)(8)(3) 
= 12 

Area square = (2)(area trapezoid)+ (2)(area triangle) 
= (2)(20) + 2( 12) 
= 64 

Of course, this answer makes sense, because the 
square was 8 units on its side. We could have calculated 
this area a whole lot faster simply by squaring one of the 
sides, but I wanted to know if the areas of the pieces 
added up! We'd better look at the rectangle now. 

We know that the rectangle is made up of the same 
four parts, so it should also have an area of 64 square 
units. We can calculate the area of the rectangle using 
the length-times-width formula, but first we need to 
find the length and width of the rectangle. The length 
of the rectangle is the sum of the longest sides of 
pieces A and D, which is 13 units. The height of the 
rectangle is the same as the height of piece A, which 
is 5 units. So, 

Area rectangle = (length)(width) 
= (13)(5) 
= 65. 

Well, for all the world, it looks like we have gained 
I square unit simply by rearranging the pieces! There 
is definitely something fishy about this rectangle! 
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Develop a Plan and Carry It Out 

We had better take a closer look at the rectangle and 
label some points so that we can see what is going on: 

M 
R 

T 

Q w 

First, let's extend the line RS until it meets the line 
QU. We'll call that point W(as shown in the diagram 
above). We know that both line MN and line TU are 
5 units long. If this is a genuine rectangle, the length 
of line RW should also be 5 units. But how can we 
calculate the length of line RW? Well, we know the 
length of line RS ( 3  units), so all we need to do is 
calculate the length ofline SW We can do this using the 
properties of similar triangles. Here is our triangle: 

:�u 
w 

Let's make a list of what we know: f. PQ = 3 units, 
f. QU = 8 units and I! UW = 5 units. Now we can
construct our ratio:

/!SW _ f.PQ 
f. UW - £UQ

esw 3 
----

5 8 

Solving for £ SW, we find that it is 1.875 units. 
Wait a minute! That means that the length of RW is 
4.875 units ... but it's supposed to be 5 units! In 
other words, our figure is not a true rectangle-at 
least, it's not a uniform, solid rectangle as it appears 
to be. Therefore, the fonnula for calculating the area 
of a rectangle (length times width) doesn't apply 
here. 

But I still don't know exactly what is going on. It 
is worth investigating further. I'm wondering what 
happens when the two pieces (the triangle and the 
trapezoid) are put together. While trying to draw these 
shapes on the computer, I have become suspicious of 
their slopes. Consider this figure: 

M 

5 

3 

N L...-__ 5;__ _ __,1 ___ __;_8 ____ -=- u

Q 
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If line MU is indeed a straight line, then the slope of 
line MP must equal the slope of line PU: 

rise nse 
slope PU = -- slope MP= --

run run 
3 2 

= 8 = 5 

= 0.375 = 0.4 

Here it is! The slopes are dangerously similar, but 
they are not the same. If the slope of PU is less 
than the slope of MP, the two shapes do not form a 
true triangle. The segment from Mto Ubends toward 
Q at P So, when we add another of these tricky 
triangles, putting the four pieces together, we are 
actually leaving a little gap! This gap is just too small 
to notice when we cut out the shapes and move 
them around. The inaccuracy of our paper model 
hides that 1 square unit. That is the real magic of this 
magic square! 

Looking Back 

Well, now I know why I had so much trouble draw
ing these shapes on my computer in the first place. 
Look what happens when I accurately draw the shapes 
with the help of my computer, rotate them and put 
them together to form a rectangle: 

We can see a small area distributed neatly through 
the centre of the figure. Because I know the area of 
the rectangle and the areas of each of the four shapes, 
it makes sense that the gap has an area of 1 square 
unit: 

Area of gap= area rectangle - (2)(area trapezoid) 
- (2)(area triangle)

= 65 - (2)(20) - 2(12) 
= I. 

It would be fun to find another way to calculate 
(and perhaps verify) the area of the gap in the rect
angle. One such way is to identify the coordinates of 
this tiny shape (a quadrilateral) and use the following 
formula: 

Area= (X1Y1 + X1Y3 + ... + XnY1 )- (Y1X2 + Y2X3 + ... + Y,,X,)
2 
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To identify the coordinates, we need only superimpose
the rectangle onto a Cartesian coordinate system:

a''�--=���: . I l · <5.3> t ···¾,,,,,.. I ia 2> 

.. .. . .. . • I ... ,,.<,,-.;.;,�,,,'.:'--,.� .
·-·•·········· •.... I ...... : ...... ·-···-----·-· ( 13,0) 

We can define the points as follows: (x
l'y1

) = (0, 5),
(x2, y2) = (5, 3), (x3, y3) = (13, 0) and (x

4
, y4) = (8, 2).

To use this formula, we should define the points in
sequence in a counter-clockwise order. Now we can
substitute the values in the formula:

Area
of gap

(x,yz + X1 Y3 
+ .r,Y, + __ .r.y,-(y,x2 

+ Y2X3 
+ Y,X, + Y.X,) 

2 
(0-3+ 5-0+13 · 2 +8 ,5)-(5 · 5+ 3 .13 + 0-8+ 2-0) 

2 

= 

(0+0+26+40)-(25+39+0+0) 

= 

66-64
2

2 
2

= I. 

2 

Now I have a problem for you to try. I don't know
the source of this problem, but I think a student gave
it to me a long time ago. It has definite similarities to
the problem you sent me (both in the problem itself
and in its solution). Here it is: 

The fourparts are 
moved ftfOUnd in 
the figure bebw. 

Thepdons am exadtytfle 
same as !hoseusefi aboYe. 

What is the source of this 
hde? 

delta-K, Volume 41, Number 2, June 2004

I had a great time playing with this problem today,
Jim! And the answer to your question is, yes, there
is a mathematical explanation. It turns out that
your square is not magical, but my afternoon really
was fun!

A Few Notes 

Keep well,
Craig

It is sometimes surprising that a problem can so
totally capture our interest that time slips away as we
play, think and explore. But, as I look back over this
problem and my solution to it, I am struck by other,
more important questions.

Owning a Problem 

What can we do to help our students bite into a
problem? When I started working on this problem,
I was so sure that something was amiss-I square
unit can't just disappear!-that I couldn't let it go
until I could provide an adequate explanation.
How can we help our students develop this sense
of internal insistence? Maybe this sense is a pre
cursor to that infinitely important and highly desir
able sense of achievement we feel when we solve
the problem!

Finding Time 

How do we find time for any form of real problem
solving in our classrooms? I really did spend an
afternoon playing with this problem. I wanted to
try several methods and see if I could come up
with a good, sensible explanation. But I wonder if
the volume and busyness of our curriculum (which
supposedly values problem solving above all else)
leaves adequate space for anything other than
direct instruction based on algorithms, formulas
and facts.

The Role of Technology 

How can we increase the use of technology as a
tool in the mathematics classroom? In at least one
way, my computer was an important tool in solving
this problem. Only with the aid of my computer could
I construct a drawing accurate enough to reveal the
small gap. The software I used was not particularly
complex or expensive; it was a simple drawing pack
age. Our students should be taught to integrate tech
nology flexibly, using the available software to in
crease their problem-solving power.
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Communication in the Classroom 

How can we better integrate communication in 
the math classroom? In part, what made this problem 
fun for me was sharing it with a friend. What does 
this tell me about the need for collaboration, coop
eration and communication? And what does this tell 
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me about how my class time and, indeed, my class
room space might be better arranged? 
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