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My recent article (Dobbs 2003) proposed some 
enrichment material for the typical precalculus course 
by developing several methods to study angle bisec­
tors and inscribed circles of triangles. It seems natu­
ral to ask if the subject of circumscribed circles of 
triangles can also provide enrichment material for 
precalculus. This article shows how that may be done. 
The insight that such coverage is possible at the pre­
calculus level is not new. For instance, Smith's (1956, 
101) classic treatise includes an exercise asking for 
an equation of the circumscribed circle of a given 
triangle. Because Smith's text does not suggest a 
method to work that exercise, it is of some interest 
to find several such methods, and I do so here. 

One way to proceed is to develop methods for find­
ing the perpendicular bisector of a line segment, be­
cause the centre K of the circumscribed circle of a 
triangle 11 is the intersection of the perpendicular 
bisectors of the sides of 11. For this reason, I devote 
the next section to developing two methods for con­
structing perpendicular bisectors of segments. Of 
course, once we have found K, we can use the dis­
tance formula to find the radius r of the circumscribed 
circle, because r is the distance from K to any vertex 
of 11. Then, given Kand r, we can move directly to 
the standard form equation of the circumscribed 
circle. The associated discussion in this section re­
inforces several precalculus topics: standard form 
equations of circles, midpoint formula, equations of 
lines, solution of systems of two linear equations in 
two unknowns, slope and the "negative reciprocals" 
criterion for perpendicularity. Note that the last of 
these topics is so fundamental that it can be proved 
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in at least four ways in a precalculus course (Dobbs 
and Peterson 1993, 39, 41,338,427). To make mat­
ters concrete and more user-friendly, I give a numeri­
cal illustration of the methods here and in the fol­
lowing section by applying them to a particular 
triangle /1. 

In the final section of the article, I turn matters 
around by giving two methods for directly finding 
an equation for the circumscribed circle of a given 
triangle. Of course, with such an equation in hand, 
we can recover the coordinates of the centre and the 
radius of this circle by completion of squares. Both 
methods in this section are necessarily more alge­
braic than the methods developed in the earlier sec­
tion. The first of these algebraic methods involves 
solving a system of three linear equations for three 
unknowns and thus reinforces an important topic 
from precalculus/algebra. The second method can be 
approached through Cramer's rule, thus reinforcing 
the study of determinants (and, possibly, matrices). 

· In a closing comment, I draw an analogy between 
the second algebraic method and an old, but often 
overlooked, method for finding an equation of the 
line through two given points. 

Two Methods for Finding 
Perpendicular Bisectors 

Suppose we are given two distinct points P1(x1
, y

1) 
and P/x

2
, y

2
) in the Euclidean plane. There is an 

obvious, direct way to find the perpendicular bisec­
tor of the line segment P

1
P

2
• For this method, first 

recall from the midpoint formula (Dobbs and 
Peterson 1993, 34-35), a nice application of the 
theory of proportion and similar triangles, that the 
midpoint of the segment is Q[(x

1 
+ x

2
)/2, (y

1 
+ y

2
)/2)]. 

Next, we need only write an equation for the line 
that passes through Q and is perpendicular to Pl2 -

Let us illustrate the above method by finding an 
equation for the circumscribed circle of MBC, given 
the verticesA(-9, 11), B(2, -4) and C(6, 8). (Readers 
of Dobbs [2003] will surely recognize this "random" 
triangle.) The midpoint of the segment AB is (-7 /2, 7 (2), 

and the slope of AB is (-4- 11)/[2 - (-9)] = -15/11. 
By the "negative reciprocals" result, the perpendicular 
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bisector of AB has slope 11/15 and, thus, by the point­
slope form of the equation of a line, has equation 

y = 
l1 [ X - (-2)] + 7_ 
15 2 2 

or, equivalently, 
llx - 15y + 91 = 0. 

Similarly, one verifies that the midpoint of the seg­
ment CA is (-3/2, 19/2) and that the perpendicular 
bisector of this segment is 5x - y + 17 = 0. 

By solving the system of linear equations 

{
llx-15 y+91 = 0 

5x-y + 17 = 0 
for the unknowns x and y, one finds the coordinates 
(h, k) of the centre K of the circumscribed circle of 
MBC to be (-164/64, 67/16) = (-41/16, 67/16). 
The radius r of this circle is the distance between 
K and any vertex, say C, and so, by the distance 
formula, 

r2 = 
[6 _ (- 41)]

2 
(8 _ 67)2 

= 22,490 = 11,245 

16 + 16 256 12 8 . 

Then the standard form equation of the circumscribed 
circle is 

(x - h)2 
+ (y - k)2 

= r2, 
that is, 

[x- c-;!)f + (y-�;Y = 

11i;:5 

or, equivalently, x2 + y2 + (41/8)x- (67/8) y- 255/4 = 0. 
I tum next to the second method promised in the 

title of this section. This method depends on the fol­
lowing fact from Euclidean plane geometry (a pre­
requisite for the typical precalculus course): given 
distinct points P1 and P2 in the plane, a point Q in 
that plane is on the perpendicular bisector of the seg­
ment P1P2 if and only if Q is equidistant from P1 and 
P2• (The proof of this fact is a familiar application of 
congruence criteria: use side-angle-side and either 
side-side-side or hypotenuse-side.) This fact justi­
fies my earlier comment that the centre of the cir­
cumscribed circle of a triangle is the intersection of 
the perpendicular bisectors of the sides of that tri­
angle. Next, we can use this fact to find the perpen­
dicular bisector of P 1P2, as follows. By the distance 
formula, a point Q(x, y) is on this perpendicular bi­
sector if and only if 

(x-xl 
+ (y-y)2 = (x-x)2 + (y-y

2
)2. 

It is clear that algebraic simplification of the preced­
ing equation leads to the desired linear equation (be­
cause the terms in x2 and y2 cancel). Rather than write 
the general form of this linear equation, let us illus­
trate it by returning to the data examined above. 
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Consider the segment AB, given A(-9, 11), B(2,-4). 
The above method yields that the perpendicular bi­
sector of AB is given by 

[x - (-9)}2 + (y- 11)2 
= (x - 2)2 

+ [y- (-4)]2 

or, equivalently (after cancellation of the terms in x2 

and y2), 22x - 30y + 182 = 0. This equation is equiva­
lent to llx - I5y + 91 = 0, thus agreeing with the 
equation found by the first method. (It is interesting 
that our foray into quadratic equations has led to an 
arguably faster way to find this linear equation!) I 
encourage the reader to practise the second method 
to recover the earlier equation for the perpendicular 
bisector of the segment CA. Of course, with these 
two equations in hand, one can proceed as above to 
find the centre, radius and standard form equation 
for the circumscribed circle of MBC. 

Two Algebraic Methods 

Suppose that we are given three noncollinear 
points P1 (x1, y1), P

2
(x

2
, y2) and P/x3, y3) in the Eu­

clidean plane (that is, the vertices of some triangle �). 
One way to find an equation for the circle passing 
through these three points (that is, the circumscribed 
circle of�) is to solve for the coefficients A, Band C 
in an equation, x2 + y2 + Ax + By + C = 0, for this 
circle. (Recall that circles are characterized as the 
graphs of equations of this form such that A2 + B2 > 4C.) 
For this, we solve the system of linear equations 

2 2 

2 2 

x2 + Y2 + Ax2 
+ By2 + C = 0 

2 2 

X
3 

+ y
3 

+ Ax
3 

+ By
3 

+ C = 0 

{ x, +Y
i
+ Ax,+ By

l 
+ C = 0 

for the unknowns A, B and C. By completion of 
squares, we then find the centre K(h, k) and radius r 
of this circle. We can then easily find equations for 
the perpendicular bisectors of the sides of/),,__ 

I next illustrate the procedure for the usual data, 
the triangle with vertices (-9, 11), (2, -4) and (6, 8). 
For this example, the above system of equations is i (-9)2 + ll2 - 9A+l1B+C= 0 

22 + (-4)2 + 2A - 4B + C = 0 . 
62 + 82 + 6A + 8B + C = 0 

An of the standard methods for solving such a lin­
ear system leads to the unique solution A= 41/8, B = 
-67/8 and C = -255/4, thus agreeing with the result 
of the methods in the preceding section. By com­
pleting squares, we can rewrite this equation as 

[ _ (- 41
)]

2 ( _ 67
)

2 
= 11,245 

X 16 + y 16 12 8 
from which we recover the facts that K is (-41/16, 
67/16) and r is determined as the principal square 
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root of r = 11,245/128. Finally, to identify the per­
pendicular bisector of one of the sides of the given 
triangle, say of AB, one of many possible ways to 
proceed would be to write the two-point form of the 
equation of the line through K and the midpoint of 
AB. We then obtain 

67 7 
16 - 2 

( 
-41) 67 y = 

- 41 -7 x- 16 + 16 
16 2 

This equation simplifies to 352x - 480y + 2,912 = 0, 
or equivalently, I Ix - 15y + 91 = 0, thus agreeing 
with a calculation in the preceding section. 

In presenting the above algorithm, I glossed over 
one theoretical point-namely, how we can be sure, 
once we have solved for the unknowns A, B and C, 
that the equation x2 + y2 +Ax+ By+ C = 0 actually 
represents a circle. One answer depends on the fol­
lowing two observations: (1) by completion of 
squares, we see that the graph of any equation of 
this form is either a circle, a singleton set (that is, a 
set consisting of just one point) or the empty set and 
(2) the graph of this equation does pass through the 
three distinct points P

1
(x

1
, y

1

), P/x
2

, y
2
) and Pix

3
, 

y
3
), because the above system of linear equations is 

satisfied and, hence, must be a circle. 
I turn next to the second "algebraic" method prom­

ised in the title of this section. Quite simply, this 
method presents the following equation for the circle 
passing through three given noncollinear points 
P,(x

1
, y

1
), P

i
Cx

2
, y

2
) and P

3
(x

3
, y

3
) in the plane: 

x2+y2 
X y l 

X� + y� x, y
1 

1 
= 0. 

x; + y� x
2 

y
2 

1 
x; + Y; x

3 
y

3 
1 

For our usual example, the above equation is 
X

2 + y2 
X y 1 

(-9)2 + I 12 -9 11 I 
22 + (-4)2 2 -4 1 = 

o. 

62 + 82 6 8 1 
By expanding the determinant along its first row, 

we can rewrite this equation as 
192(x2 + y2) + 984x - l ,608y - 12,240 = 0 
or, equivalently, 
x2 + y2 + (4l /8)x - (67/S)y- 255/4 = 0, 

thus agreeing with the result already obtained twice 
above by other methods. 

Why is the above determinental method valid in 
general? To answer this question, first notice that 
the proposed equation is satisfied by each of the 
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points P,(x,, y
1
), P/x

2
, y

2
) and Plx

3
, Y) because the 

determinant vanishes for any square matrix having 
two equal rows. Moreover, by the above comments, 
if the proposed equation is truly quadratic, then its 
graph must be a circle (because we now know that 
it is neither a singleton set nor empty). Finally, 
the proposed equation is truly quadratic. Indeed, ex­
panding along the first row of the determinant ap­
pearing in this equation, we see that the coefficient 
of x2 + y2 is 

x, y
1 

1 
x

2 Y2 
l 

X
3 Y3 

l 
This determinant is nonzero (thus, the proposed 
equation is truly quadratic) for a fundamental 
geometric reason. In fact, the absolute value of this 
determinant can be shown to be twice the area of 
MBC (see Dobbs and Peterson [1993, 537]). Veri­
fication of this assertion makes for an accessible 
computational exercise early in a precalculus course 
(and a much easier, more conceptual exercise later 
for a student who knows about the crossproduct of 
vectors). 

I next give another justification for the above 
determinental method. Still working in the Euclid­
ean plane, let Q(x, y) be another point on the circle 
passing through the three noncollinear points P,(x,, 
y), P

z
(x

2
, y) and P

3
(x

3
, y). Consider the system of 

· linear equations 
(x

2 
+ y

2
)S + xA + yB + 1 • C = 0 

2 2 

(X1 
+ y)S + x,A + y

1
B + 1 • C = 0 

2 2 (X
2 

+ y
2
)S + xt4 + y

2
B + 1 • C = 0 

2 2 X
3 

+ y
3 

+ xr4 + y
3
8 + 1 • C = 0 

for the unknowns S, A, B and C. Because the four 
points Q, P

1
, P

2 
and P

3 
all lie on some circle x2 + y2 + 

Ax + By + C = 0, there is a nontrivial solution for 
these unknowns (in which S = 1 ). Consequently, by 
Cramer's rule, the coefficient matrix of the above 
linear system has its determinant equal to 0. The state­
ment that this determinant equals O is precisely the 
proposed determinental method; and we can see that 
the proposed equation is truly quadratic (that is, after 
we expand along the top row, the coefficient of 
x2 + y2 is nonzero) as explained above. 

In closing, I note that the second "algebraic" 
method can be modified to give an equation for the 
line passing through any two distinct points, P

1
(x,, y 1

) 

and Pz(x
2

, y
2
). (This observation was made by Nathan 

Mendelsohn in a lecture I attended in 1962, but I 
have not seen it elsewhere. Nor have I seen the analo­
gous description of an equation for the sphere passing 
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through four given noncoplanar points, but that would 
not be as useful, because it involves a 5 x 5 determi­
nant.) More specifically, 

X y 1 

X
J 

Y, 1 = 0 
x2 Yi 1 

is an equation for the line passing through the two 
given points P

1 
and P

2
• As above, the verification can 

proceed in either of two ways: (1) invoke Cramer's 
rule or (2) note that the expansion of the determi­
nant gives a nontrivial linear equation satisfied by 
both the given points. Because the first postulate of 
Euclid's Elements states that exactly one line passes 

through any given pair of distinct points, we are done. 
In addition, by appealing to the very foundations of 
Euclidean geometry, this algebraic activity has served 
to illustrate the unity of mathematics. 
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A is 25 per cent of 8, and Bis 30 per 
cent of C. What percentage of C is A? 

What percentage of A is C? 
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