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The similarities between our number system and 
that of the Babylonians are several. Like them, 
we use a finite number of symbols or digits (we 
use 10) to express all integers; and we, too, as­
sign importance to the position of a digit, so that 
for every place it is moved to the left, its value is 
multiplied by a constant factor (10 for us, 60 for 
the Babylonians). Like them, we make use of an 
extension of this rule to express certain fractions 
(decimal fractions in our case)----that moving a digit 
one place to the right means to divide its value by 
the constant factor 10 or 60. The numbers 10 and 
60, which play such an important role are the 
bases for the two number systems, which are called 
the decimal and the sexagestimal system. 

The differences between the two systems are the 
Babylonian base 60 and the absence of the equiv­
alent of the decimal point in the sexagesimal system. 

There is nothing especially outstanding about 
the numbers 10 and 60. Our predecessors' choice 
of IO is just a matter of coincidence, and though 
the Babylonians were not above counting on their 
fingers, as we can conclude from their special sign 
for 10, their choice of 60 as a base also had its 
motivation outside mathematics. It is not hard to 
prove that any integer n greater than 1 can serve 
as the base of a positional or place-value number 
system (as we call a number system with the com­
mon characteristics of the decimal and the 
sexagesimal number systems). 

In such a system, we will need n different sym­
bols or digits whose principal values are 0, 1, 2, ... , 
n - I. To move a digit one place to the left will 
mean to multiply its value by n and to move it 
one place to the right, even beyond the units' place, 
will mean to divide its value by n. 

We show this by using binary system, as an 
example. We then have two digits, 0 and 1. The 
first 10 numbers are written in this system. Thus: 
I, 10, 11,100,101, 11, 1000, 1001, 1010 

In order to translate the binary number 1001011 
into decimal notation, we observe that 
1001011 = 1 · 26 

+ 0 · 25 
+ 0 · 24 

+ I · 23 + 0 · 22 
+ 

I · 2 + 1 = 75 

50 

If we are to write, say, the number 308 (base 10) 
in binary form, we see that 308 lies between the 
following two consecutive powers of 2: 

28 
= 256 and 29 = 512 

and so 
308 = 28 + 52. 

Now, 52 is between 
25 = 32 and 26 

= 64 
and so 

52 = 25 + 20. 
Similarly, 

20 = 24 + 4 = 24 + 22
, 

and so 
308 = 28 

+ 25 
+ 24 

+ 22 

= I · 28 + 0 · 27 + 0 · � + I · 25 + I · 24 + 0 · 23 + I · 22 + 0 · 2 + 0 

This, written in binary form becomes I 00110100. 
In our binary example, the multiplication and 

addition tables are as simple as can be: 
01 

�
01 

0 01 
1 110 

Accordingly, a binary multiplication is carried 
out thus: 

1101 
110 

0000 
110 I 

1101 
1001110 
We can now return to the easily seen differ­

ences between the sexagesimal and the decimal 
systems. It should be clear that the base 60, though 
unfamiliar, does as well as 10. Each base has its 
advantages and disadvantages. An obvious dis­
advantage of the larger base 60 is that a multipli­
cation table has a size (59 by 59) that practically 
prohibits memorization. On the other hand, it is 
possible to write large numbers with few 
sexagesimal digits. 

One further advantage of the Babylonian base 
is that more fractions can be written as finite 
sexagesimal fractions than can be written as fi­
nite decimal fractions. I have already described 
such fractions in my previous article, "Babylonian 
Mathematics in Cuneiform I" (the section on the 
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reciprocal table) but it is natural to ask the more 
general question: When does a reduced fraction 
(namely, in lowest terms) plq have a finite expan­
sion in a number system with the base n? 

A finite decimal fraction can be thought of as a 
fraction whose denominator is a power of I 0, and 
a finite sexagesimal fraction as one whose de­
nominator is a power of 60. Similarly, a finite frac­
tion in any other number system with the base n 
is a fraction whose denominator is a power of n. 
Our question is then: When can a reduced frac­
tion plq be turned into a fraction with denomina­
tor nx? Since we can only change the denomina­
tor of a reduced fraction by multiplying both the 
numerator and denominator of the fraction by 
some integer, the answer is that plq can be turned 
into a fraction plnx precisely if the denominator q 
contains only prime factors that are also in n', and 
therefore in n. 

So, since 2 is itself a prime, the only reduced 
fractions that can be written as finite binary frac­
tions are those whose denominators are already 
powers of 2. Those that can be turned into finite 
decimal fractions are the ones whose denomina­
tors have no other prime factors than 2 and 5, 
since 10 = 2 · 5. But since 60 = 22 

• 3 · 5, the 
allowable prime factors for finite sexagesimal 
expansions are 2, 3, and 5. Thus, if we consider 
the denominators 2, 3, 4, ... 20, only four of them 
will produce finite binary fractions and seven will 
give finite decimal equivalents, while 13 have fi­
nite sexagesimal expansions. 

The other major difference-namely, the ab­
sence of the equivalent of the decimal point-is, 
to be sure, a flaw in the sexagesimal system. Yet 
it is not as serious as one might think at first. We 
only need to remember that when we are con­
cerned with multiplication and division of deci­
mal fractions, we can forget about the decimal 
points. After all, they have no influence on the 
sequence of digits in the result, but control only 
its size. In fact, when we use a slide rule or look 
up the logarithm of a number (the power to which 
a fixed number, usuallyl 0, must be raised in or­
der to produce a given number), we are in a situ­
ation not too different from that of the Babylonians. 
We only get the digits of the answer and then have 
to decide the position of the decimal point. At any 
rate, this deficiency is a small price to pay for the 
enormous advantage that operations with fractions 
are usually no more complicated than those with 
integers. 

The origin of the sexagesimal system is not 
certain. We know, however, that in early times 
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there was a system of weights and measures 
whereby the larger unit was 60 times smaller. It 
was customary to write a measure of, say, 72 
smaller units as a large 1 followed by a small 12; 
this represented 1 large and 12 small units. The 
number 60 may have become important because 
the principal unit of weight for silver-the mana-­
was subdivided into 60 shekels. This may have 
given way to the consideration of sixtieths as a 
natural subdivision of units, and the preference 
for the base 60 in general. 

Babylonian Arithmetic 

One disadvantage of a base as large as 60 is 
the large size of the multiplication table showing 
the products of any two one-digit numbers. One 
may tremble to imagine Babylonian schoolboys 
trying to memorize a 59 by 59 multiplication table. 
But we have found quantities of tables of various 
kinds, including multiplication tables, so it is clear 
that such memorization was unnecessary. 

This is not to say that we have tablets contain­
ing the 59 times 59 products, for we do not. What 
we find are many 9-table type tables arranged 
according to multiples of p: 

I p 

2 2p 
3 3p 

19 19p 
20 20p 
30 30p 
40 40p 
50 50p 

and sometimes ending with p. We call p the prin­
cipal number of the multiplication table. 

From this table, any multiple of p can readily 
be found----4 7p is simply the sum of 40p and 7p. 
One might think that there were 59 such tables 
with p = 1, 2, 3, ... 59. But what we actually find is 
a selection of principal numbers, which at first is 
quite puzzling. We have, for example, a multipli­
cation table with p = 44, 26, 40, an enormous 
number, but none for p = 17. It is the presence of 
this curious principal number 44, 26, 40 that 
makes the puzzle pieces fall into place, for 44, 
26, 40 is the last number in the standard recipro­
cal table in Figure 2 in Babylonian Mathematics 
I, which we have discussed before. It seems that 
the principal numbers are essentially the numbers 
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we find in a standard reciprocal table. One ex­
ception is 7 which quite naturally appears as a 
principal number even though it is absent from 
the reciprocal tables, and so the product of any 
two numbers can quite easily be found. The coin­
cidence of principal numbers and the numbers in 
the reciprocal table gives a clue as to how the 
Babylonians actually computed. It is quite clear 
that the reciprocal table, combined with these 
multiplication tables, also served for divisions, 
since r divided by n is r multiplied by the recipro­
cal of n, or (i) = r · (¼). 

In our decimal system, we have a variety of 
rules and shortcuts that make computation easier: 
to multiply by 5 we divide by 2 and multiply by 
1 O; a number is divisible by 3 ( or 9) if the sum of 
the digits is divisible by 3 (or 9). If one works 
consistently with the sexagesimal system, one 
soon finds many such simple devices. Many more 
rules are possible in the sexagesimal than in the 
decimal system since the base 60 has so many 
divisors. 

Sexagesimal calculations were further assisted 
by quite a large variety of tables. We find extended 
reciprocal tables--even giving the reciprocals to 
several places---of numbers such as 7 and 11 
whose reciprocals do not have finite sexagesimal 
expansions. There are tables for the computation 
of compound interest, of squares and square roots, 
of cubes and several complicated tables that indi­
cate an interest in numerical procedures far be­
yond the requirements of simple arithmetic. 

Thus, it is perfectly clear that the Babylonians 
found no more difficulties in arithmetical compu­
tation than we do today. In this respect they were 
unique in the classical world, and it is therefore 
not surprising that when Greek astronomy had 
reached the stage where extensive calculations 
were called for, the Greek astronomers turned to 
the sexagesimal number system for a sensible way 
of expressing fractions. 

This is the reason Babylonian fractions are used 
even now, for example, in the subdivision of de­
grees and hours-the units for measuring angle 
and time, the two basic quantities observed in clas­
sical astronomy. The Greeks wrote the measure 
of angles using the Babylonian system, and so do 
we when we write 120° 12' 20". When we say the 
time is 2 hours, 30 minutes and 10 seconds, we 
are actually using the terminology of the 
Babylonians of 4,000 years ago who would have 
said, somewhat more simply, that 2, 30, IO hours 
have passed since noon. 
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A farmer wanted to buy horses and oxen for a total 
of 1,770 coins. For a horse he paid 31 coins and 
for an ox 21 coins. How many horses and oxen did 
he buy? (Is there more than one solution?) 
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