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Geometric progressions is an important concept used in many mathematical applications. Probabil­
ity is a source of significant examples of this type of 
progression. Consider the following situation: Greg and Joel, 
beginning with Greg, alternately roll a fair hexahedral 
die. The first one to roll a 6 wins. What is the prob­
ability that Greg wins or that Joel wins? 

First consider Greg. He will win if one of these 
events is satisfied: 
• Event 1: Greg rolls a 6 on the first try. 
• Event 2: Greg and Joel both fail to roll 6s on the 

first try. Greg rolls a 6 on his second try. • Event 3: Greg and Joel both fail to roll 6s on the 
first two tries. Greg rolls a 6 on his third try. 

• Event (n + 1 ): Greg and Joel both fail to get 6s on 
the first n tries. Greg rolls a 6 on his (n + 1) try. 
The probabilities of these distinct events are 

• Event 1: 1/6 
• Event 2· 5. • 5. • l = (5.)2 

• l "6 6 6 6 6 
• Event 3· (5. • .2) • (5. • 5.) • l = (.5.)4

• l "66 66 6 6 6 
• Event (n + l): (�)2" • i 
Because these events are mutually exclusive, the 
probability that Greg wins is the sum of the separate 
event probabilities. 
P(G) = g + � + i + (j�y O i + ... + (�)" • i + ... 
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Recall that if 
S=I+r+r2+r3+ 
then 
rS = r + r2 + r3 + r4 + 
Consequent! y, 
S-Sr= 1 
S(I- r) = 1 
S= ...l_ I-r· 

We will next compute the probability of Joel's 
winning in two ways. 
Method 1 

• Event I: Greg fails on his first roll, and Joel rolls a 
6 on his first try. 
• Event 2: Greg fails twice and Joel fails once to 

roll a 6. Joel then rolls a 6 on his second try. 
• Event 3: Greg fails three times, and Joel fails twice 

to roll a 6. Joel then rolls a 6 on his third try. 
P(J) = G) . g + GY . ¼ + (;Y . ¼ + ... 

= i. ¼ ( l+(�Y +(if+···) 
= .2... ( l + 25. + (15.)2 + ···) 36 36 36 
-...5....(1 1 ) -36 -I-is 
=_.5_. 36 

36 11 
= .2..."' 0.44 11 

Method 2 

-}6 

Because only two disjoint outcomes are ultimately 
possible, their probabilities must have a sum of 1. Since P(G) = 6/11, P(J) must be 5/ 1 I. 

Now, remove the requirement that Greg and Joel 
must both perform the same activity. Let Greg roll a 
die, hoping for a 6, and let Joel flip a fair coin, hop­
ing for a head. Find the probability of Greg winning 
or of Joel winning. 
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P(G) = l + / 1.1) l + { 1.1)2

• l + 6 '626 '62 6 ... 

-l + (J_) • l + (J_)2 

• l + -6 12 6 12 6 ... 

=¾(
1 �-i) 

-1. 12 
- 6 11 

_ _l -11 

12 

Note that Greg's probability is less than 1/2 even though he goes first. This is because his winning outcome is much less likely than Joel's. 
P(J) = I -2/11 = 9/11 

As a further refinement of this situation, suppose that Greg's winning outcome has probability p
1
, while Joel's winning outcome has probability p

2
• The prob­abilities that they do not win in any given try are, respectively, q1 and q2 

where q1 
= l -p1 

and q2 = 1-pr Then, P(G) =P i + (qi q2) P i + (q1 %)2 P i +··· 
= P i [I + (qi q2) + (qi q2)2 + · · .] 

P(J) 

=pl (l-�1 q) 
= -.----�P�1 _ 1-ql % 
= 1- P1 1 -q i q2 

= l -q. q2 -P i . 1 -qi q2 What must be the relationship between p I and p2 to make this overall sequence a fair game? The fair game condition would require that 
P i =l -q 1 q2 -P 1 1-q,% l-ql q2 P i = I -q i q2-P 1 2p, = I -(1 -p)(l - Pi) 2pl = I -[l -P 1 - Pi+ P i P2] 2pl =p. +p2-P 1 P2 P i - P2 + P i Pi= 0 

If 
I P i =6, 

then 
i-P2 + (i) P2= O; -ip

1
= -{ P2 = ½. 

Joel's event must be equivalent to drawing a specific card from a deck of five cards. 
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To extend this situation one more step, let Nadine enter the game as the third player in order. On any given trial, Greg, Joel and Nadine have winning prob­abilities of, respectively, pl ' p2 
and p3

, whereas q 1 , q2 and q3 
are their respective probabilities of failing on any given trial. In this expanded setting, P(G) = P i+ (ql q2 q3) P i + (q l q2 q3)2 P, +. · · = pJI + q i q2 q3 + (q l q2 q/ + ... ) 

= p, C1-q!%%) 
= P i I -q• q2 q3

. 
P(J) = q l p2 +(q l q2 q3)ql p2+(ql q2 q/q1 p2+ ... = q 1 P2 (I+ q 1 q2 q3 + (qi q2 q3)2+ · · .) 

= q.p/1 -q.\2 q) 
- q1P2 - l -qi q2 q3

. 
P(N) = qi %P3+ (q. q2 q3) ql q2 p3+(q. q2 q/q. %P3 + • • • = ql q2 p3 (l +ql q2 q3 +(ql q2 q3)2

+ ... ) 
= qi q2 P3 C1 -q� q2 q) 

- q1 q2 A -l-ql q2 q3
· 

Because exactly 1 person must ultimately win, the relationship P(G) + P(J) + P(N) = 1 must hold . To verify this algebraically, 
P(G) + P(J) + P(N) = pl +ql p2+ql %P3 (l -q)+ql (l-%)+q1 % (1-%)_ l-q 1 q2 % l-q,q2 q3 l -q I + q I - q I q 2 + q I q 2 - q I q 2 q 3 - } - q I q 2q 3 = 1. l-q l q2 q3 l-q.%% Suppose, for instance,  that Greg rolls a die (hop­ing for a 6). Joel flips a coin (hoping for a head) and Nadine draws a card from a standard deck of 52 cards (hoping for a heart). Then 

P - l- p -l• p -ll -l I - 6• 2 - 2• 3 - S2 - 4· 
I I I P(G) - _ i5 _ i5 _ 1 48 _ s 

= l -2 • l. ! -1-JJ -JJ -6 • 33 -33 · 
6 2 4 48 48 � • � 5 48 20 P(J) = 6 � - = 12• 33 = 33 . 

48 � · ! · .!. 5 48 5 P(N) -6 2 4 - • _ -� -48 33 -33 . 
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Challenges 

I. Compute these tyres of probabilities using other situations. 2. Generalize this problem to n players. 3. Find other situations in which geometric progres­sions can be productively employed. 4. For three players, what must be the relationship between p
1
, p

2 
and p

3 
to produce a fair game? 
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