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We in mathematics have many names for num­
bers, among them square numbers, prime numbers, 
rational numbers, transfinite numbers, Fibonacci 
numbers, complex numbers, amicable numbers, and 
on and on. We are number people. We have many 
words for numbers just as Eskimos have many words 
for ice and Arabs have many words for camels. 

As we analyze curriculum, we have also devel­
oped many names for curriculum. We have become 
curriculum people. In A Study of Schooling, John 
Goodlad identified five different curricula: the ideal 
curriculum (beliefs of scholars), the formal curricu­
lum ( expectations of what should be done in the class 
as seen in syllabi, guidelines, textbooks and so on), 
the instructional curriculum (what teachers report 
they do), the operational curriculum (what actually 
goes on in the classroom) and the experiential cur­
riculum (what students report learning and what they 
actually learn) (Klein, Tye and Wright 1979; Goodlad 
1979). Three of these were chosen, though with dif­
ferent names, to constitute one of the main organiz­
ing structures in the design of the Second Interna­
tional Mathematics Study (SIMS): the intended 
(ideal) curriculum, the implemented (operational) 
curriculum and the attained (experiential) curricu­
lum. In the Third International Mathematics and Sci­
ence Study (TIMSS), a fourth curriculum was added: 
the potentially implemented curriculum, a name cho­
sen to represent the curriculum of textbooks and other 
available materials. 

Distinguishing these various types of curricula 
was important in those international studies, for the 
various categories are used in curricular analyses 
that occupied a volume apiece. Yet, these curricular 
analyses would be purely academic exercises-and, 
in fact, the lack of media attention given to them sug­
gests that they are purely academic exercises-were 
it not for the natural interest in comparing not what 
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but how much is learned by students in different 
countries. 

The existence of TIMSS and other international 
comparisons of performance in mathematics is 
founded on the premise that there exists enough of a 
commonality in the mathematics curriculum world­
wide that a test over that commonality represents 
some sort of fair test of the entire curriculum. And so 
the question of the title of this presentation is already 
seen to require some clarification. If we ask, "Is there 
a worldwide mathematics curriculum?", to which of 
these curricula are we referring? 

At a conference like this one, we can be a little 
more relaxed: Does there exist enough commonality 
in the curricula of different countries that when we 
use such content descriptors as geometry or algebra 
or functions or linear equations or statistics, or when 
we speak of the use of calculator or computer tech­
nology, we are talking about the same things? I find 
it useful to examine this with a type of analysis of 
curriculum different from the intended, implemented 
or attained curriculum. It is an analysis using sizes of 
curriculum. 

The Sizes of Curriculum 

There are at least six sizes of the mathematics cur­
riculum, each differing from the previous by roughly 
one order of magnitude: (I) the individual problem 
or episode, (2) the problem set or lesson, (3) the unit 
or chapter, (4) the semester or year-long course, 
(5) the mathematics curriculum as a whole and (6) the 
entire school experience. Proceeding from the small­
est to the largest, we see that the ratios of sizes are 
quite appropriate for a difference in orders of magni­
tude. There are perhaps 5-20 episodes or problems 
in a typical day in a mathematics classroom, 10-20 days 
in a typical unit, 7-15 units in a school year, 13 years 
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of schooling from K-12, and perhaps 6-8 other sub­
jects vying with mathematics for space in the cur­
riculum. The fundamental property of differences in 
order of magnitude asserts that a strategy, practice or 
policy that is appropriate for one of these sizes of 
curriculum may not be appropriate for another. 

We often see people oversimplifying educational 
policy by taking something that is appropriate for a 
small size of curriculum and then recommending it 
for a larger size. A pretty concept, appropriate for a 
unit, may be taken as the main idea behind an entire 
course. The major recommendation of the National 
Council of Teachers of Mathematics' Agenda for 
Action report issued in 1980 was that "problem solv­
ing be the focus of school mathematics in the 1980s" 
(p. l ), by which it was meant that the curriculum 
should be centred around problem solving. Here the 
recommenders were taking something that was hard 
to disagree with at the individual problem level or 
lesson level, namely the presentation and solving of 
interesting problems, and recommending that the idea 
be carried out three or four orders of magnitude 
higher. 

At the time of the Agenda for Action recommen­
dation, there did exist many examples of good prob­
lems and good problem-solving lessons, and a few 
problem-centred units, but to my knowledge there 
did not exist one example of a problem-centred 
course, and certainly there was no example of an 
entire curriculum of this type. What would be the 
place of skill work in such a curriculum? Where 
would mathematical systems and structure be dis­
cussed? A full curriculum requires balancing a vari­
ety of priorities, whereas a lesson, unit or even course 
does not require the same sort of balance, and bal­
ancing an individual problem is like balancing an 
individual person on a seesaw. 

For the most part, a student's experience with cur­
riculum is the union of his experiences with indi­
vidual tasks, problems or episodes. The curriculum 
developer tries to find interesting tasks and sequence 
them in a way that is clear to the student and teacher. 
A particular problem may be there to motivate the 
student, or to emphasize a particular idea, or to re­
view an idea or to set the stage for another problem 
that will come later. Episodes in teaching serve simi­
lar purposes. The items that are selected for testing 
reflect the priorities of the teacher, and when tests 
are analyzed by performance on individual items, one 
obtains a picture at this size of curriculum. 

The next larger size in the order of magnitude hi­
erarchy-the lesson-should be more than a collec­
tion of episodes or a set of problems. A good lesson 
is buill around a concept, which for understanding 
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requires a variety of activities. In a lesson there is 
always a fundamental decision to be made regarding 
the balance between what is explained to the student 
and what is expected to be learned by the student 
himself. For all these reasons, a good lesson needs 
coherence, and the best lessons have particular ideas 
that they emphasize. 

Similarly, a good unit is more than a set of les­
sons. It has a sequence of related concepts that carry 
it from its beginning to its end. A good unit brings 
together these concepts in an attempt to show their 
power. The student, too, is asked to demonstrate 
power of a different sort, for one of the fundamental 
properties of most units in school mathematics is that 
they end with a performance test. 

The course is normally the largest chunk of cur­
riculum that the student encounters with a single 
teacher, and it is usually the only size of curriculum 
for which there is a grade on record. Because the 
course is associated with a teacher, a course has a 
personality. Its personality is interwoven with that of 
the teacher, and it is difficult to separate student opin­
ions about a course from student views of the teacher. 
Problems, lessons and units tend not to be of long 
enough duration to develop a personality. Only in a 
course is there time to develop a mathematical sys­
tem of any complexity; only in a course is there time 
to cultivate a method of thinking. 

The mathematics curriculum as a whole is the sum 
of courses. It has properties different from those of a 
single course. We might not want every course to 
deal with mathematical proof, but the curriculum as 
a whole should. The study of"curriculum coverage" 
found in the TIMSS analysis (Schmidt et al. 1996, 
52) and the earlier analysis of review in U.S. elemen­
tary textbooks by Jim Flanders ( 1987), each of which 
involves multiyear looks at the curriculum, provide 
pictures that no one course could provide. And sel­
dom are tests over the entire curriculum created by 
individual teachers; we need teams of writers for such 
tests. 

Some ideas work at a variety of sizes. For instance, 
it is often desirable and sometimes obligatory that 
consecutive problems, lessons, units and courses in­
corporate a sense of Oow, of connectivity, of growth. 

Analyzing the Question 
by Size of Curriculum 

Returning to the question, "ls there a worldwide 
mathematics curriculum?", I would like now to in­
terpret this question for each of the various sizes of 
curriculum. I will start from the largest size. 
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Entire Curriculum 

If a student takes mathematics through secondary 
school in different countries, will that student cover 
the same mathematics? If not, then it is rather silly to 
speak about comparing performance in different 
countries, for we are comparing apples to oranges. 

Obviously, we are not looking for 100 percent 
agreement. But it is not clear how much agreement 
is sufficient. T he situation comparing two countries, 
A and B, can be represented by a diagram somewhat 
like a Venn diagram. In the case pictured in Figure 1, 
3/4 of the topics taught in Country A are also taught 
in Country B, and 2/3 of the topics taught in Country 
B are also taught in Country A. 

Figure 1 

A Hypothetical Example 
of Overlapping Curricula 

Country A 

'1l 

b' 
C 

::, 
0 
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We think that there is a great deal of commonality, 
but in this made-up situation a full 45 percent of the 
total number of topics in the two countries are not 
common topics; that is, almost as many topics are 
not common as are common! Obviously, common­
alities are less frequent if there are more countries. 

The current trends in the mathematics curriculum 
that we have made themes of this conference serve 
to decrease the overlap in curricula. The movement 
toward mathematics for all has generally led to cur­
ricula with greater numbers of applications and data. 
Appropriate applications for one country may be in­
appropriate for another, and familiar data in one part 
of the world may be quite abstract in another. The 
use of technology in some places and not in others 
also creates obvious differences in what is expected 
of students even when the problems may be the same. 
For all these reasons, it is my guess that, in our quest 
to make it possible for mathematics to be tested 
worldwide, we have deemphasized the differences 
in total curricula. 
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For instance, I don't think it has been publicized 
that the TIMSS Grade 12 advanced mathematics test 
contains more geometry than algebra (see Table 1). 
To any person in the United States, that would seem 
odd, because far more time in Grades 9-12 is spent 
on algebra than on geometry. 

Table 1 

Distribution of Advanced Mathematics 
Items by Content Category, 

from the Third International Mathematics 
and Science Study 

(taken from Mullis et al. 1998, p. B-9, Table B-2) 

Category % of Number 
items* 

Numbers and 26 
Equations 

Calculus 23 
Geometry 35 
Probability and 11 

Statistics 
Validation and 5 

Structure 
Totals 100 

*There were a total of 65 items. 

Individual Courses 

of points 

22 

19 
29 

8 

4 

82 

From the standpoint of individual courses, I think 
it has been demonstrated rather clearly by the TIMSS 
researchers that there is no worldwide curriculum. 
Examining Table 2, which summarizes four main­
stream topics in six countries, we find that the course 
treatment of all four topics varies from country to 
country. In fact, no two of these countries treats any 
of these topics in the same ways over the years! The 
significance of this is that no one can expect to ex­
port even one or two years of a curriculum from one 
country to another. Individual courses simply differ 
by too much. 

Table 3 shows the numbers of years of coverage 
and the numbers of years of emphasis for these four 
topics in these six countries. 

In these tables the "mile wide, inch deep" charac­
terization of the U.S. curriculum does not appear 
particularly valid, and I could not find any relation 
between the years of coverage or emphasis and stu­
dent performance. The maximum years of coverage 
for the topics is shared among three countries, and 
the maximum years of emphasis for the topics is 
shared among four, and they have vastly different 
performance profiles. 
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Table 2 

Curriculum Coverage for Selected Mathematics Topics 
Across Student Ages 

(taken from Schmidt et al. 1996, p. 52, Figure 2-7) 

Example 1: Properties of Whole Number Operations 

Student Age 
Country 6 7 8 9 10 11 12 13 14 15 16 17 18 

--

France - - - - - - - - - - -

Japan . . • -

Norway - -
- - - - - -

Spain - - - - -

Switzerland - • . . - - • • 

USA - - - . . -

Example 2: Relation of Common and Decimal Fractions 

Student Age 
Country 6 7 8 9 10 11 12 13 14 15 16 17 18 
France - - - - . 
Japan - - • . 
Norway - • - - - -

Spain • • - • -

Switzerland • - - -

USA - -
- . . -

Example 3: Exponents, Roots and Radicals 

Student Age 
Country 6 7 8 9 10 11 12 13 14 15 16 17 18 
France - - • - - - . 
Japan . • . -

Norway - - - . - -

Spain - - - . 
Switzerland - . . - -

USA - - . . - - . 
---

Example 4: Properties of Whole Number Operations 

Student Age 
C_o_u_nt_ ry::..._ ___ 6 __ 7_ }J 9 1 0 1 1 12 I 13 14 15 16--1 7_1_8_ 
France ! Japan 
Norway 
Spain 
Switzerland 
USA 

. . . . . . . . 

l-

Note: Ages 9 and 13 arc Tl l\1SS Student Populations l and 2 
- topic coi•rred in c11rricu/11m • topic c,nphasi-::.ed in c11rric11/11111 

In analyzing curricula in 
the United States, the diffi­
culty for us is the diversity 
that exists within our coun­
try. The most recent report 
we have links our own Na­
tional Assessment Grade 8 
scores to those of TIMSS 
(Mullis et al. 1998). The dif­
ferences in the 41 reporting 
states are striking. Examine 
Table 4. Compared to Mis­
sissippi, I 9 of the 21 coun­
tries with samples that met 
the international guidelines, 
including the U.S. as a 
whole, score significantly 
higher, and none score sig­
nificantly lower. In contrast, 
only 6 countries score sig­
nificantly higher than North 
Dakota, and 8, including the 
U.S. as a whole, score sig­
nificantly lower. We must 
conclude that the taught cur­
riculum is not the same in 
these states. But every report 
coming out of Washington 
treats our entire country as 
if the curriculum were the 
same everywhere. Why not 
do the obvious: find out what 
is done in North Dakota, 
Iowa, Maine and other high­
performing states, and emu­
late it. Find out what is done 
in Mississippi, Louisiana 
and the District of Colum­
bia and work hard to change. 

It is true that the United 
States, despite the lack of a 
national curriculum, does 
have a common algebra cur­
riculum, if one looks at text­
books. Here are what I be-

1 ieve to have been the five 
most used first-year algebra 
textbooks (counting all edi­
tions as one) in the last 
school year in the United 
States, though together they 
only constitute, at most, 
60 percent of the first-year 
algebra texts in use: 
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Merrill Algebra 1, by Foster et al. 
Algebra, by Brown, Dolciani et al. 
Heath Algebra 1, by Larson, Kanold et al. 
Prentice Hall Algebra, by Bellman et al. 
UCSMP Algebra, by McConnell et al. 

In major ways, all five books are very much alike. 
They have I 0-13 chapters. They all begin with alge­
braic expressions. They have 2 -5 chapters on linear 
equations and inequalities (here UCSMP [University 
of Chicago School Mathematics Project] spends more 
time than the others). They graph lines and then they 
graph and solve systems. There is work with the laws 
of exponents and one or two chapters on polynomi­
als. There is a chapter on quadratics, and thus some 
work with radicals. All solve quadratics by the Qua­
dratic Formula and by factoring, and all but the 
Brown, Dolciani et al. do this graphically. All but 
UCSMP have a chapter dealing with rational expres­
sions and rational equations. All have some geom­
etry, including area formulas and the Pythagorean 
Theorem. In this sense, there is very much an alge­
bra curriculum in the United States. 

There are many other algebra texts in use in the 
United States: the texts of Smith, Charles et al. and 
of Foerster published by Addison-Wesley before the 

merger with Scott Foresman; of Saxon published by 
Grassdale: of Benson et al. published by McDougal 
Littell; of Cox ford et al. published by Harcourt Brace; 
and so on. These books cover the same content as 
the five most used books and, except for Saxon, do it 
in pretty much the same way. 

And there are the project algebras, none used very 
much at this point in time: the CORD algebra, the 
CMP algebra out of the University of California at 
Davis, the computer-intensive algebra of Fey and 
Heid published under the title Concepts in Algebra­
A Technological Approach. 

But there are also major differences even among 
the books in most use. The more recent copyrights 
give strong attention to graphing calculators. The 
more recent texts have large numbers of applications 
and real data. The data differ significantly from book 
to book so that students learn different things from 
one book than from another. UCSMP and the recent 
Prentice Hall give more attention to geometry. All 
give some attention to functions, but some of the re­
cent texts use function language from the beginning, 
whereas others do it toward the end, where most stu­
dents would not even see it. The picture one receives 
from these books is of an algebra curriculum that is 
reasonably fixed, but in flux. 

Table 3 

Years of Coverage and Years of Emphasis of Certain Topics 
(from Schmidt et al. 1996, p. 52) 

Years of Coverage 

Country Whole Fractions, Exponents, Equations, Average 
Numbers Decimals Roots Formulas 

France 11 5 7 s 7 
Japan 4 4 4 10 5.5 
Norway 8 6 6 12 8 

Spain s 5 4 6 s 

Switzerland 8 4 5 11 7 
United States 6 6 7 I I 7.5 

Years of Emphasis 

Country Whole Fractions, Exponents, Equations, Average 
Numbers Decimals Roots Formulas 

France 0 I 2 1 I 

Japan 3 2 3 10 4.5 
Norway 0 I I 0 0.5 
Spain 0 3 I 0 I 

Switzerland 5 I 2 4 3 
United States 2 2 3 4 3.75 
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And I have not mentioned the NSF projects that 
are exhibiting here. in which the traditional first-year 
algebra topics mentioned above are dispersed over 
two or three years. These integrated curricula are quite 
different from those mentioned above, and also quite 
different from each other. If we gave all available 
curricula equal weight, then we would have to con­
clude that there is no standard U.S. curriculum. What 
percent of students need to be enrolled in similar 
curricula in order for there to be considered to be a 
standard curriculum for the entire country? It is the 
same question we ask for the world, but in an indi­
vidual country the more appropriate size of curricu­
lum for the question is not the entire curriculum, but 
the course level. 

Units 

At the unit level, the mathematical approach taken 
to a topic becomes important. How are the various 
ideas related? So we ask: Are the approaches taken 
to large chunks of content the same worldwide? 

We do not have a standard way for measuring dif­
ferent approaches to topics. In fact, except for broad 
approaches to geometry, with names such as "vector 
approach," "transformation approach" or "synthetic 
approach," different approaches to mathematics have 
seldom been discussed. There is no universal way to 
decide when two approaches differ. 

But I will give some examples to indicate that there 
are differences. Consider the approach to systems of 
linear equations taken in the Japanese books UCSMP 
translated some years ago. In the chapter entitled 
"Simultaneous Equations" in the Grade 8 book 
(Kodaira I 984, 1992 ), there is not one graph. The 
reason is that students have not yet graphed lines with 
equations of the form y =ax+ b. Yet in every algebra 
book in the United States, the study of systems be­
gins with graphical solutions. 

The Japanese text defines slope as the number 
a in y =ax+ b. All the U.S. books define slope as 
y -y / _ / . UCSMP texts and Japanese books discuss 
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rate of change before they discuss slope, an approach 
which we have found to be very successful in en­
hancing student understanding of the idea of slope. 
Yet we use applications and the Japanese do not. Is 
this enough to be different? UCSMP texts and the 
Japanese text describe the slope as the increase in y 
when x increases by 1. Is this enough to be different 
from other texts? 

The Japanese text defines figures to be congruent 
if one figure can be laid on top of the other by com­
bining translations, rotations and reflections. We do 
the same in UCSMP te.\ts and spend some time over 
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a period of years developing competence in these 
transformations. This is not done in most United 
States texts. Freudenthal (1983) pointed out that the 
way in which a term is defined automatically con­
s-trains it for future discussion. I believe these differ­
ences in the way congruence is approached cause 
differences in the ways in which students think about 
figures and their relationships to each other, and later, 
in the study of functions, in the ways in which stu­
dents think about their graphs. I think it's a signifi­
cant difference. 

However, in general, the unit level is a difficult 
level at which to analyze curriculum. Over the years, 
we have developed very little language to describe 
different approaches to systems of equations or qua­
dratics or congruence or similarity. A comprehen­
sive study of curriculum at the unit level might prove 
quite enlightening. 

Lessons 

Turning now to the lesson level, the TIMSS vid­
eotape work of Stigler suggests that there are great 
differences in the ways that lessons are taught in Ja­
pan, Germany and the United States. A Japanese al­
gebra class is shown spending 27 minutes on one 
problem, 15 minutes on another. A Japanese geom­
etry class is shown spending 22 minutes on one prob­
lem and then 27 minutes on an extension of the same 
problem. In contrast, the U.S. algebra class has stu­
dents working on all sorts of problems at once-in a 
cooperative learning situation-and the teacher 
spends no more than 2 minutes discussing any one 
problem in front of the entire class. The U.S. geom­
etry class is more traditional in its setup but again 
there are a large number of questions with not much 
time spent on any one of them (Seago 1997). 

In reports on these lessons, Stigler criticizes the 
ways in which United States teachers conduct their 
lessons (Beatty 1997, 11-12). There is an underly­
ing assumption that lessons in Japan, Germany and 
the United States could be transported from one coun­
try to another. In fact, when one looks at the class­
rooms and at the content, it seems that the lessons 
could easily be transported. But one U.S. teacher, 
upon viewing these lessons, said to me that there is 
no way that her students would tolerate spending the 
amount of time on one problem that the Japanese do. 

Arc our societies enough different to make les­
sons that are viable in one country not viable in an­
other? There are people who think so even for differ­
ent groups within the United States. A call for 
"culturally relevant"' pedagogy has been made by 
members of groups historically underrepresented in 
mathematics (Ladson-Billings 1995). This call rests 
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Table 4 

Performance of NAEP Jurisdictions Compared to 20 TIMSS Countries at Grade 8 
(from Mullis et al. 1998) 

Jurisdiction # of Countries # of Countries % of Students % of Students 
Higher Lower in Top 10% in Top 50% 

North Dakota 6 8 s 64 

Iowa 6 7 4 63 

Maine 6 7 6 62 

Minnesota (est.) 6 7 6 62 

Montana 6 7 6 62 

Nebraska 6 7 5 61 

Wisconsin 6 7 6 61 

Minnesota (actual) 6 7 7 57 

Vermont 7 5 4 57 

Connecticut 7 5 5 56 

Massachusetts 7 5 5 55 

Alaska 7 4 7 55 

Michigan 7 4 5 54 

Utah 9 5 3 54 

Oregon 9 4 4 53 

Washington 9 4 4 53 

Colorado 9 4 4 52 

Indiana 9 4 3 52 

Wyoming 10 3 3 52 

Missouri 10 3 3 49 

Texas 12 3 3 46 

New York 12 2 3 47 

Maryland 12 2 6 45 

Virginia 12 2 3 45 

Rhode Island 13 2 3 46 

Arizona 13 2 2 43 

North Carolina 13 2 3 42 

Delaware 13 2 3 41 

Florida 13 2 2 40 

Kentucky 13 2 2 40 

West Virginia 13 2 2 38 

Tennessee IS 2 2 38 

Hawaii 15 2 3 37 

New Mexico 15 2 2 36 

California 15 I 3 38 

Georgia 15 l 2 38 

Arkansas 15 I 2 37 

South Carolina 15 I 2 34 

Alabama 16 I I 32 

Louisiana 18 0 I 25 

Mississippi 19 0 I 23 

Dist. of Columbia 21 0 I 13 
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on the assumption that mathematics is taught in the 
U.S. from a Eurocentric lens that works against the 
performance of Hispanic, African-American and 
Native American students. It is closely related to the 
ethnomathematics movement to recognize not only 
the contributions to mathematics of non-European 
cultures but also the unique ways in which mathemat­
ics is informally used every day in one's own native 
culture. 

And yet, in viewing middle school classrooms in 
Shanghai some years ago, I was struck by the simi­
larities in the mathematics far more than the differ­
ences. In more than one class studying geometry 
proofs, doing problems exactly like those found in 
Japanese or American texts, I saw, in the midst of 
Chinese characters, the abbreviation SAS for the 
Side-Angle-Side congruence theorem. I mentioned 
my surprise to my hosts, who reminded me that Chi­
nese characters do not represent sounds in the way 
that Latin characters do, so there is no Chinese char­
acter for the first letters of words. I was still aston­
ished that the English first letters would be used. But 
it definitely seems to indicate that, at least with cer­
tain content, some lessons are quite exportable from 
one country to another. 

Problems 

The smallest size of curriculum-the individual 
problem or task-is not the least important size. The 
TIMSS and other international tests of comparison 
are based on the premise that there is a commonality 
of problems or other short tasks that can be used 
worldwide. 

For example, the publication What Students 
Abroad Are Expected to Know About Mathematics 
(American Federation of Teachers 1997) displays 
examinations that top students in France, Germany 
and Japan have taken. and compares these with the 
SAT and Advanced Placement BC Calculus exams 
in the U.S. The published Bacca/aureat Exam in 
Mathematics from the Aix province of France, taken 
by students at the end of their lycee experience in 
Grade 12, is an exam in vector analytic geometry, 
calculus and algebraic descriptions of geometric 
transformations. The Abitur Exam in Mathematics 
from the state of Baden-WUrttemberg in Germany is 
evenly split among calculus, solid analytic geometry 
and stochastics. The Tokyo University Entrance Exam 
in Mathematics resembles one of the American Invi­
tational Mathematics Exams we use to select students 
for the U.S. Olympiad team. And of course our 
BC Calculus exam i� all calculus. If these exams 
cover the curriculum in their respective locales, it is 
rather clear that there is no worldwide mathematics 
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curriculum for the best students. The content differs 
markedly from country to country. 

Recognizing these differences in content, in the 
TIMSS Grade 12 Advanced Mathematics study, a 
Test-Curriculum Matching Analysis was done. An 
expert in each country determined whether the items 
were in the intended curriculum of at least half of 
the students in the population. The idea was "to show 
how student performance in individual countries var­
ied when based only on the test questions that were 
judged to be relevant to their own curriculum" (Mullis 
et al. 1998, C-1). The expert for the United States 
judged that 100 percent of the items were in the in­
tended curriculum for the U.S. students. I have never 
seen the entire test, but I 9 of the 82 items (see Table 
1) and 2 of the 6 released items required calculus, 
and the highest estimates are that 6 percent of U.S. 
students take calculus. Since 14 percent of U.S. stu­
dents were in this population, these items were in 
the intended curriculum of less than half of the U.S. 
students. They should not have been considered as 
relevant. Curiously, the analysis of only those items 
identified as appropriate had no major effect on the 
relationships among countries on either the math­
ematics or the physics tests. I have no logical expla­
nation for this. Perhaps all of the experts tried to be 
as ecumenical as possible in including items. 

As I mentioned earlier, selecting what is appro­
priate is only one part of the picture, however. One 
must ask whether there are things the students have 
learned that are not being tested. At all levels, would 
students in other countries perform as well as U.S. 
on items requiring measurements in feet and inches, 
or in pounds and ounces? I doubt it. 

A quarter-century ago, I wrote a course called 
"Algebra Through Applications with Probability and 
Statistics." At the time, we had a student in a master's 
program from Colombia in South America. She was 
very impressed by the materials and took upon her­
self the task of translating them into Spanish. But 
she said she had to change a few problems. Not the 
data on baseball-they play baseball in Colombia. 
She needed to alter those problems in which we had 
people going on diets and losing weight at some con­
stant rate. She said, "In Colombia, it's not consid­
ered advantageous to be thin. People don't diet." 

Answering the Question 

Now. for the last time, let me state the question 
that I have been trying to answer with these remarks: 
Is then: a worldwide mathematics curriculum? 1 did 
not han: an answer when l first thought or the talk. 
For most nf the time that I prepared the talk, my feeling 
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was the usual professor's response to such a ques­
tion, Yes and No. But after working through the analy­
sis, I have a different answer. 

Mathematics is a worldwide language. Beyond the 
writing of numerals, schools, colleges and universi­
ties use virtually the same written language for alge­
bra, geometry, analysis and statistics. Computers 
worldwide use the same programming languages. 
Multinational companies can hire mathematicians 
from virtually any country in the world. The prob­
lems tackled by mathematics are universal not only 
in place but also in time. We are able to hold confer­
ences like this one because we recognize those char­
acteristics of our subject. 

But in our natural desire to show off the univer­
sality of our subject, I think we may have gone too 
far to think that mathematics education is the same 
worldwide. From arithmetic to beyond calculus, 
mathematics is vast. In our different cultures, differ­
ent choices are made from all the mathematics avail­
able, and different aspects of this vastness are em­
phasized. In France, the mathematics is more 
theoretical, still reflecting the influence of Bourbaki. 
In the U.S., the mathematics is becoming more ap­
plied. In most countries, advanced mathematics stu­
dents are using calculators, but this is not true in all 
countries. At the broadest level, we are all teaching 
very much the same ideas, reflecting the common­
alities of mathematics. But we do so in different 
course structures, with the subject matter organized 
sometimes in quite different units, with lessons that 
may be appropriate for one country but not another, 
and often with problems that do not transfer from 
one site to another. 

Thus beyond the teaching of arithmetic, there are 
common goals but there is not today a worldwide 
mathematics curriculum, and let us not delude our­
selves into thinking that there is. But let us not be 
disappointed by this. We are able to have much richer 
conversations because of the differences. 
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