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Greek mathematics is regarded worldwide for its 
geometric character and has gained fame in this field. 
However, during the late Alexandrian period, about 
A.D. 250, when Greek science and philosophy were 
on the decline as a whole, and with them mathemat­
ics, algebra began to emerge as the main topic of 
interest. 

Not much is known about the life of Diophantus 
except that he died at the age of 84 and had a son 
who died during his middle years. This too is not cer­
tain for it was provided rather cleverly by a rhymed 
problem that appeared in a later collection of Greek 
puzzles. The known titles of the works of Diophantus 
are the Arithmetics in 13 books, the Porisms and a 
study on polygonal numbers. The Porisms have been 
lost and only part of the Polygonal Numbers exists. 
However, six or seven books of the Arithmetics have 
been preserved, and it is through them that Diophantus 
makes his contribution to and mark on the world of 
mathematics. 

In the theory of Diophantine analysis, two closely 
related problems are treated. In the first f (x, y, z, ... ) 
is a given polynomial in the variables x, y, z, ... with 
rational (usually integral) coefficients. The equation 
f (x, y, z, ... ) = 0 is called a Diophantine equation 
when it has to be determined which rational numbers 
x, y, z, . . .  satisfy it. Usually further restrictions are 
made by requiring that x, y, z, . . .  be integers, and 
sometimes it is required that they consist of positive 
integers. If we have several functions .f (x, y, z ... ), in 
number less than the number of variables, then the 
set of equations}; (x, y, z . .. ) = 0 is called a Diophan­
tine system of equations. The term Diophantine be­
came the name for such analysis because many of 
the problems in the Arithmetics call for a solution in 
rational numbers. Diophantus looked for rational so­
lutions; that is, he did not insist on having a solution 
in integers as is customary in most of the recent work 
in Diophantine analysis. 

Diophantus usually dealt with problems in which 
one had to find a set of 2, 3 or 4 numbers such that 
different equations involving them in the first, sec­
ond and third degrees are squares, cubes and so on. 
The simplest nonlinear Diophantine equation may 
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have no solution, any finite number of an infinity of 
solutions. For example, x2 + y2 + 1 = 0 has no rational 
solution and xi + y2 - 1 = 0 has infinite number of 
rational solutions but a finite number of integral ones 
which are trivial. 

Linear indeterminate problems are ones that oc­
cur commonly in puzzles. They lead to one or more 
linear equations where the number of unknowns is 
greater than the number of equations. If there were 
no restraints on the kind of values the solutions could 
take, one could give arbitrary values to some of the 
variables and find the others in terms of them. Be­
cause of the nature of these problems. the solu­
tions are limited to integers and usually positive ones 
so they are called linear Diophantine equations. But 
even with these limitations, there may be none, sev­
eral or even an infinite number of solutions. Solv­
ing these equations involves a number of repeated 
reductions. 

The first type of equation is a single linear one­
a.x + by = c-in two unknowns. The following is a 
trivial example: x + Sy = 14, which may be written 
x= 14-Sy. 

This shows that any integral value of y substituted 
above will give an integral value for x. If it is required 
to have positive solutions, then y > 0 and x = 14 -Sy> 0 
and y < 14

/5• Thus y = 1, 2 and x = 9, 4, respectively. 
So when one of the coefficients of x and y is one, 

the solution is immediate. Thus, the method for solv­
ing linear indeterminate equations is to reduce them 
to this simple form. 

It is not certain if indeterminate problems origi­
nated within a single culture, but if they did, it seems 
likely that India should be considered as a source. 
The following appears in Mahaviracarya's Ganita­
Sara-Sangraha which was probably composed 
around A.O. 850. 

In the forest 37 heaps of apples were seen by the 
travelers. After 17 fruits were removed the remain­
der was divided evenly among 79 persons. What 
is the share obtained by each? 

If x is the number of fruits in each heap, and y the 
share obtained by each person, then 37 x -17 = 79y. 
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Since x has the smaller coefficient, we solve for x, 
and by taking out the integral parts of the fractional 
coefficients, we obtain 17 + 79y 2 1 Sy-20 X = 37 y + + ---:gr-· 
Because x and y are integers, the quotient 

Sy-20 t = 37 
is integral. Now we have to find integers y and t such 
that 37t = Sy - 20. This equation is of the same type 
as 37x - 17 = 79y but with smaller numbers. This 
equation can be further simplified because both Sy 
and 20 are divisible by 5 and 37t must also have this 
factor. Since 37 is prime to 5, t must be divisible by 5 
and we write t = 5z and when this is substituted in 3 7 t 
= Sy - 20 we can cancel by 5 and have the simpler 
equation 37z = y-4. This gives y = 37z + 4, x = 79z 

+ 9 as the general solution. The problem however 
will only allow positive integers. So, 
37z + 4 > 0, 79z + 9 > 0 

Z > -
4

/37, Z > -
9

/79 · 

This shows that all values z = 0, 1, 2, ... will give 
positive solutions iny:: 37z +4 and x= 79z + 9. This 
problem illustrates the fact that even when the solutions 
are required to be positive, there may be an infinite num­
ber of solutions. It also shows how simplifications 
are available in the solution of indeterminate problems. 

Often the number of equations is one less than the 
number of unknowns. The procedure is to eliminate 
some of the unknowns until one winds up with a single 
equation with two unknowns which is the case above. 

In medieval times, problems of this kind were 
called "problems coeci" probably referring to the fact 
that they related to scenarios in which people paid 
bills, as in the following problem from Christoff 
Rudolff in 1526. 

At an inn, a party of 20 persons pay a bill for 20 gros­
chen. The party consists of men (x), and women (y) 
and maidens (z), each man paying 3, each woman 2 
and each maiden½ groschen. How was the party com­
posed? The equations are x + y + z = 20, 3x + 2y + '/2 = 20. 
We double the second equation and subtract the first 
from it to obtain Sx + 3y = 20 or 3y = 20 -Sx. Once 
again we simplify (by substituting y = Su) to obtain: 
3u =4-x 
x = 4 - 3u, y = Su, z = 16 - 2u. 
For a positive solution 
X = 4 - 3u > 0, U < 4/3 
y =Su> 0, u > O 

z = 16- 2u > 0, u < 8. 
This provides a unique solution in which u = l 

and x = 1, y = 5 and z = 14. 
Then there are those problems in which the num­

ber of unknowns is at least two greater than the 

delta-K, Volume 34, Number 2, September 1997 

number of equations. In this case also, one can elimi­
nate some of the unknowns and end up with a single 
equation with several unknowns. For example, there 
may be two equations and four unknowns and one of 
them may be eliminated to obtain a single equation 
with three unknowns. However, in the case of one 
equation with three unknowns, the general solution 
will contain two parameters instead of one as in the 
previous problems. 

Diophantus worked extensively with the Pythag­
orean theorem trying to find right triangles with inte­
gral sides. However, one doesn't have to be restricted 
to integers because if any rational solution had been 
found, the three numbers could be written with a com­
mon denominator 

a; b b; C; a=m• =m, c=m 
and al + bl = c? would be an integral solution. 

It is enough to find primitive integral solutions of 
the Pythagorean equation. (Primitive solutions are 
those in which there is no factor, d, common to a, b 

and c because if there were, then the equation could 
be canceled by d2.) In order for a primitive solution 
to exist, any two of the numbers a, b and c must be 
relatively prime. If a and b had a common factor x, 
both sides of the Pythagorean equation would be di­
visible by x2

• But then c is divisible by x which con­
tradicts the assumption that the solution was primitive. 

It will be determined that in a primitive solution a, 

band c, the numbers a and b can't both be odd. This 
is so because of the following theorem: 

The square of a number is either divisible by 4 or 
leaves a remainder of 1 when divided by 4. 

This is proven by the fact that every number is of 
the form 2n or 2n + 1 and when they are squared, the 
results are 4n2 and 4n2 + 4n + 1. If a and b were both 
odd, both sides of the Pythagorean equation, a2 + b2 
= c2 would leave the remainder 2 when divided by 4 
which contradicts the theorem. 

Now, a will be even and b and c are odd since 
there are no common factors. Then the equation is 
a2 = c2 - b2 = (c + b)(c - b). Both sides are divisible 
by 4 since a is of the form 2n and when one divides 
by this factor, one gets 
a2 _ (c + b) cc - b) 2 - 2 X 2 
The two factors on the right are relatively prime be­
cause any common factor, d, would divide their sum 
and difference. But since 
c+b c-b c+b- c-b 
-2-+-2-=C -2- --2- =b 
and b and c are relatively prime, d must equal 1. 
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When the two numbers on the right in 

a
�

= (c
; 

b) 
X 

(
c

l 
b) 

are relatively prime, their prime factorizations are 
different and their products can't be a square unless 
each of them is a square. So, 

c+b c+b 
-2-= uz -2- =v2 

and by substituting above in we get 

a2 

_ (c + b) (
c - b) 2- 2 X 2 

a= 2uv, b = u2 
- v2, c = u2 + v2. 

To verify that this is a primitive solution, we see 
that any common factor of b and c has to divide their 

sum and difference. However, c + b = 2u2
, c - b = 2v2 

and since u and v are relatively prime, 2 is the only 
common factor which is eliminated when one of the 
numbers is odd and the other even. 
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In the equations a+ b + c = d + e + f = g + h + i, is it possible to substitute 
the natural numbers 1, 2, 3, ... , 8, 9 in the place of the variables? 
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