
Integrating Mat1hematics and Logo:
A Four-Step Approach

W. George Cathcart

Dr. Cathcart is a professor of education at the
University of Alberta. He served on the executive of
MCA TA and is a former editor of delta-K. Dr. Cath­
cart has presented papers at the annual meeting of
MCATA and at NCTM general meetings.

Programming in Logo develops problem solving
skills and affects cognitive processes in young chil­
dren (Clements and Gullo 1984). Having middle
school children write Logo procedures that simulate
certain mathematical algorithms and processes may
also be a worthwhile endeavor.

First, the process sharpens a child's understanding
of the mathematical concept or algorithm. Before a
procedure can be written, the mathematics are ana­
lyzed or broken down into small "mind-sized bites. "

Second, programming broadens the child's under­
standing of Logo and leads to a greater appreciation
of the power of Logo. Children discover that Logo
can do many things besides drawing designs, geo­
metric figures and graphs.

A Developmental Sequence

Using Logo to enhance a mathematical concept in­
volves four steps. The first two steps focus on the
mathematics and reinforce and clarify the mathema­
tics for students; Steps 3 and 4 focus on Logo. To
complete these steps, students may need to consult
a Logo manual or ask for guidance. The experience
will both develop their skill in programming and
broaden their understanding of Logo's capabilities.

Focus on Mathematics

Step 1 . Analyzing the Mathematics
Before students write a Logo procedure to perform

a mathematical task, they must be able to break the
mathematical process down into its components.
Computer scientists call this process "stepwise
refinement." Figure l illustrates the process.

For example, to find the mean set of numbers, stu­
dents might analyze the problem by

Figure 1. Stepwise Refinement

Problem

Subproblem 1 Subproblem 2 Subproblem 3

Subproblem 2 . 1 Subproblem 2 .2

32

1 . calculating the sum of all numbers in the list,
2 . dividing the sum by the number of elements

in the list,
2 . 1 . counting the number of elements in the list, and
3. printing the results.

Figure 2 represents this process using the stepwise
refinement chart.

Step 2. Write a Pseudo Code

After analyzing all the components, students should
be encouraged to write a pseudo code correspond­
ing to the mathematical steps. Based on the exam­
ple of the mean, a pseudo code would look something
like the following:

TO MEAN

• get sum
• count number of elements
• divide sum by the count
• output the result

END

This is just one example of a possible format for
a pseudo code. You may prefer a different style.
What is important is that students structure their anal­
ysis of the mathematical process into a logical step­
by-step algorithmic-like statement. The focus here
is still on the mathematics. The step is an attempt
to state in a succinct form the mathematical process.
Additionally, the step serves as a transition to focus
on Logo.

Focus on Logo

All the Logo procedures in this article are written
in Apple Logo, a product of Logo Computer Sys­
tems (LCSI) Inc. It is assumed that the students have
a reasonably good understanding of Logo including
tail recursion.

Step 3. Logo Match to Pseudo Code

The first attempt at writing a Logo procedure to
perform the mathematical task could be a relatively
straightforward translation of the pseudo code into
Logo. The pseudo code developed in Step 2 can be
translated as follows:

TO MEAN :ALIST

MAKE " S ADDUP :ALIST

MAKE " C COUNT :ALIST

MAKE " R :S / :C
OUTPUT :R
END

Note that ADDUP is used as an operation in line
2. ADDUP, from the context, appears to be an oper­
ation that calculates the sum of a list of numbers.
ADDUP is not a Logo primitive and should be given
to students as a tool procedure, perhaps included in
a STARTUP file. There is one version of ADDUP:

TO ADDUP :ALIST
IF EMPTYP :ALIST [OUTPUT O]
OUTPUT SUM FIRST :ALIST ADDUP BUT­

FIRST :ALIST
END

Figure 2. Stepwise Refinement for Finding Means

Find Mean

Get Sum

'
I I

Divide Sum by

I
Print

Number of Elements
Result

I
Count Number of

Elements

33

,,
I I

I

��I ...___J _ ______.I _ _______J

I I

Figure 3. Pseudo Code and Logo Match in Parallel

Step 2. Pseudo
TO MEAN

• get sum
• count number of elements
• divide the sum by the count
• output the result

END

A worthwhile exercise for students is to do Steps
2 and 3 side-by-side on a page (see Figure 3).

The pseudo code and the Logo match may not al­
ways correspond as closely as in Figure 3 . Minor
adjustments to format may be required for some
tasks. However, if the pseudo code is a detailed state­
ment of the mathematical process, Logo statements
can usually be written to match it step-by-step.

Logo "purists" will be dismayed by the extensive
use of global variables in this approach. The situa­
tion was a trade-off, I wanted a strategy that would
make the transition from mathematics to Logo a small
step. Steps 2 and 3 seem to do this. I am prepared
to trade some purism for simplicity. Step 4 restores
some of the "pure" Logo.
Step 4. More Elegant Logo

In Step 4, encourage students to ask "Can I write
this procedure in a better way?" The purpose is to
write a more elegant procedure. Students should con­
sider shortening statements, combining statements,
using different commands or operations, taking a
completely different approach and so on.

A more elegant procedure for our example of the
mean might combine all of the steps into one line:
TO MEAN " ALIST
OUTPUT (ADDUP :ALIST) / COUNT :ALIST
END

In writing a more elegant Logo procedure, students
should be encouraged to eliminate as many MAKE
statements as possible. (Note the removal of all
MAKE statements in the final MEAN procedure.)
After students work through this four-step process
with different mathematical concepts, you may wish
to explain the difference between local and global
variables in Logo and the advantages and disadvan­
tages of each.
34

Step 3. Logo Match
TO MEAN :ALIST
MAKE " S ADDUP :ALIST
MAKE " C COUNT :ALIST
MAKE " R :S I :C
OUTPUT :R
END

With some experience, students may translate the
pseudo code (Step 2) into a Logo procedure that is
somewhat ' 'better' ' than a straight line-by-line trans­
lation. However, Step 4 still needs to be emphasized
because a search for a more elegant procedure should
never end. (To illustrate this point, refer to the ex­
ample of the median in the following section.)

Students soon discover that the four-step process
does not always result in a Logo procedure that will
do exactly what was expected. A bug may have crept
in during the transition from pseudo code to Logo.
The pseudo code itself may contain errors, such as
missing steps. Possibly the analysis of the
mathematics was incorrect. Therefore, a continual
evaluation or monitoring of each step and the total
process must be practiced. Figure 4 illustrates the
process of monitoring.

More Examples

To illustrate the outlined four-step process of in­
tegrating Logo into mathematics, two additional non­
graphic examples are outlined. One deals with divi­
sors (factors), the other with the median.

Factors

The problem is to find all the factors of a whole
number, n.
Step 1 . Analysis

A factor of n is a whole number that divides evenly
into n. One method of obtaining all the divisors of
a number is to check for divisibility (remainder =
0) by all whole numbers less than or equal to n. If

divisibility occurs, list the divisor as a factor; other­
wise try the next whole number. Except for n itself,

Figure 4. Dynamics of the Four-Step Process

Problem

Analysis Pseudo Code

check code

evaluation clarification

check divisors of whole numbers up to n/2 because
no number between n/2 and n will divide evenly into
n. A child thinking through the concept of a factor
in this way clarifies the concept in his or her mind.
Step 2. Pseudo Code

There are several ways the analysis could be trans­
lated into succinct logical steps. Here is one
possibility:
TO FACTORS of n

• start with divisor of 1
• if divisor > n/2, print n as a factor and stop
• otherwise get remainder when n/divisor
• if = 0, list divisor as a factor
• otherwise, repeat with divisor 1 greater

END
Step 3. Logo Match

TO FACTORS :NUM :DIV
IF :DIV > :NUM / 2 [PRINT :NUM STOP]
MAKE " R REMAINDER :NUM :DIV
IF :R = 0 [PRINT :DIV]
FACTORS :NUM :DIV + 1
END

The pseudo code and the Logo match do not cor­
respond as closely as in the example of the mean
described earlier. The initial divisor, 1 (line 2 of the
pseudo code), is incorporated as the second input to
the procedure. A sample execution of FACTORS
might be: FACTORS 36 l . Different versions of
pseudo code may result in a greater or lesser degree
of correspondence in the Logo match.

More Elegant Logo

Logo Match

no yes

Step 4. More Elegant Logo

The first improvement would be to combine lines
3 and 4 and remove the MAKE command:
TO FACTORS :NUM :DIV (assign :DIV the

value 1)
IF :DIV > :NUM / 2[PRINT :NUM STOP]
IF REMAINDER :NUM :DIV = 0 [PRINT :DIV]
FACTORS :NUM :DIV + 1
END

This version places the factors in a vertical for­
mat. A more elegant procedure should print them
horizontally with a space or a comma between each
factor. Changing the THEN portion of line 3 to
[(TYPE :DIV CHAR 32)] would cause this to
happen.

As it stands, FACTORS is rather limited in its use­
fulness. To be used in another set of procedures, say
for finding common factors, FACTORS needs to be
an operation or outputting procedure. Unfortunately,
PRINT or TYPE cannot simply be replaced by OUT­
PUT since OUTPUT also stops the procedure. This
is a case in which students will likely need your
assistance.

One way around the dilemma is to store each fac­
tor in a list, and output the list when all the factors
have been determined. The following procedure,
while longer, is more elegant; results can be used
as input to other procedures in which factors are
needed.
TO FACTORS :NUM
MAKE " FACTS []
GET.FACTORS :NUM 1

35

OUTPUT SENTENCE :FACTS : NUM
END
TO GET.FACTORS :NUM :DIV
IF REMAINDER :NUM :DIV = 0 [MAKE

" FACTS LPUT :DIV :FACTS]
IF :DIV < :NUM / 2[GET.FACTORS :NUM

:DIV + I]
END

Sample Output
?PRINT FACTORS 16
I 2 4 8 16

LPUT is the operation storing each factor as it is
generated into the list, FACTS. Notice that, since
a list was created, the output is automatically in
horizontal form.

Median

I dealt with the concept of the median in a previ­
ous issue of delta-K (Cathcart 1986). Some of the
ideas presented in that article can be incorporated
into the four-step process.

Step 1 . Analysis

For the median to be found, the data needs to be
sorted. The number of elements in the data list must
be determined. If this number is odd, the middle
number is the median. Otherwise, the median is the
average of the middle two numbers.

Step 2. Pseudo Code

TO MEDIAN
• sort input list
• count number of elements in input list
• check if number of elements is odd or even

• if odd, pick middle element
• otherwise find mean of middle two numbers

• output result
END

Step 3. Logo Match

TO MEDIAN :ALIST
MAKE " SL SORT :AUST
MAKE " C COUNT :AUST
TEST (REMAINDER :C 2) = 0
IFTRUE [EVEN]
IFFALSE [ODD}
OUTPUT :R
END

36

This procedure calls two subprocedures, EVEN
and ODD. SORT is a tool procedure that sorts data
into ascending order. This procedure should be given
to students as a tool. (See Cathcart 1986, for a list­
ing of a sort procedure.)
TO EVEN
MAKE " F ITEM :C / 2 :SL
MAKE " K ITEM :C / 2 + 1 :SL
MAKE " R MEAN LIST :F :K
END
TO ODD
MAKE II R ITEM :C / 2 + .5 :SL
END

Step 4. More Elegant Logo

A first attempt to write a more elegant procedure
may result in the following:
TO MEDIAN :AUST
MAKE II C COUNT :AUST
IF (REMAINDER :C 2) = 0 [OP EVEN] [OP

ODD]
END
TO EVEN
OP MEAN LIST ITEM :C / 2 :AUST ITEM :C

/ 2 + 1 :AUST
END
TO ODD
OP ITEM :C / 2 + .5 :AUST
END

With these procedures, SORT would be used as
an input to MEDIAN. That is, PRINT MEDIAN
SORT :AUST. This example shows how trying to
modify a procedure, while retaining the basic strat­
egy, may blind a programmer to a far more elegant
solution. By detennining the median with pencil and
paper, it is possible to simply strike out the first and
last elements of the sorted data. Continue this pro­
cess until only one or two elements are left. If one
element remains, it is the median. If two elements
remain, the average of these two is the median. Ac­
tually, if only one element remains, the median is
still the average of the number. To illustrate:
Case 1 :,i)')f 16 � � �

16 is the median
Case 2 :,i.i 9!}6 �){

12.5 is the median
This suggests a recursive procedure. A much more

elegant procedure for calculating the median, then,
would be as follows:

TO MEDIAN :ALIST
IF OR ((COUNT :ALIST) = 1) ((COUNT :ALIST)

= 2) [OP MEAN :ALIST] [OP MEDIAN BF BL
:ALIST]

END

Line 2 (IF-THEN portion): if there are one or two
elements in the data list, output the mean and stop.

Line 2 (ELSE portion): if there are more than two
elements, strip away the first and last and repeat the
process.

Summary

A four-step process for integrating Logo program­
ming into mathematics consists of
1. analyzing the mathematics,
2. writing a pseudo code for the mathematical

process,

3. writing a Logo code to correspond to the pseudo
code, and

4. writing a more elegant Logo procedure.

Some steps may be repeated or revised as the pro­
cess develops. This action may be needed to correct
the code or to re-analyze the problem due to initial
misconceptions or omissions.

If students follow the four steps, they will likely
sharpen their understanding of the mathematics in­
volved, broaden their knowledge of Logo, increase
their appreciation of Logo and hone their program­
ming skills.

References

Cathcan, W. G. "Logo and Measures of Central Tendency. "
delta-K 25, no. 3 (1986): 27-3 l .

Clements, D.H., and D.F. Gullo. "Effects of Computer
Programming on Young Children's Cognition. Journal of
Educational Psychology 16, no. 6 (1984): 1051-58.

37

	32 - 37 Integrating Mathematics and Logo: A Four-Step Approach

