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EDITORIAL

Direction

A new school year offers an opportunity for increased involvement in your
professional organization.

* Plan to attend the NCTM Canadian Regional Conference. Bring a friend.

* Plan to contribute to your journal. The themes of the next two issues are
"Problem Solving in the Junior High School” and "Technology in Mathematics
Education.” Anticipated publishing dates are February and May, respectively.

* Plan to have your students submit solutions to the Student Problem Corner.

* Plan to contribute, or encourage your colleagues to contribute, to the special
publications your executive has authorized. A special issue, "Mathematics and
Early Childhood Education,”™ is planned, as well as a monograph, "Make It and
Take It."

* Plan to renew your membership in MCATA, and to encourage a colleague to become
a member.

Comment

The focus of this issue is "Effective Teaching of Mathematics,” and there
are many factors contributing to this topic. Knowledge of mathematics and how
mathematics ideas and concepts develop is a factor. Knowledge of how children
learn mathematics - and use of that knowledge - is also a part of effective
teaching. Is mathematics a set of rules, cases, and procedures, or is it a
thought system that utilizes a particular structure? Research on the subject of
teaching effectiveness abounds. Do effective teachers of mathematics incorpo-
rate into their lessons this research on teaching strategies and classroom man-
agement, as well as the results of research on teaching and thinking and the use
of technology? Effective teaching might also include student involvement, stu-
dent accomplishments, and student use of mathematics.

The Minnesota Department of Education and Minnesota Council of Teachers of
Mathematics investigate what mathematics teachers may do to teach thinking
skills, as well as mathematics. Sol Sigurdson examines learning theories
and proposes a "“constructivist” view toward learning principles and their imple-
mentation. Dr. Ediger examines the scope of the mathematics curriculum and,
in particular, the role of the textbook. John Heuver makes a critical anal-
ysis of some of the texts used in Alberta. H. Skolrood and M.J. Maas show
parallelism in the reading process in mathematics and social studies, and iden-
tify four reading situations. Professor Schrage and Dr. Jerry Becker iden-
tify three limitations in the use of microcomputers for teaching mathematics.
Dr. Duncan and Dr. Litwiller examine a multiplication table, and interesting
matrices are the result. S. Jervis, a Grade 12 student, discusses infinity.
Craig Loewen 1illustrates the effective use of the overhead projector in
teaching geometry. Jacqueline Fischer shares ideas on creative problem
solving, and Oscar Schaaf provides a geometry lesson that is especially ap-
propriate for teaching problem solving. Hank Boer is the contributor to the
Student Problem Corner.

John B. Percevault



Higher Order Thinking Skills and
Mathematics Education

Minnesota Department of Education
and Minnesota Council of Teachers of Mathematics

EDITOR'S NOTE: This position paper was
formulated at a conference in May 1985
at Ruttger's Bay Lodge, and was pre-
sented to the MCTM Meeting in Washing-
ton in April 1986. Permission to pub-
lish this paper was obtained from
David Dye, Minnesota Department of
Education, who was a member of the
writing team for the Ruttger's Bay
Conference.

Bigher order thinking skills need
greater emphasis in American schools.
At least, this is one conclusion that
can be drawn from the recent flurry of
reports on the state of education in
the United States. While this concern
crosses discipline boundaries, it is
clear that the curriculum of mathemat-
ics can provide a powerful medium for
attacking this problem.

In response to the national out-
cry and in an attempt to bring a focus
to the mass of information and opinion
that have been printed on the issue of
higher order thinking skills, the Min-
nesota Department of Education gath-
ered together a group of mathematics
educators in May of 1985. The partic-
ipants, representing all 1levels of
mathematics instruction in Minnesota,
were asked to express concerns and
provide direction for continued effort
regarding this critical problem.

In order to initiate the discus-
sion, five of the participants pre-
pared presentations to pose questions
on specific topics. These topics
were:

1. Problem Solving
2. Decision Making

3. Logic
4. Analysis, Synthesis, and
Evaluation

5. Understanding Concepts

A small group of participants then
met with each presenter to develop a
report outlining their reactions to
the issues that had been raised. Dur-
ing this meeting, the participants
agreed that the outcome of the confer-
ence should result in the preparation
of: (1) a position paper on higher or-
der tWinking skills, (2) a working
definition of higher order thinking
skills in mathematics, and (3) a con-
ference report.

Defining Thinking Skills

Many writers do not attempt to de-
fine "thinking skills." However, to
clarify the group's understanding for
purposes of discussion, the following
was written as a working definition:

Thinking skills are the dynamic
mental processes, both intuitive
and logical, used in collecting,
organizing, interpreting, and ap-
plying information for the purpose
of arriving at decisions and/or
gaining new knowledge.

The conference participants gener-
ated a partial 1list of thinking
skills. These thinking skills were
then grouped into six main categories,
five of which were the topics used to
initiate the discussion of higher or-
der thinking skills. The following
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examples have been grouped with the
understanding that the skills listed
may not be exclusively associated with
any one particular heading.

Problem Solving -

selecting strategies, comparing,
contrasting, ordering, grouping,
labeling, categorizing, sorting,

identifying relevant and nonrele-
vant information, modeling, exam—
ining special cases, being flexi-
ble, and breaking a mind set

Quantitative Thinking -
estimating, sequencing, using al-
gorithmic skills, recalling, and
recognizing

Logic -

proving, using analogies, reason-
ing inductively, and reasoning
deductively

Analysis, Synthesis, Evaluation -
asking appropriate questions, gen-
eralizing, 1inventing, creating,
evaluating, observing, generating
unifying concepts, seeing rela-
tionships, using patterns, trans-—
lating, distinguishing between
fact and opinion, recognizing sys-
tems, and condensing long lists

Understanding Concepts -
visualizing, designing algorithms,
hypothesizing, verbalizing ab-
stractions, and simplifying

Decision Making -

communicating, generating alterna-
tives, elaborating, and evaluating
anticipated outcomes

The chart on the following page is
intended to show the relationship of
some of the skills discussed in this
paper. It incorporates quantitative
thinking as fundamental to the process
of wunderstanding mathematics. of
course, since we are emphasizing
higher order thinking skills, those on
the upper 1levels of Bloom's taxonomy
(analysis, synthesis, and evaluation)
permeate this understanding.
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Position Statement

Of all the skills learned during a
lifetime, one of the most basic is the
ability to think. Thinking subsumes
all of the other basic skills associ-
ated with learning. While thinking is
not used exclusively in the realm of
mathematics, the study of mathematics
provides many opportunities for teach-
ing and learning thinking skills.

Thinking is inherent to human sur-
vival. The question is not of whether
to teach students to think, but of
identifying certain skills that can be
practiced in a variety of situations
and environments to make people better
thinkers. We must provide activities
and experiences that give an opportu-
nity for practice and development of
those skills. Just as musicians, ath-
letes, and artists must develop and
depend on fundamental skills in order
for their talents to reach full poten-
tial, so must students be aware of
fundamental thinking skills in order
to develop their potential as thinkers
and problem solvers. Skills must not
only be learned, they must also be
practiced - both alone and with
others!

In elementary and secondary educa-
tion, mathematics instruction is in-
tended for all students, even though
the expectations are different for
different students. We believe that
all students can be taught skills that
will enable them to think better than
they presently do.

The process of teaching higner or-
der thinking skills has implications
for the delivery of mathematics in-
struction to students. There must be
a different climate in the classroom
to reflect different emphases. It is
important that the process whereby
students are expected to memorize ma-
terial, and then attempt to apply it
prior to understanding the underlying
concepts, be scrutinized. The partic-
ipants believe - and their position is
supported by a range of research -
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that it is imperative for students to
understand concepts at least simulta-
neously with, and preferably previous
to, the memorization of facts and al-
gorithms. At the same time, it is im-
portant that school personnel be aware
of different 1learning styles among
students, and make allowances for
these differences.

Such changes in emphases carry
clear implications for the amount of
time needed for teaching mathematics.
Either the time available must be in-
creased, or deletions must be made in
the present curriculum. Since it is

Problem
Solving Creativity

\ \

Concept
Development

highly wunlikely that a significant
amount of additional time can be ex-—
tracted from an already full school
day, the most obvious candidate for
deletion would be the vast amount of
time spent on pencil-and-paper arith-
metic drill.

The proliferation of technology in
schools can affect the way we teach,
and an emphasis on higher order think-
ing skills will certainly have impli-
cations for the choice and use of that
technology. Specifically, the calcu-
lator should be used to a much greater
extent than it is at the present time.

Decision
Logic Making
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Increased use of the calculator will
reduce some of the time currently
spent on arithmetic drill.

If we are sincere in our desire to
emphasize higher order thinking
skills, we must also be committed to
developing suitable means for evaluat-
ing the achievement of these skills.
Present testing procedures, which
place a high priority on recall, rec-
ognition, and arithmetic skills, must
be modified to encompass a more com—
prehensive approach that will assess
how well the students are 1learning
concepts and understanding processes.

Finally, there are implications
for teacher training, both preservice
and inservice. Teacher training pro-
grams must place more emphasis on
higher order thinking skills so that
teachers themselves Dbecome Dbetter
problem solvers. In addition, teach-
ers must become aware of the latest
research being done in this area and
its implications for their classrooms.
That 1is, teachers must become con-
vinced of the importance of teaching
higher order thinking skills, they
must learn the techniques for teaching
them, and they must learn how to make
room for them in the curriculum.

Guidelines and Recommendations

Finally, we are ready to make some
recommendations about incorporating
the teaching of higher order thinking
skills into mathematics classrooms.
Instructional techniques need to be
carefullv planned. Classroom climates
conducive to exploration and experi-
mentation must be created. These re-
quirements should form the basis for
preservice and inservice education of
mathematics teachers at all grade
levels.

Questioning techniques are at the
heart of this kind of instruction.
Teachers must learn to ask questions
rather than dispense information. We
recognize that good teachers have used
this Socratic method extensively and
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that all teachers have wused these
techniques to some degree. We propose
that teachers be encouraged to re-

examine and improve questioning tech-
niques in order for students to gain
an understanding of concepts before
moving to mastery of skills. Mathe-
matics topics must be presented to
students in such a way that will allow
students to acquire an understanding
of concepts or applications before
they are asked to memorize and/or
drill on techniques. This will help
to ensure the transfer of knowledge to
new situations, including the solution
of problems in higher mathematics and
related subject areas.

Objectives for mathematics classes
must incorporate these new thinking
skills. Expected outcomes will need
revision in order to diminish emphasis
on pencil-and-paper arithmetic. Test~-
ing, if it is to relate to these ob-
jectives, will also wundergo radical
changes. Teachers and assessment ex-
perts must use their creativity to
develop testing procedures that will
assess the students' ability to solve
problems. In addition to formal test-
ing, this may include observations of
students while they are working.

Teachers will have to search out
good sources for problems to use in
their teaching of problem solving.
They will have to use their creativity
in selecting problems, finding appro-
priate situations for their inclusion,
and developing procedures which will
enhance the new knowledge and skills.
At the same time, teachers desperately
need to take time to solve mathematics
problems themselves. In this way,
they can be role models for students
and develop an empathy for students
who will be asked to solve problems.
Teachers must take time, and schools
must provide time, for this. Teachers
must also find the time and procedures
for sharing new problems with other
teachers. Attendance at professional
conferences and visitations to the
classrooms of excellent teachers are



examples of procedures for sharing
information.

Curriculum writers, whether at a
local or national level, must incorpo-
rate more activities involving concept
development and problem solving.
Since many teachers "follow the text,"
textbooks that provide the types of
activities necessary to teach thinking
skills must be developed.

Teachers and administrators must
communicate the new emphases to school
patrons. They will need to sell the
importance of higher order thinking
skills to obtain community support for
spending less time on traditional top-
ics and more time on the teaching of
higher order thinking skills.

Suggested Activities for Teaching
Thinking Skills

Here are some specific activities
we recommend to help teach those high-
er order thinking skills. These are
not listed in any order of priority,
but are merely listed as the partici-
pants thought of them.

- Ask students to become involved in
projects.

- Use manipulative materials to intro-
duce concepts.

— Make good use of good computer soft-
ware.

- Ask students to work together coop-
eratively to learn material.

= Augment texts with other activities
and integrate discovery/exploration
lessons.

- Have students write computer pro-—
grams to do the algorithms of arith-
metic.

- Ask students to communicate what
they know, what they don't know, or
what they need to know orally and in
writing.

- Have students become involved in
collecting/displaying data as part
of an experiment.

— Develop lessons in cooperation with
other subject areas.

- Focus on big ideas; for example,
linear rate function leading to dis-—
tance, time, and rate problems -
thematic curriculum, look at special
cases, emphasize structure, and de-
velop algorithms.

- Use puzzle problems, including cryp-
tarithmetic and toothpick problems.

— Use educational games.

- Have their own

games.

students make up

— Give an answer and have the students
make a problem to match.

- Require book/video reports.

- Go on field trips.

— Use outside resource people.

~ Use simulations on the computer.

- Let students elaborate on hobbies/
personal interests.

— Allow time for students to solve
problems (that is, provide a problem
solving class, a problem of the
week, or a problem of the day).

- Develop a school-family math program
designed to get students and parents
working on problem solving at home
with the guidance of trained profes-—
sionals.

- Have students develop test questions
from different topics based on their
own experiences.

- Have students explain why they used
a particular algorithm or process to
solve a problem.

- Encourage students to produce a
videotape of an application.

No attempt has been made to clas-
sify the above activities with regard
to specific course designation or
grade level suitability. The sugges—
tions are presented to aid teachers
with possible instructional strategies
for helping students improve thinking
skills.



A Constructivist Approach to
Teaching Mathematics

Sol E. Sigurdson
University of Alberta

Over the last few years, psycholo-
gists and educators have been inter-
ested in going beyond behavioristic
and Piagetian views to new conceptual-
izations of 1learning, especially in
using the computer as a "model” of how
we think and learn. One of the new
conceptualizations has been "informa-
tion processing.” Proponents of this
view claim that when we think, we ba-
sically process information; it's as
simple as that. This, however, leads
to a further question: How do we man-
age this processing? To account for
the management of processing, it is
suggested that the learner engages
other processes called metacognitive
processes. But, still we might ask:
What manages the metacognitive pro-
cesses? Although this is not a trivi-
al question, most proponents presently
do not differentiate between levels of
management, simply naming all those
processes above the cognitive level
metacognitive processes. In fact, the
difference between cognitive and meta-
cognitive is not always clear. For
the time being, 1let wus say that
strictly mathematics propositions,
procedures, and processes are called
cognitive, while management decisions
about such matters as when to use
them, in what order, and with what de-
gree of confidence are called meta-
cognitive processes.

Another related view of learning
has been called a theory of "personal
constructs.” The main tenet of this
view is that all learners actively
construct theories, no matter how mi-
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nor, about what is appropriate action
for responding to any particular situ-
ation. If a particular theory leads
to inappropriate action, we revise the
theory. This view, like information
processing, also utilizes the notion
of "metacognitive processes” managing
our theory development. According to
the personal constructs view, learners
of differing capabilities exist be-
cause both our cognitive capacities
and our metacognitive (management)
capabilities differ. Another explana-
tion, which goes beyond differences in
cognitive or metacognitive components,
is that some learners' perceptions are
blinded (by emotion, say), so that
they are unable to differentiate be-
tween appropriate and inappropriate
action and, consequently, construct
poor theories.

What relevance do these new con-
ceptions have to the mathematics
classroom? The one outstanding im-
pression that the personal constructs
view leaves 1is that our classrooms
consist of 25 or so finely-tuned, sen-

sitive, self-initiating, theory-
generating, learning “beings."” The
metacognitive aspect, on the other

hand, leads us to question how much of
a committment we teachers have in at-
tending to the development of
metacognitive processes. The informa-
tion processing aspect begs the ques-
tion of how to present information for
efficient storage and easy access.
Psychologists and educators are still
exploring answers to these questions
and will be for many years. In the



meantime, what aspect of these theo-
ries can be useful to teachers in
dealing with the complex world of
classroom instruction?

In order to make these ideas more
available for teacher use, I will com-

bine the three notions - information
processing, personal constructs, and
metacognitive processes - 1into one

"constructivist” view of learning. In
this article, I will describe con-
structivist principles of learning and
further derive from them constructiv-
ist guidelines for classroom teaching
of mathematics. Mathematics teachers
are encouraged to think about, and
use, these 1ideas to improve their
classroom instruction. Psychologists
and educators, who are continually
striving for new insight into the
learning process, would surely appre-
ciate feedback from the most signifi-
cant learning laboratory of all, the
classroom. Curriculum examples will
not be used to describe this view be-
cause these new conceptions of learn-
ing are equally relevant to all grade
levels. The word constructivist has
been around for many years. 1 am not
concerned that my usage may be slight-
ly different than that of others.

Constructivist Principles of Learning

l. Purposeful Constructions.

Students construct their own theo-
ries for responding to a given
situation, and, as they see their
knowledge leading them to inappro-
priate action, they revise their
theories. Learning proceeds from
the current conceptions or theo-
ries of knowledge that the learner
possesses. "Tuning ,"” that 1is,
modifying or adjusting, is an im-
portant learning process. Appro-—
priate theories are best con-
structed in the 1light of some
acknowledged purpose.

2, Learning How to Learn.
Learners' awareness of their

knowledge (mathematical content
and processes, and metacognitive
processes) at any time aids learn-
ing. Metacognitive processes
(management of cognitive knowl-
edge) are especially important,
and these may be a major source of

individual differences between
slow learners and others.
Confidence.

Because learning means taking

risks and experimenting with new
cognitive constructions, the atmo-
sphere for learning must be famil-
iar and full of trust. Inaccurate
perceptions can be caused by ei-
ther strong positive or negative
emotions.

Framework for Information.
Learning occurs in a context that
provides a framework for the or-
ganization of information. The
most appropriate context 1is one
which is most applicable to the
future situation 1in which the
knowledge will be used. A frame-
work for mathematical knowledge
can consist of mathematical, ev-
eryday, and scientific elements.

Structure of Knowledge.

All mathematical knowledge con-
sists of propositional (conceptual
and relational) structures and
procedural (algorithmic and meth~
ods) structures. The process
through which we understand and
manipulate mathematical situations
is grounded in specific content
structures.

Complexity of Concepts.

Propositional structures and pro-
cedural structures are complex
content structures, a fact which
is often disguised through rote
learning and teaching. Although,
traditionally, we teach through
analyzing and breaking down knowl-
edge, the constructivist sees
"building up” as an equally valid
learning process. Procedural
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structures (algorithms) are linked
in important ways to propositional
structures (concepts).

7. Transfer of Knowledge.
As we learn, we learn context, as
well as content and ©process.
Transfer of knowledge must not be
assumed; it occurs only as a new
context is "seen"” as the learned
one.

Although a deeper understanding
would require considerable elaboration
on all of these principles, perhaps we
can employ a constructivist teaching
tactic, and let the reader come to
understand the principles as they are
used to develop the “guidelines
for classroom teaching.” Classifying
something as complex as human learning
in "seven principles” seems to be an
utterly futile undertaking. Bowever,
I would like to elaborate slightly on
the structure and complexity princi-
ples. Recognized in the structure
principle, first of all, is the impor-
tance of relationships among all math-
ematical concepts and that any
understanding of mathematics 1is a
matter of recognizing all these rela-
tionships. Also implied in the struc-
ture principle is that all mathemati-
cal activity, such as problem solving,
is highly dependent on these struc-
tures. The complexity principle,
while acknowledging the many-faceted
aspect of even apparently simple con-
cepts such as multiplication, stresses
that understanding and use of knowl-
edge must take into account all, or
most, of these facets.

0f course, these learning princi-
ples can be applied to the teaching of
any subject, but our concern here is
what this might mean for the teaching
of mathematicse. In deriving these
guidelines for classroom teaching, it
became apparent that several possible
interpretations would be valid. Once
again, I have opted for seven, knowing
that these can only serve as general
suggestions.
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Constructivist Guidelines for
Classroom Teaching

1.

2.

3.

Unit Context.

Mathematics should be taught in
the context of a three- to four-
week unit constructed around a
mathematical, everyday, or scien-
tific application of the content.
Students should feel comfortable
and familiar with this application
context.

RATIONALE: The purposeful con-
structions and the framework prin-
ciples are satisfied by this. The
actual application context would
not only be a function of the con-
tent, but also of the grade level
of the class, the characteristics
of the students, and the school
environment.

Curriculum Tasks.

The tasks which comprise the unit
should be conducted with a view to
the students engaging their cur-
rent conceptions, mastering the
task, and learning from it. The
focus of the task should be cen-
tral to the unit application.
RATIONALE: The learning how to
learn and the confidence princi-
ples suggest that the task be a
manageable part of the unit. The
structure principle suggests that
relevant mathematics knowledge be
an integrated part of the task.

Managing the Taske.

All students should be given
assistance in dealing with the
task - determining task difficul-
ty, monitoring their understanding
of it, apportioning time for it,
and predicting how well they can
perform it. The teacher should
pay special attention to the stu-
dents' perception of the task.
Individual differences should be
noted and provided for in this
aspect.

RATIONALE: The purposeful con-
structions and learning how to



5.

learn principles are important
here, especially in helping stu-
dents become aware of their knowl-
edge and knowledge processes.
This guideline is the core of the
instructional process.

Task Variety.

Tasks should include a range of
learning activities, such as di-
rect examples, reviewing, textbook
use, note taking, concrete materi-
als, understanding, amplification
of basic concepts, problem solv-
ing, self-inquiry, practice exer-
cises, group activities, discus-
sion and questioning.

RATIONALE: The purposeful con-
structions principle does not im-
ply that student learning should
be of a discovery nature, but only
that learning should have some
purpose. The complexity principle
not only suggests that a consider-
able amount of guidance, even di-
rect examples, is appropriate, but
also that a variety of approaches
is necessary to achieve an under-
standing of a mathematical topic.

Assessment Tasks.

Assessment should be carried out
primarily within the context of
the unit.

RATIONALE: The transfer principle
suggests that we should first ap-
ply learning to the context of the
unit. If we do testing beyond the
context of the unit, we should be
conscious of how the new context
relates to the learned one. In
actual (real-life) use of mathe-
matics, contexts that are impor-
tant to the student are most often
familiar ones.

Mathematical Learning.

(a) Readiness.

Readiness for content 1learning
must be noted, but only in the
context of the 1learning task.
What does the learner bring to the
situation? Students' awareness of

their own readiness is also impor-
tant.

RATIONALE: Purposeful construc-
tions are derived from previous
"theories” that the student has.
This is the central premise of the
constructivist view. The learning
how to learn principle suggests a
self-awareness of these previous
theories.

(b) Concepts.

Concepts, the pivotal ingredients
of mathematics learning, must be
constructed from the student's
prior knowledge. Learning of com-
plex subject matter is achieved
through many different proposi-
tional structures. Specific in-
structional devices, such as con-
cept maps and structured appara-
tus, should be employed.
RATIONALE: The framework, struc-
ture, and complexity principles
all indicate the necessity of a
thorough conceptual basis for
mathematics learning.

(c) Skills.

Skill development, as it relates
to the curriculum unit, is impor-
tant. Care should be taken in se-
lecting the application context
for curriculum units. Skills and
algorithms (procedural structures)
are founded upon certain proposi-
tional structures. Skills should
be learned as broader "method”
approaches.

RATIONALE: Although our principles
do not address the matter of
skills directly, the structure
principle advocates a solid basis
for all procedures, while purpose-
ful constructions implies that all
skill learning be in context.

(d) Applications.

All applications occur in the con-
text of the unit. They should be
dealt with as an indication of the
use, and usefulness, of mathemat-
ics, and also as a way of relating
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the real world to the development
of mathematics.

RATIONALE: The framework principle
means that applications can be an
important contribution to the
framework for learning mathemat-
ics. The purposeful constructions
principle suggests applications as
a primary reason for studying
mathematics. Lastly, the teacher
must be constantly aware of trans-
fer and the problem of the context
of learning.

(e) Problem Solving.

Problem solving should be ap-
proached through a study of the
particular kinds of problems in
each unit. Problem solving is a
particular way of knowing content.
RATIONALE: The structure principle
suggests that all mathematics 1is
dependent on specific knowledge.
The metacognitive processes of the
learning how to learn principle
manage only cognitive knowledge.
A constructivist view does not
support broad generalizable prob-
lem solving strategies.

Goals of Mathematics Learning.

The major goals of mathematics
teaching are that students gain
understanding of complex areas of
mathematical knowledge, use this
knowledge in relevant situations,
and understand their own processes
and capabilities for functioning
in a mathematical environment.
RATIONALE: The constructivist view
not only provides new insight into
how mathematics should be taught,
but also implies a somewhat re-
vised goal for mathematics teach-
ing; “practice, feedback, and
coaching™ are not enough. Al-
though the view expands upon what
understanding means, one of the
more interesting issues it raises
is how teachers should regard
their efforts toward improving
students' capabilities for learn-
ing how to learn.

The strongest message of a con-
structivist approach is the desirabil-
ity that teachers make clear to them-
selves and to students the purpose of
learning mathematics. Making clear
the purpose, without trivializing it,
will be of great benefit in improving
mathematics teaching. At this writ-

ing, I believe the weakest part of
these guidelines 1is the matter of
"context” and, therefore, the matter

of what a sensible unit context might
be. It seems essential that the con-
text include, but go beyond the bounds
of, mathematics itself. It certainly
need not be confined to students' in-
terests. Plausibility to the student
might be a better guideline. Clearly,
the broader the context, the more
mathematics it will subsume. However,
the greater breadth might tend to lose
focus. Also, the notion of curriculum
task and its position between the unit
context and mathematics to be learned
is somewhat problematic. An appropri-
ate resolution of these weaknesses
will need to be worked out in light of
both the proposed principles of learn-
ing and the other guidelines.

Obviously, this interpretation of
the constructivist perspective leaves
many gaps. If a teacher were to con-
duct lessons solely on the basis of
this statement (even assuming the
availability of a textbook), I would
predict chaos. The statement can only
be seen as an attempt to modify al-
ready competent practice. Certainly,
these are not prescriptions for

teaching. Rather, I see them as in-
teresting guidelines that can be
tried, discussed, revised, and rein-
terpreted. A constructivist would see

a teacher interpreting these guide-
lines on the basis of the teacher's
existing "theories,” and then, per-
haps, rejecting them as invalid or
"tuning” existing theories, using
them, and then revising or discarding
them.

At the very least, these guide-
lines should provide the basis for an



interesting curriculum unit which
would go far in explicating the guide-
lines. This would provide an opportu-
nity for psychologists to say that
their views have been misread or mis-
interpreted, which would be very use-
ful. It might even serve to have them
rethink their ideas in the 1light of
feedback given by teachers. Whatever
happens, teachers of mathematics are
obligated to begin investigating ways
that these new conceptualizations of
learning can benefit them. Teachers
certainly owe it to themselves and, in
some sense, they owe it to psycholo-
gists and educators who are searching
for new insight into the very impor-
tant but, too often, frustrating pro—
cess of learning mathematics.

During the school year 1985-86, Dr.
Sol E. Sigurdson was on sabbatical
leave from the University of Alberta,
where he taught methods and graduate
courses 1in mathematics education. His
interests focus on classroom change
brought about by inservice and curric-
ulum change.
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Scope in the Mathematics Curriculum

Dr. Marlow Ediger
Northeast Missouri State University

Mathematics teachers and supervi-
sors need to identify the scope of the
curriculum. Scope answers the ques-
tion of what pupils need to learn
in lessons and units as they progress
through sequential years of schooling.
There are diverse means available to
ascertain scope in the mathmatics
curriculum.

Utilizing Basal Textbooks

Numerous mathematics teachers lean
rather heavily upon the adopted single
or series of textbooks to ascertain
scope. The table of contents may then
provide a generalized framework for
what is to be taught and in which se-
quence. The teacher may make selected
modifications and deletions in content
coverage within a reputable mathemat-
ics textbook. However, the understand-
ing, skills, and attitudinal goals em-
phasized in the manual section may
still provide the majority of material
to be learned by pupils. What, then,
might selected writers of teacher edu-
cation textbooks in mathematics empha-
size in terms of scope? Nichols and
Behr! discuss the following topics
in a text for mathematics teachers of
college/university courses:

l. numeration

2. addition and subtraction

3. multiplication and division
4, fractions

5. teaching decimals and percent
6. number patterns

7. integers, rational numbers, and
real numbers

8. exploring geometric ideas
9. measurement

10. mathematical sentences
l11. problem solving

12. calculators and computers in
mathematics instruction

13. logical reasoning

l14. teaching probability and
statistics

The above-named topics may well
suggest unit titles in the mathematics
curriculum. A sequential program of
instruction needs to be arranged so
that each learner might achieve opti-
mally in mathematics.

Learning Centres in the Mathematics
Curriculum

Learning centres are a rather
open-ended means for guiding student
achievement. An adequate number is
needed so that each learner may select
which sequential tasks to pursue and
which to omit. The teacher guides
each student to attain optimally. No
longer, then, does the teacher merely
lecture and dispense subject matter,
Rather, the teacher stimulates, moti-
vates, encourages, and assists.

Student interest is an important
factor in teaching and learning. If
learners individually select and
choose what to learn, motivation for

lEugene D. Nichols and Merlyn J. Behr,
Elementary School Mathematics and How To Teach
It (New York: Holt, Rinehart and Winston,
1982), Preface V.




learning should be at 1its highest
level. Each learner sequences experi-
ences in mathematics, rather than the
teacher giving assignments, lecturing,
and explaining. Biehlerz lists the
following basic ideas pertaining to
humanism, as a psychology of learning:

1. Individuals act to get rid of de-
ficiency needs (for example, hun-
ger); they seek the pleasure of
growth needs.

2. Deficiency motivation leads to re-
duction of disagreeable tension
and restoration of equilibrium;
growth motives maintain a pleasur-
able form of tension.

3. The satisfying of deficiency needs
leads to a sense of relief and
satiation; the satisfying of
growth needs leads to pleasure and
a desire for further fulfillment.

4, The fact that deficiency needs can
be satisfied only by other people
leads to dependence on the envi-
ronment and to a tendency to be
other-directed (for example, the
person seeks the approval of oth-
ers); growth needs are satisfied
more autonomously and tend to make
one self-directed.

5. Deficiency-motivated individuals
must depend on others for help
when they encounter difficulties;
growth-motivated individuals are
more able to help themselves.

What might be the scope of the
mathematics curriculum, emphasizing
humanism as a psychology of learning?
The following titles of learning cen-
tres in a classroom are listed as an
example of scope:

1. computation centre

2. geometry centre

3. problem solving centre

4. model making centre

5. mathematics laboratory centre
6. metric centre

7. programmed learning centre

8. basal textbooks centre

9. problem writing centre

10. instructional management centre

The breadth of offerings in terms
of understanding, skills, and atti-
tudes represents the scope of the
above—-named centres in the mathematics
curriculum.

To achieve sequence in learning,
each student needs to order tasks ap-
propriately. Thus, ideally, each task
is selected by the involved learner
based on personal interests, needs,
and purposes. Adequate provision in
tasks must be made for slow and aver-
age learners, as well as for the
gifted and talented. Each student
needs guidance to attain optimally in
ongoing units of study.

Mastery Learning and the Student

The total number of measurably
stated objectives for learners to at-
tain represents the scope of the math-
ematics curriculum within the frame-
work of mastery learning. Measurably
stated ends must be arranged in as-
cending order of complexity. Teachers
and supervisors need to determine
whether or not the specific ends are
truly sequential. W. James Popham3,
an advocate of behaviorism as a psy-
chology of 1learning, advocates the
following model in developing teaching
units:

1. precise instructional objectives
2. pretest

3. day-by-day activities

4. criterion check

5. posttest

2Robert F. Biehler, Psychology Applied
to Teaching, 3d ed. (New York: Holt, Rinehart
and Winston, 1978), p. 517.

3W. James Popham, Teaching Units and
Lesson Plans, (Los Angeles, California: Vincet
Associates), filmstrip and cassette.
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6. resources
7. backup lesson

In analyzing the above named
teaching unit model, James Popham em-
phasizes for step one the writing of
measurably stated, not general, objec-
tives. Clarity of intent as to what
teachers are to teach and learners are
to learn is highly significant. Vague
objectives need to be eliminated.
Step two emphasizes a pretest be de-
veloped by the teacher or a team of
teachers. The pretest should cover
all the stated specific objectives.
Paper-pencil test items (true and
false, multiple choice, matching, es-
say, and completion items) may be
utilized in the pretest. However, the
pretest should not consist solely of
teacher-written test items. Discus-
sion, among other informal procedures,
might also be utilized to ascertain
present learner achievement in terms
of pretesting. Based on pretest re-
sults, each pupil might then achieve
new attainable ends.

Step three in the Popham model em-
phasizes using vital learning activi-
ties to realize new achievable ends.
Each activity chosen must match up di-
rectly with a specific objective. It
might be necessary to utilize more
than one learning opportunity to guide
a pupil to attain a measurable objec-
tive. In step four, a criterion check
is utilized. The criterion check em-
phasizes measuring pupil progress con-
tinually to determine whether specific
objectives are being achieved. Forma-
tive evaluation emphasizes appraising
learner progress during the time a
unit is in progress. A new teaching
strategy may need to be used with
those pupils not achieving wvital
objectives.

Step five in the Popham teaching
unit model emphasizes the posttest
concept. Thus, at the end of a unit,
the teacher wishes to ascertain what
learners have accomplished from the
entire unit. Summative evaluation is
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then in evidence. Step six (resources)
advocates teachers recording which
audiovisual aids, objects, and reading
sources will be used within the unit.
The backup 1lesson (step seven) pro-
vides teachers with security; if mate-
rials for any lesson in the unit do
not materialize, other activities need
to be available to take their place in
the backup lesson.

In any unit of study in mathemat-
ics, objectives for learners to attain

must possess quality sequence. Thus,
objective number one needs to be
achieved prior to objective number

two. Objective number two needs at-
tainment in order that end number
three can be mastered, and so on. If
objectives truly contain recommended
sequence, each learner should be able
to achieve success in learning if ini-
tial readiness was in evidence. Be-
fore any given student moves on to the
next sequential goal, a prior end must
be attained. The teacher can then
measure if a learner has or has not
achieved an objective.

Mastery learning advocates believe
that:

1. proficient mathematics teachers
can select vital measurable goals
for students to achieve.

2. essential activities and experi-
ences can be chosen to guide stu-
dent attainment of each specific
end.

3. measurable results can be obtained
from each student.

4, objectives and learning activities
can be ordered appropriately to
guide optimal student achievement.

5. students either do or do not re-
veal that a behaviorally stated
(measurable) end has been
achieved.

6. a modified teaching strategy can
be devised which assists a learner
to achieve a goal not previously
acquired.



Woolfolk, et al.% wrote the fol-
lowing pertaining to mastery learning:

Mastery learning is an approach to
teaching and grading based on the
assumption that, given enough time
and the proper instruction, most
students can master a majority of
the learning objectives.

To use the mastery approach,
teachers must break a course down
into small units of study. Each
unit might involve mastering sev-
eral specific objectives. Stu—-
dents are informed of the objec-
tives and the criteria for meeting
each objective. Often a variety
of learning experiences is avail-
able to help students reach the
objectives. In order to leave one
unit and move on to the next, stu-
dents wusually have to attain a
minimum mastery of the objectives.
This may be defined as a certain
number of questions answered cor-
rectly on the unit test. Letter
grades for each unit can be based
on levels of performance on the
unit test. Students who do not
reach the minimum level of mastery
and students who reached the mini-
mum level but want to improve
their performance (thus raising
their grade) can recycle through
the unit and retake another form
of the unit test.

Under a mastery system, grades
can be determined by the actual
anumber of objectives mastered, the
number of wunits completed, the
proficiency level reached on each
unit, or some combination of
these methods. Students can work
at their own pace, finishing the
entire course quickly if they are
able, or taking a 1long time to
reach a few objectives. of
course, if only a few objectives

4anita Woolfolk, et al. Educational
Psychology for Teachers (Englewood Cliffs, New
Jersey: Prentice Hall, Inc., 1980), p. 505.

are met by the end of the marking
period, the student's grade will
reflect this.

In Conclusion

There are numerous means available
in developing the scope of the mathe-
matics curriculum. The use of basal
textbooks to ascertain scope assumes
that textbook writers possess the
knowledge and abilities necessary to
determine what subject matter students
need to learn. Humanism advocates
that learners choose, within a frame-
work, which activities and experiences
to pursue, as well as omit. Decision
making is, thus, emphasized in stimu-
lating learners to achieve. Behavior-
ism emphasizes mathematics teachers
writing specific sequential objectives
for pupils to master. Measurable re-
sults are then significant.

Teachers and supervisors need to
guide students to optimally achieve
understanding, skills, and attitudinal
goals in mathematics.

Dr. Ediger is a professor of education
at Northeast Missouri State University
at Kirksville. A previous article by
Dr. Ediger was published in the Novem-
ber 1979 (Volume XIX, Number 2) issue
of delta-Kk.
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Mathematics and the Alberta High
School Curriculum

John G. Heuver
Grande Prairie Composite High

From time to time, the teaching of
mathematics changes. Since about
1980, the Alberta high school syllabus
has undergone a certain reform, and
while some of the reasons for such
change seem sound, others are more ob-
scure and questionable. The adoption
of the metric system created a neces-
sity for an update. The easy access
to hand-held calculators required a
different emphasis in the area of log-
arithms. Such traditional topics as
geometry were to be treated from a
different perspective because of de-
velopments in mathematics that had
filtered down to the secondary school
level. The inclusion of nontraditional
areas, such as statistics and the mi-
nor topic of exponential growth and
decay, have raised eyebrows. In this
article, an attempt will be made to
identify, by subject area, a few of
the anomalies and difficulties that
occur in our curriculum and textbooks.

Geometry as a High School Subject

For the high school curriculum,
the question of what part of geometry
we present 1is a rather existential
problem. Our present Grade 10 texts
treat it very casually and with little
sense of purpose, made worse by the
fact that, in many places, the text-
books contain grave errors.

In the Holt Mathematics 4 text
(Hanwell, Bye, and Griffiths, p. 230),
the following exercise occurs:

Consider a parallelogram with
three angles given and calculate
the angles x, y, z, and v.
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fig. 1

The wunaware reader obtains results
that correspond with the answers given
in the back of the textbook. However,
the exercise is completely ludicrous.
Pictures and numbers have collided in
a strange way. (A proper answer would
be: This is a rhombus in which the
diagonals are perpendicular and the
diagonals also bisect the angles of
the rhombus. Hence, the answer in the
textbook is incorrect, and so is the
"given" part.)

In order to see some of the diffi-
culties encountered when deciding on
which part of geometry should be pre-
sented in the school curriculum, we
have to consider the development of
geometry from a historical perspective
and the more recent outlook on mathe-
matics itself.

Once a proposition in mathematics
has been settled, it becomes generally
accepted. The acceptance is based on
what we call proof. Over time, the
significance of the proposition may
change as it becomes part of a larger
body of knowledge, but its quality
stays the same. Since the time of
Euclid, the wvalidity of propositions
in elementary geometry has been based
on an axiomatic system, a collection
of statements accepted as true. From




these initial statements, a large col-
lection of propositions is deduced by
agreeing upon certain rules of infer-
ence. In 1931, Kurt Goedel proved
that there exist axiomatic systems
from which certain propositions be-
longing to the system can neither be
proved nor disproved.

An illustration of Goedel's con-
tention, which is even presentable in
the classroom, is Goldbach's conjec-
ture. The conjecture states that ev-
ery even natural number greater than
two is expressable as the sum of two
primes, where primes are natural num-
bers divisible by one and themselves
only. Up to now, no even number has
been found that is not the sum of two
primes. The conjecture may be true,
but may not be derivable from the axi-
oms of arithmetic. The same may apply
to what is known as Fermat's last the-
orem. This theorem states that there
are no natural numbers a, b, and c

such that a® + b = ¢ for "n"
greater or equal to three and “n" a
natural number. These conjectures

have the charm that they can serve as
illustrations in the relatively simple
setting of elementary mathematics, and
that, even today, these draw consider-
able interest from mathematicians.

The closer scrutiny of :‘the axiom-
atic system was largely caused by the
development of different types of ge-
ometry. In Riemannian geometry, for
example, Euclid's axiom that through a
point P in the plane not on line "1" a
line can be drawn parallel to “"1" 1is
denied. Of course, philosophical
questions arise regarding the plausi-
bility of these geometries.

The classical beljef that the
properties of Euclidean geometry are
valid for the world in which we live
has been undermined, as it becomes
evident that other geometries are
equally valid. 1In an article entitled
"Elementary Geometry, Then and Now,"
I.M. Yaglom (Davis, Gruenbaum, and
Scherk, p. 165) speaks about geome-
tries that draw considerable attention

in this half of the twentieth century
and makes a comparison to developments
in the previous century. He says:

In contrast to discrete geometry,
combinatorial geometry so far has
no serious practical applications;
in this respect, it resembles
"classical” elementary geometry,
which considered properties of
triangles and circles, which beau-
tiful though they were, were sci-
entifically blind alleys - leading
nowhere, giving nothing to science
at large. Still “nineteeth-
century elementary geomtery” was
closely bound up with what might
be called the "scientific atmos-
phere” of those years. . . .

There are two pedagogical conse-
quences to be drawn from Yaglom's ar-
gument. Certain aspects of geometry
are culturally bound and do not neces-
sarily lend themselves to so-called
practical applications. The present
curriculum seems to be preoccupied
with these applications. Secondly,
since Euclidean geometry is not the
only valid system, we have to conclude
that one of the significant objectives
is to teach our students the method of
a deductive system. The deductive
character of a system is more easily
established in Euclidean geometry than
in any other part of high school math-
ematics. (For the 13-23-33 sequence
of mathematics courses, a different
perspective should prevail.)

Exponential Growth and Decay

Euclidean geometry has been, tra-
ditionally, part of the secondary
school curriculum. This cannot be
said of the particular minor topic
presented in both approved texts for
Grade 12. 1In order to see what is go-
ing on, we will have to go through a
more or less technical explanation
with omission of mathematical tech-
niques. In the FMT Senior text
(Dottori, Knill, and Stewart, p. 153),
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the exponential growth rate is ex-
plained on an intuitive basis. Since
bacteria multiply by splitting, the
population increases by a power of
two. Without much ado, the growth
function is declared to be an exponen-
tial function with base two for any
increasing biological population what-
soever. It could include mice. The
model in the textbook is quite reason-
able as long as the bacteria are de-
clared immortal. Such a representa-
tion violates the laws of nature.

A correct way to derive the appro-
priate formula for the growth rate
would be by means of a simple differ-
ential equation, which is beyond the
scope of high school mathematics. The
proper formulation of the problem lies
in the assumption that a biological
population has a growth rate that is
proportional to its size. In this
formulation of the problem, the mor-
tality rate is included in the hypoth-
esis. A simple technique of elemen-
tary calculus yields the correct re-
sult. In this derivation, the base
two of the textbook can be shown not
to be unique. Thus, a mice population
increase no longer creates a hazard
for the formula.

For decay of radioactive materi-
als, the rate of decay 1is again as-
sumed to be proportional to the origi-
nal mass of the material. Again, the
proper formula is derived by the same
differential equation. However, the
textbook explanation requires the ob-
server to watch the material for 25
years to obtain half the mass, and
another 25 years to again halve the
mass. After some mysterious reasoning,
an exponential function emerges with
the not unique base two. In Calcu-
lus, Volume I, Tom Apostol (p. 229)
says:

Actually, the physical laws we use
here are only approximations to
reality, and their motivation
properly belongs to the sciences
from which the various problems
emanate.
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The opinion has been voiced that
high school courses should contain
practical applications. However, some
sobering thoughts come to mind if one
considers the examples cited here.

1. The problem of exponential growth
and decay requires mathematical
techniques that are not available
to the high school student.

2, If a student were to try out the
methods from the textbook on a
science project, it would be
doomed to failure. It would also
require estimation of the con-
stants in the formula that demands
the method of least squares, which
is also beyond the secondary
school level.

3. It seems that so—called applica-
tions borrowed from mathematical
literature past the high school
level lead to disastrous results.

The final conclusion has to be
that this topic should be abandoned
unless somebody can come up with a
proof that is presentable at the high
school level.

Statistics in High School

The field of statistics has grown
enormously in this century and the re-
sults are being felt in almost every
aspect of life. Who can imagine a po-
litical election without a poll? By
its overwhelming presence, statistics
has also found its way into the high
school curriculum. In Grade 12, we
study something about the normal dis-
tribution which, in two dimensions, is
graphically represented by a bell-
shaped curve. Assumptions about this
distribution are, as a rule, verified
by hypothesis testing. However, in
high school, the experiment is absent,
and so we are told that all necessary
assumptions hold in order to simplify
the case. Suddenly, the conclusion is
drawn that we have obtained a "stan-—
dardized normal distribution.”



About 15 percent of the questions
on the departmental exams are based on
this topic. The value of - this type of
mental exercise is highly question-
able. At present, the student has
been taught to manipulate some formu-
lae that appear out of the - blue
yonder.

It may be necessary to look. at the
historical development of statistics
in order to come up with a suitable
secondary program. At the moment, we
only deal with the normal distribu-
tion. The danger is that we give stu-
dents the impression that this is the
only distribution there is, which is
not true. It is also very hard to ex-
plain that mean and standard deviation
have the same meaning as the first two
moments of a mass in physics. Inter-
relationships are not established. In
Mathematics and Logic - Retrospects
and Prospects, Marc Kac and Stanilaw
Ulam (p. 50) say:

The theory (or calculus) of proba-
bility has its logical and histo-
rical beginnings in the simple
problems of counting.

Indeed, it is simpler to present,
in the classroom, the phenomena of
tossing coins and dice than to give
sound reasons for the continuous nor-
mal distribution. Since there is no
long tradition in the teaching of sta-
tistics at the secondary level in any
country, we are treading on very thin
ice. It seems safer to go back to its
original beginning and show something
about the essence of its method than
to show off with impressive-looking
results. The normal distribution is a
powerful tool in statistics, but the
ability to see the full scope of its
impact belongs to the professional
statistician.

Conclusion

There is a great need for rethink-
ing parts of the mathematics program.
I.M. Yaglom (Davis, Greenbaum, and

Scherk), in his article "Elementary
Geometry, Then and Now," speaks about
leading mathematicians who have writ-
ten texts for secondary students. One
of these is A.N. Kolmogorov, the Rus-
sian mathematician, who has written a
text that is used by all secondary
students in Russia. He speaks also
about the French mathematician Jean
Dieudonne, who wants to see geometry
reduced to linear algebra and who has
written a text for this purpose. Our
school system cannot directly take
over these ideas, but they can form a
subject for study and comparison. If
we want proper programs for our secon-
dary schools, then we cannot leave the
writing of textbooks to the book pub-
lishers and the forces of the market-
place.

John Heuver taught in the Netherlands.
He received his bachelor of education
degree from the University of Calgary,
and has taught at Grande Prairie Com-
posite since 1971. Mr. Heuver has
been cited in The College Mathemat-
ics Journal (November 1985) and 1in
American Mathematical Monthly (April
1985) as having successfully solved
problems posed by those journals.
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Curricular Implications of Microcomputers
for School Mathematics

Georg Schrage, Dortmund University
and Jerry P. Becker, Southern lllinois University

EDITOR'S NOTE: This article represents
an abridged version of a recent unpub-
lished manuscript presented to the Na-
tional Council Supervisors of Mathe-
matics, Washington, D.C, April 1986.

We are all aware that the micro-
computer 1is a potentially valuable
tool in mathematics teaching. Indeed,
there are many who feel the microcom-
puter is a very powerful educational
tool. But to explore the potential of
this new technology means that we must
also examine its limitations. In this
paper, emphasis will be placed on what
cannot or should not be done with com-
puters in mathematics education. There
are three types of limitations con-
cerning microcomputers in Grades K
through 12:

l. limitations due to educational
responsibility

2. limitations due to practical
technical restrictions

3. limitations due to logical and
conceptual restrictions

Limitations Due to Educational
Responsibility

The first point is certainly the
most problematic, maybe even contro-

versial. There is no doubt that mi-
crocomputers are affecting what
students are learning and how they

are learning. But the more sophisti-
cated a tool, the more we must care
about its use; and it 1is exactly the

power and versatility of microcomput-
ers which threaten a danger of their
misuse.

Propaganda about the educational
use of microcomputers is pervasive in
our society today. We are referring
to the vast promotion of educational
software for curricular subjects.
Currently, the number of educational
programs available is estimated at
80,000, and and that number is dou-
bling each year! Most of this soft-
ware is of tutorial or animated drill
and practice type, which is wusually
very good from a technical point of
view, but is of questionable educa-
tional value. We must use great care
in selecting software in mathematics
teaching or else we may be risking
misuse of the microcomputer.

We strongly support a reasonable
use of microcomputers in the class-—
room. As mathematics teachers, we
would 1like to have a microcowmputer,
connected to a screen, available to
use in making demonstrations which
might become objects of discussion for
the whole class. Further, we believe
the microcomputer can be very useful
for:

l. stimulating mathematical thinking
and supporting mathematical prob—
lem solving,

2. visualizing mathematical concepts,
and
3. simulating processes that can be

handled by mathematical models.
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The computer enables us to handle
mathematical objects, operate with
numbers, present and transform geomet-
rical figures, and visualize relation-
ships among data. That microcomputers
can be very useful in supporting and
enriching mathematical problem solving
is very clear. Problem solving is
central to any mathematical activity.
The computer enhances our ©problem
solving capacities, and that is what
students should experience in today's
mathematical education, regardless of
whether this occurs via BASIC, LOGO,
PASCAL, or some other programming lan-
guage. (Of course, we do not mean to
imply that we regard all programming
languages as equally suitable.)

Solving a problem using a computer
is typically a sophisticated process
that includes very different kinds of

activities; for example, developing
mathematical models, generating data
for a problem, analyzing relation-

ships, designing alogrithms, and con-
structing programs. With these kinds
of activities, students can get to the
mathematical heart of the matt&r. If
the problems are well chosen, students
will experience the intellectual chal-
lenge of mathematics, as well as the
satisfaction provided by the solution
of a difficult problem.

In mathematics, the solution to a
problem is not nearly as interesting
as the method used to get it, and
many problems can be solved by quite
different methods. Teachers should
encourage their students to look for
different approaches to a problem and
to compare and evaluate them. We il-
lustrate this by two examples below.

EXAMPLE 1:

The following is a nice problem
for students at the elementary or ju-
nior high school level:

On a farm there are 178 animals -
cows and geese. Altogether they
have 562 legs. How many cows and
how many geese are on the farm?

There are many ways to solve this
problem.

(a) We can actually make a list and
check all combinations:

cows geese legs
0 178 356
1 177 358
2 176 360
50 128 456
90 88 536
103 75 562

(b) We can use a computer to generate
the list. The following LOGO pro-
gram does the job:

TO RANCH :ANIMALS :LEGS :COWS
MAKE "GEESE :ANIMALS-:COWS
(PRINT :COWS :GEESE 2*: GEESE +

4% : COWS)
IF 2* :GEESE + 4*:COWS = :LEGS
[sTOP]
RANCH :ANIMALS :LEGS :COWS + 1
END

If we type in "RANCH 178 562 0,"
then the computer prints the above
list and, therefore, solves the
problem. This is a simple pro-
gram, and the algorithm is brief
and easy to understand and write.

(c) Some students attack the problem
by using linear equations:

x +y =178
4x + 2y = 562

(d) We know an eight-year old girl who
solved the problem with smaller
parameters - 12 animals and 34
legs - in the following manner:
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(ii)
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She symbolized the animals by cir-
cles, gave two legs to each, and
assigned the remaining ten legs in

pairs. Once she had solved this
“"smaller” problem and understood
the concept, she was then able

to solve the problem for arbitrary
parameters.

Which solution is the "best” one?
We think the last, because it is the
simplest and most straighforward
one. It avoids the tedious work of
the first, as well as the advanced
algebraic tool of the third one. Fur-
ther, it is available to an elementary
school student, and we think it is the
best solution from the point of view
of a mathematician, too. The second
(computer) solution represents a pos—
sible approach, too, but it should not
stand alone.

We cannot define mathematical
beauty, except to say that is has to
do with simplicity and the use of

straightforward arguments, simple but
powerful ideas, and avoiding the use
of sophisticated tools. Teachers

should always strive to help students
get a feeling for the beauty of mathe-
matical ideas and methods. This is
all the more important when we have a
computer which we can program to sup-
ply solutions very quickly.

EXAMPLE 2:

The following is a strategy game
for students:

0 Q)
SRS
ORON®
Q9 W

O ONe
HEEEEENE
QW Q

We start with six vertices of a
hexagon. Two players alternately
take turns, each time connecting
two so far unconnected vertices.
The first player uses a red pen-
cil, and the second player uses a
blue one. A player loses if he or
she generates a triangle with all
sides in his or her color. The
result is a draw if all possible
15 lines have been drawn without
producing a one-colored triangle.

Red

After some experimentation, it is
observed that someone always loses.
The following conjecture arises: if
each of the 15 connecting lines of a
hexagon is colored either red or blue,
then there will be at least one red or
blue triangle.

If we have a computer available,
the conjecture can be proven by sys-—
tematically checking all possible blue
and red colorings. If no coloring
without a one-colored triangle is
found in this process, then we are
done. But, compare this with the fol-
lowing method. Consider an arbitrary
vertex of the hexagon, say A. There
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are 5 emanating lines. At least three
must have the same color. Without
loss of generality, let us assume that
there are three red 1lines. The end
points of these three lines may be la-
beled B, C, and D.

A
If one of the lines BC, BD, or CD

is red, then there is a red~colored
triangle; if these three lines are all
blue, then we have a blue triangle
(that is, BCD). We think this is a
beautiful proof, demonstrating the su-
periority of mathematical reasoning
over brute computer force.

What should we learn from these
examples? When teaching problem solv-
ing, we should always encourage our
students to look for different ways to
get solutions. They should also be
aware of the tools available and se-
lect the most suitable one(s). It
isn't necessary to use a bomb to kill
a fly!

Limitations Due to Technical
Restrictions

Virtually any finite mathematical
problem can be solved by a computer,
simply by checking all possible states
of the problem. But many mathematical
problems, especially combinatorial
ones, are of such exploding complexity
that even the most powerful computer
may never be able to handle them. Let
us demonstrate this, again by a simple
example:

EXAMPLE 3:

Consider the numbers 1 and 2.
There are two different arrangements
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to write these numbers in sequence,
namely 12 and 21, and each such ar-
rangement 1is called a permutation.
There are six permutations of the
three numbers 1,2,3: 123, 132, 213,
231, 312, 321.

It is not difficult to write a
program to find out all possible per-
mutations of n elements. But suppose
we want to get a list of all possible
arrangements of the numbers 1 to 15.
This would seem to be a simple problem
for a computer. The number of permu-
tations of n elements is n!=1%*2%3%_ .,
*(n—1)*n. The table below provides
the values 1! to 15!

# Permutations

1
2

6

24

120

720

5,040

40,320

362,880

10 3,628,800

11 39,916,800

12 479,001,600

13 6,227,020,800

14 87,178,291,200

15 1,307,666,368,000

LoONOOTUVLESWND e~ D

Now, imagine a very powerful com—
puter, capable of determining and
listing 1,000 different arrangements
each second. This computer would have
to work 40,000 years to finish its
job!

There are many problems having im—
portant applications, which are prac-
tically unsolvable because of their
algorithmic complexity. It is a sub-
ject of greatest scientific and eco-
nomical importance to determine the
complexity of algorithms and, if pos-—
sible, to find algorithms for a given
class of problems by which solutions
can be obtained in a reasonable amount
of time. We should strive to help
students learn by simple examples



from, say, combinatorics and number
theory, that there are many problems
which cannot be solved by computers
for practical reasons, even 1if it 1is
easy to develop a program that seems
to solve the problem.

Limitations Due to Logical and
Conceptual Restrictions

There are other problems which
have been proven to be unsolvable by
any computer. The best known of these
problems 1is the so-called "halting
problem."” The unsolvability of the
halting problem means that it is im-
possible to construct an algorithm
which can decide for any arbitrary
program and its data if it will ever
stop or if it will be caught in a
never ending loop. We think that the
treatment of the halting problem and
related problems is, perhaps, beyond
the usual mathematics curriculum,
though it 1s not really difficult.
But there are other problems by which
students can become aware of what a
computer actually can and cannot pro—
vide in order to find a solution.

EXAMPLE 4:

Recently, we asked some students

in a problem solving course to prove.

that /2 is irrational; that it cannot
be represented as p/q with integers p
and g. One student wrote the follow-
ing: "With the help of a computer, we

can determine that V2 is equal to

1.414213 . . . , never ending and nev-
er repeating. Therefore, it cannot be
a rational number."” The student, of
course, had a fundamental misunder-
standing of the conceptual potency of
computers.

EXAMPLE 5:

The Collatz Problem (also known as
the Ulam Problem, the Syracuse Prob-
lem, or the Hasse-Kakutani Problem).
Consider the following algorithm in
Pascal:

INPUT N

WHILE N > 1 DO

IF ODD (N) THEN N:=3*N+1 ELSE N:=
N DIV 2

END.

(NOTE: DIV denotes whole number
division.)

The input number N 1s the seed
of a sequence either ending with 1 or
never ending. Here are some examples:

(a) 10516 8 4 21
(b) 42 21 64 32 16 8 4 2 1

(c) 120 60 30 15 46 23 70 35 106 53
160 80 40 20 10 5 16 8 4 2 1

It is still an unproven conjecture
that for any positive integer N the
algorithm will come to 1 eventually.
Recent 1issues of the American Mathe-
matical Monthly and The Mathemati-
cal Intelligencer contain papers de-
voted to this problem.

A good deal of experimental work
has been done concerning this problem.
Using powerful computers, it has been
proven that the algorithm stops for
anY positive integer N < 27Y = 1.2%*
1012 This gives certain evidence
about the conjecture, but it doesn't
prove anything concerning the general
problem. Why, then, all this effort?
There are two possibilities:

(a) The conjecture is true. This can
never be proven by computer exper-
imentation, because we can only
check a finite number of integers,
and therefore, an infinite number
of possible seed numbers will for-
ever remain unchecked.

(b) The conjecture is false; that is,
there is a positive integer input
N such that the algorithm never
comes to 1. This can be due to
either of the following reasons:

- There 1is a seed number N such
that the sequence generated by N
diverges to infinity. The exis-
tence of such a number can never
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be proven by running the algor-
ithm, because you have to stop
this calculation after awhile
not knowing if, at sometime in
the future, the algorithm would
come to the end.

- There is a seed number N such
that the sequence N, N;, Ny,
« « « generated by N is caught
in a 1loop; that 1is, after a
while, part of the sequence will
be periodically repeated.

Such a loop can be detected by a
computer, thus proving that the con-
jecture is wrong. (If, in the above

algorithm, N: 3*N+! 1is replaced by
N:=3*N-1, we can find seed numbers
producing infinite sequences. For

example, 80 40 20 10 5 14 7 20 10 5 14
7 « . .) These are the only logical
possibilities.

Conclusion

There is presently a great deal of
discussion about computer literacy. A
major factor in computer literacy, we
believe, 1is the competence to make
reasonable use of the power of comput-
ers, which means to be aware of the
computer's limitations. We have all
heard the term “computer revolution”
in education. One characterisitic of
a revolution is that it completely
changes traditional values, struc-
tures, and ideas. The computer is a
powerful tool that can affect what
students will 1learn and how they
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will learn. But we should not forget
the great mathematical ideas as devel-
oped by Euclid, Archimedes, Euler,
Gauss, and others over hundreds of
years. They are still the great ideas
of tomorrow and tomorrow's tomorrow.
Further, the importance of these ideas
continues to grow. We must not allow
the availability of computers to make
mathematics superfluous; on the con-
trary, it requires improved mathemati-
cal education. The computer itself
can help us to improve and enrich the

curriculum. If we make sensible use
of the computer, its impact should
result in a permanent educational

evolution, instead of revolution.

Georg Schrage is a professor of mathe-
matics at Dortmund "niversity, Federal
Republic of Germany. Dr. Becker has
been employed by Southern Illinois
University since 1979, where he 1is a
professor of mathematics, Curriculum
and Instruction and Media Department.
The authors have an interest 1in the
use of microcomputers 1in education,
particularly 1in their application to
problem solving.
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Enhancing Comprehension Through
Reading Instruction

A. Harold Skolrood and Mary-Jo Maas
University of Lethbridge

In a previous article published in
delta-kK (Volume XXV, Number 2, March
1986), the authors explored the rela-
tionship that exists between the pro-
cess of problem solving in mathematics
and the social inquiry process in so-
cial studies. Fundamental to under-
standing the content of a problem or
social issue is the ability of stu-
dents to read and interpret the
printed word before they can develop a
mental construct of the intended solu-
tion or decision to be made.

We have often heard the statement,
"My students cannot read the pre-
scribed material. They have diffi-
culty with the words and do not under-
stand the meaning of the content.”
What do we mean by reading? We know
that it is an activity in communica-
tion, basic to securing some compre-
hension from the printed page. Read-
ing is a decoding or deciphering pro-
cess through which we translate the
written symbols into an expression of
meaning. In the process, meaning is
attached to the written symbols. Stu-
dents need help and training to learn
a process for translating symbols into
meaningful understanding, a fact cru-
cial to determining the task inherent
in a problem. The often repeated
phrase, "every teacher is a teacher of
reading,” is more than a cliche; it is
basic to the teaching of any subject.
Perhaps it is more accurate to say
that every teacher is a "teacher of
reading and interpretation in a spe-
cific subject.”

In both mathematics and social
studies, where the focus is problem
solving, the ability of the students
to read, interpret, and infer meaning
from a problem is crucial for insight
into the process of solution. The di-
rected reading process, traditionally
used by the language arts teacher, can
be just as effective in social studies
or mathematics. The directed reading
process can help the teacher and the
students better read and wunderstand
the problem.

Teachers need to be more cognizant
of how the specialized vocabulary of a
subject has specific meaning or conno-
tation in context. Teaching strate-
gies that emphasize accurate defini-
tions, the relating of word meaning to
the personal experience of students,
and the identification of the root,
prefix, or suffix of a word help stu-
dents to understand new vocabulary.
Direct vocabulary teaching may also be
necessary before beginning to deter-
mine the intended solution of the
problem.

A series of lessons might be used
to teach students a systematic ap-
proach to understanding a problem.
Another way would be a simplified com-
bination of steps conducted in a sin-
gle lesson, which requires less prac-
tice. Extended practice would occur
through the working out of problems.

Lesson One. In the first les-
son, students are given a word problem
to read. The students are to answer:
"What is the question?" or "What are
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we to find?" It is not sufficient for
students simply to read the question
as it is stated in the problem. Rath-
er, students should be asked to state
the question in their own words. Sev-
eral problems should be given to the
students so that they become profic-
ient at determining the question and
restating it in their own words. Once
the students can do this with 1little
difficulty, problems may be developed
and shared with the class. If stu-
dents understand the problem, similar
problems may be developed, or students
may rewrite or retell them in their
own words. In restating the problem,
students should be encouraged to use
appropriate synonyms related to the
subject area.

Lesson Two. The second 1lesson
should be built upon the first and fo-
cus on the ability to describe what
quantities are involved, or what in-
formation is given. Adequacy and rel-
evancy of the information should be
determined. Again, students should be
asked to state these quantities or in-
formation in their own words.

Lesson Three. In the third 1les-
son, the teacher and students can be-
gin to describe the process(es) that
may be used to solve the problem. In
social studies, the intended outcome,
in terms of predicting a solution, may
of itself determine the process; for
example, historical research versus
map study require different processes.
The teacher is still not asking stu-
dents to solve the problem, only to
consider the kinds of process(es) that
could be used. The students are en-
couraged to come up with as many dif-
ferent ways to solve the problem as
possible. This helps students to over-
come the idea that there is only one
correct way to solve a problem. Prob-
lems in mathematics may be solved in
more than one way, as well. Whatever
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process 1is chosen, students should be
able to support their choice.

Lesson Four. Lesson four in the
directed reading process is the actual
solving of the problem. This step
should not be introduced until stu-
dents are comfortable and proficient
with the other three steps. If the
directed reading process has been fol-
lowed up to this point, the teacher
should feel confident that growth in
the students' vocabulary development,
reading development, and subject
skills and ability to fully comprehend
the meaning of the problem has oc-
curred. Once the solution has been
obtained for the mathematics problem,
or a decision made on the social issue
in social studies, the students should
be encouraged to recheck their work to
verify the accuracy of what has been
done.

If students are exposed to the
above process at the beginning of a
semester, subsequent experience in its
application would be an integral part
of their thinking in terms of problem
solving. They will develop a model
for thinking that has transfer value
in other subject areas. Thus, the
product of such formal instruction
should be students who will have the
necessary cognitive skills to approach
a problem in mathematics, or the so-
cial issue in social studies, in a
systematic manner.

The charts on the following pages
illustrate the process of reading a
problem, as described in this article.

Dr. Skolrood is a professor of educa-
tion specializing in social studies at
the University of Lethbridge. Mary-Jo
Maas was seconded to the Faculty of
Education at the University of Leth-
bridge during the school year 1985-86.
Mary-Jo will resume her teaching ca-
reer in Fort Macleod in February 1987.



Directed Reading Process

LESSON 1.

STUDENT ACTIVITIES

Mathematics

Social Studies

WHAT IS THE PROBLEM?

- from textbook
curriculum guide

State problem in own
words.

Tell a friend.

State as a "should ques-—
tion" - What ought to be?

List key words.

- teacher Write problem in own Define terms.
words.

- student
Develop similar problem.

LESSON 2.

WHAT INFORMATION IS
NEEDED?

l. Information within
problem (adequacy of
information given).

2. Insufficient/suffi~
cient information.

3. Recall of pertinent
information.

4, Reference to data
sources: charts,
graphs, tables.

5. Additional
information needed
(research).

Underline key words.
Share with a friend.
Compare notes.

Supply missing
information.

List relevant
information.

Cross out irrelevant
information.

Rewrite, deleting extra-
neous information.

Definition/clarification
of terminology.

Recall formal equation.

Construct similar
problem.

Identify facts needed in
operation.

Underline key words.

State concern with
problem.

Identify difficult words.

State problem in own
words .

Definition/clarification
of terminology.

Identify specific factual
data inherent in the
issue.

Restate the issue more
accurately.

Supply additional informa-
tion through experience/
library research - use
resources.

Restate issue orally in
terms of understanding
its intent.
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STUDENT ACTIVITIES

LESSON 2. (cont'd.) Mathematics Social Studies

Supply additional infor-
mation for interpretation.

Restate problem orally in
terms of understanding
its intent.

LESSON 3.
WHAT PROCESS IS USED Supply formula. Indicate steps of social
TO SOLVE THE PROBLEM? inquiry as per curriculum
Identify process. guide.
Use problem-solving steps.
Cue words.
Trial solution.
LESSON 4.
SOLVE THE PROBLEM. Solve the problem. Identification of con-
flicting values.
Verification. Check process.
Make decision on the
Check reasonableness. issue.
Verify solution. Select a value position.

Consider application of
decision:
desirable/undesirable;
feasible/infeasible.
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Rhombi Ratios on the Extended Multiplication

Table and Hundred Square

David R. Duncan and Bonnie H. Litwiller

University of Northern lowa

Mathematics teachers are interested in situations that can be used for drill
and practice using either paper and pencil or a calculator.
these situations give rise to pattern discovery in settings involving finite
mathematical notions. One of these settings involves the multiplication table,

as shown in Figure 1.

FIGURE 1. Multiplication Table

X 0 1 2 3 4 5 6 7 8 9
0 o o o0 o o o O o o0 O
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0O 4 8 12 16 20 24 28 32 36
5 0O 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0O 7 14 21 28 35 42 49 56 63
8 0O 8 16 24 32 40 48 56 64 72
9 0O 9 18 27 36 45 54 63 72 8l

It is ideal if

Figure 2, on the following page, displays the interior of an extended multi-

plication table.
each rhombus:

l. Find the sum of the vertices (V).

2. Find the sum of the interior numbers (I).

Rhombi of varying sizes have been drawn on the table.

For

3. Find the sum of the entries on the horizontal diagonal (HD) and the sum of
the entries on the vertical diagonal (VD).
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FIGURE 2.

0 0 0
12 13 14
4 26 28

0 6 ) 8 % W0 "

0 12 14 1 18 2|0 22

0 18 21— 24—27— 30—33—36—39 42
0 4 8 12—16—20 24 28 3

0 5 10 15, 20 /25 30 35 a0 45

0 6 12 18 \24/ 30 36 42 48 54 60 66

0 7 14 21 28 63 70 77
0 8 16 24 32 /l 72 80 88
0 9 18 27 36 4/5‘ 63 72 81 90 99
0 10 20 30 40 90 100 110
o n 22 33 44/55 66 77 88 99 110 121
0 12 24 36 /48 60 72 8|4 96 108 120 \132

0 13 26 39—52—65—78—91—104—117—130—143
0 14 28 42 56 70 84 98 112 126 140/ 154
0 15 30 45 60‘\75 90 1(i§ 120 135/150 165
0 16 32 48 64 80 96 12 128 1/44 160 176
0 17 34 51 68 B 102 119 1% 153 170 187
|H
0— 18— 36—54—72—90—108 12|6 J144 162 180 198
/
/
0 19 38 57 76 95 114 133 152 171 190 209

|/ )

65 70

72 78
84 91 98
I\

96 104 112
108 f117 \ 126
|F
12 13|0 140
132 143 154
144—156—168
156 169 182

168

30

45

60

75

105

120

135

150

165

180

195

196 210 224

\82 \
18\195/210 225— 240 255—/270

0 0 0
16 17 18
32 34 36
48 51 54
64 68 72
80 B 90

lD

84— 90—96—102—108

12 19

128 136 144

144 153 162

160 170 180

176 187 198

192 204 216

221

208\

238 252
G

234

192 208 224 240 256 272 288

204 221

216 234

228

247 266 285 304

238 255 272 289 306

252 270 288 306 324

323 342

38

57

76

95

114

133

152

m

190

209

228

247

266

285

304

323

342

361
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Table I reports the sums,

each sum in parentheses.

together with the number of entries
summed. In each case, the sum is listed first with the number of entries

TABLE I.

Rhombus v(#) 1(#) HD(#) VD(#)
A 16(4) 4(1) 12(3) 12(3)
B 64(4) 80(5) 48(3) 112(7)
C 120(4) 330(11) 210(7) 150(5)
D 384(4) 288(3) 480(5) 288(3)
E 364(4) 4095(45) 819(9) 1183(13)
F 624(4) 1404(9) 468(3) 1716(11)
G 960(4) 1200(5) 1200(5) 1200(5)
H 216(4) 270(5) 378(7) 162(3)

To find a pattern, form ratios by dividing

TABLE |l.

that were
in

each sum by the parenthesized
number which follows. When this is performed, a constant ratio results for each
rhombus. Table II reports these constants.

Rhombus

Constant Ratio

16
30
96
91
156
240
54
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In each rhombus, the common ratio is equal to the "centre" number, the point
where the two diagonals intersect. Why?

Consider rhombus C. The numbers to the right and to the left of the centre
number 30 on the horizontal diagonal are evenly spaced above and below 30. To
the right of 30:

33 =30 + 3

36 = 30 + 6

39 = 30 + 9.
To the left of 30:

27 = 30 - 3

24 = 30 - 6

21 = 30 - 9.

Consequently, 30 is the mean of the seven numbers on the horizontal diago-
nal. This implies that the sum of the entries on the horizontal diagonal is

30 « 7 = 210, or 210 = 7 = 30.

On the vertical diagonal below 30:

40 = 30 + 10
50 = 30 + 20.

Above 30:
20 = 30 10
10 = 30 - 20.

Again, 30 is the mean of the five numbers on the vertical diagonal. This
implies that the sum of the vertical diagonals is 30 « 5 = 150 or 150 + S5 = 30.

Similar arguments can be generated for the four vertex numbers and the in-

terior numbers of C. These arguments would apply equally well to any of the
other rhombi of Figure 2.

The equality of these ratios may be expressed in other ways. For example, in

. 120 .4 #V .
rhombus C, form the ratio V to I (55: ). Note this 11 °F 71° We had previously
120 330 120 4 .

=<7 - 22V, ; i — = —, h f th
noted that 4 11 this observation notes that 330 11 This is one o e

standard properties of proportions.
Consider the ratio resulting from comparing HD to VD. What pattern do you
ohserve?

Let us investigate patterns on an extended hundred square. We have made a
"400 square,” and rhombi have been drawn on it. See Figure 3.

36



a1 42—43— A
61 6;\\\ f/ 5
81 82 83
101 102 103 104\ 105
121 122 123 124 145
141 142 143 144 145
161 162 163 164 165
181 182 183 184 185
201 202 203 204 205
221 222 223 224 225
241 242 243 244 /245
261 262 263
281 282 283 284\ 285
301 302 303 304 305
321 322 323 324 325
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On Figure 3, rhombi A through H have been drawn in exactly the same posi-
tions as they occupied on Figure 2. Again, find the same sums and ratios as in
the previous activity. Tables III and IV report these results.

TABLE Ill.

Rhombus V(#) I(#) HD(#) YD(#)
A 172(4) 43(1) 129(3) 129(3)
B 340(4) 425(5) 255(3) 595(7)
C 284(4) 781(11) 497(7) 355(5)
D 548(4) 411(3) 685(5) 411(3)
E 1072(4) 12060(45) 2412(9) 3484(13)
F 1016(4) 2286(9) 762(3) 2794(11)
G 1268(4) 1585(5) 1585(5) 1585(5)
H 1456(4) 1820(5) 2548(7) 1092(3)

TABLE IV.
Rhombus Constant Ratio

A 43
B 85
C 71
D 137
E 268
F 254
G 317
H 364

Observe that the same patterns hold as in the extended multiplication ta-
ble, and for the same reasons.
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Challenges for the Reader:

1. Draw other rhombi on Figures 2 and 3. Compute the appropriate sums and ra-
tios. Do the same patterns hold?

2. Compute other sums and ratios using the rhombi of Figures 2 and 3. For
example, find the sum of the entries which lie on the perimeter of each
rhombi. What patterns hold?

3. Draw other geometric shapes on Figures 2 and 3. Find sums and ratios. What
patterns hold?

4. Draw extended addition and subtraction tables. If rhombi are drawn and sums
and ratios are computed, do the same patterns hold?

Dr. Duncan and Dr. Litwiller are professors, Department of Mathematics and Com-~
puting Science, University of Northern Iowa, Cedar Falls. Dr. Duncan is chair-
man of the department. In addition to their teaching responsibilities within
the department, both offer methods courses to elementary and secondary preser-
vice teachers.
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Infinity

Sarah Jervis
Lethbridge Collegiate Institute

Infinity, or the boundless, is be-
yond the minds of most men. The con—
cept has existed for centuries, over
which many men have tried to propose
theories. Relating each of these the-
ories, one may get an idea of what in-
finity entails.

The original symbol for infinity,
which is used today, is the lemniscate
or @. This symbol was introduced in
the seventeenth century, and appeared
on the juggler or mangus card of the
tarot cards. One of the main concepts
of infinity is its endlessness, and
this is why the lemniscate is used.
One can travel around its periphery
endlessly. The quabalistic symbol
associated with this particular card
was the Hebrew letter aleph or X .
George Cantor, founder of the modern
mathematics theory of the infinite,
used the symbol xo (aleph-null) to
stand for the first infinite number.

The Greeks used the term apeiron
to describe their concept of the infi-
nite. The word 1literally meant un—
bounded and eventually came to de-
scribe general things such as disorder
or the extremely complex. This apei-
ron may have no finite definition.
For many Greek mathematicians, the
concept of apeiron was unacceptable,
even in the simplest form of a decimal
expansion on the simplest number.

Blaise Pascal once described his
feeling of being overwhelmed by the
infinite:

When I consider the small span of
my life absorbed in the eternity
of all time, or the small part of
space which I can touch or see en—
gulfed by the infinite immensity
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of spaces that I know not and that
know not me; I am frightened and
astonished to see me here instead
of there . . . now instead of
then.

Aristotle believed that "being in-
finite was a privation, not a perfec-
tion, but the absence of a limit." He
saw that aspects of the world are
apeiron - that time will not end,
space 1is infinitely divisible, and
that a line contains an infinite num-
ber of points. Aristotle invented the
idea of potential and actual infinity.
He proposed that the set of natural
numbers 1is potentially infinite in
that it has the ability to go on for-
ever, yet it is not actually infinite
because it does not exist as a fin-
ished thing.

Many men have expressed their be-
liefs of the infinite. Plutinus be-
lieved God to be infinite. St. Au-
gustine added that God was not only
infinite but could also think infinite
thoughts. However, later medieval
thinkers did not go so far as to be-
lieve that God was infinite. Although
He has unlimited power, He does not
have the ability to create an unlim-
ited thing. (A "thing" cannot be un-
limited, as it takes on the definition
of being limited by nature.)

A problem was brought to the at-
tention of mathematicians concerning
the infinities of the world. On one
hand, it would seem that God, being
infinitely powerful, should be able to
get an infinite number of angels to
dance on the head of a pin, for exam—
ple. On the other hand, it would seem
that, in a created world, no actually



infinite collection of angels could
exist. Infinity appeared to be a self-
contradictory argument. A line with a
length twice that of another 1line
would appear to have a larger infinity
of points than the smaller. Yet a
point on the smaller line would cor-
respond with the point on a larger
line, proving that infinity can be
equal and different at the same time,
which, in fact, seems to contradict
logic.

Galileo Galilei offered that the
smaller length could be turned into
the longer length by adding an infi-
nite number of small spaces. Galileo
realized that there were problems with
his solution, for the human mind can
only think in finite terms. He stated
that while 1looking at most natural
numbers, many of them will not be per-
fect squares; thus, there must be a
smaller set of perfect squares than
natural numbers. There exists a para-
dox, however, that every natural num-
ber is the square root of a larger
natural number. It would therefore
seem that there are as many perfect
squares as natural numbers. Galileo
stated that:

We can only infer that the total-
ity of all numbers is infinite and
that the number of squares is in-
finite. . .; neither is the number
of squares less than the totality
of all numbers, not the latter
greater than the former; and fi-
nally, the attributes “equal,"”
"greater,” and "less"” are not ap-
plicable to the infinite, but only
to finite qualities.

It is essentially impossible for
the finite being to contemplate the
infinite. If a man were asked to cal-
culate the largest possible number im—
aginable, this would, of necessity, be
bounded by the finite period of his
lifetime. On his deathbed, a large
number would probably have been
reached. As he gasped his last breath,
an observer could merely add one and
would start at that point.

Lucretius, in his theory De
Rerum Natura, suggested: "Suppose
for a moment that the whole of space
were bounded and that someone made his
way to the uttermost boundary and
threw a flying dart.” He then went on
to consider that the dart could go
past the boundary or it would stop.
In either event, infinity is demon-
strated. There is either a boundary
stopping the dart, in which case there
is something or someplace beyond, or
there is no boundary, allowing the
dart to continue upon its infinite
path.

In more recent history, the tradi-
tional scientific view of infinity
might be challenged by the so-called
"big bang"” theory. Such a theory is
now widely accepted. However, such
theory tends to suggest a beginning
and an end. With the acceptance of
the big bang theory, scientists now
contemplate what was before the bang,
and what will happen at the end of
this universe. One answer that has
been suggested is that the universe is
an oscillating system, which endlessly
expands and contracts to infinity.

It seems that the more common view
of infinity is that of a series of
numbers having no end. In fact, in-
finity has an equal place at or before
the beginning of things. It is impos-
sible to state the smallest or first
number. Numbers are either infinites-
imally small, or 1large, or somewhere
in between. The paradox stated by
Zeno seems to show that one can never
leave the room which one is in. This,
of course, is clearly ridiculous sub-
ject to the acceptance or otherwise of
the Rerkelian theory of existential-
ism. Zeno reasoned that in order to
reach the door, one must first cross
half the distance there. This would
leave half the room to be crossed, hut
first one would have to cross half
that distance, and so on. The modern
answer to the paradox is to say that
the sum of the infinite series 1/2 +
1/4 + 1/8 . . . = 1. Even so, this is
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not perfectly satisfactory. The para-
dox can be put in a different way. 1In
a practical world, we say that a num-
ber with a decimal expansion of .99999
is the same as 1. It can be put this

way:
10K = 9.999...
- K = 0999900

9K = 9

K=1

Thus, we have the practical answer
as compared to the theory of Zeno who
regarded space as an undivided whole
that cannot be broken down into parts.

If one were to take Zeno's paradox
literally, any counting in whole num-
bers (for example, 1, 2, 3) would be
impossible. If the average man on the
street were asked to count to infin-
ity, he would say that it is impossi-
ble. If he were accommodating, he
might start counting for a day. Per-
haps he would get up to 170,000. But,
he would be unaware of Zeno's paradox.
I suspect he would start counting with
number one. In order to get to one,
he would first have to pass 0.5 and,
thus, would never "leave the room."
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It is always interesting to con-
sider the combination of random and

infinity. In the unbounded time of
infinity, literally anything is
possible.

It has been said that if a group
of monkeys were given an English dic-
tionary, the monkeys would eventually,
by random chance, utter the entire
works of William Shakespeare in the
exact order in which they were writ-
ten. In the absence of infinity, such
would not be probable.

If we add to this theory the addi-
tional fact of human intelligence, it
would be reasonable to conclude that
man will learn all the secrets of the
universe, including the mystery of in-
finity, within infinity.

Sarah Jervis was a Mathematics 30 stu-
dent at the Lethbridge Collegiate In-
stitute. Sarah enrolled in an honors
mathematics program, and this paper
was submitted to partially fulfill the
requirements for the program.



lllustrating with the Overhead

A. Craig Loewen
University of Alberta

“"Seeing is believing.” It is eas-—
ier to convince a listener if he can
see demonstrated that whieh he has
difficulty accepting. This 1is true
whether the topic is sports, politics,
oddities of nature, or mathematics
concepts.

Most teachers are trained in the
implementation of visual aids, and
few mathematics classrooms can be
found without blackboard compasses and
protractors or an assortment of plas-
tic geometric figures. There is an-
other tool available to the teacher.
That tool is the overhead projector.

Often the projector 1is used only
to provide occasional drawings, sample
problems, or class notes. It can be
used more effectively to:

(a) break down learning barriers for
students who have less ability in
visualizing mathematics concepts;

(b) assist all students in remembering
demonstrated properties, formulae,
and theorems; and

(c) expedite the process of communi-
cating information.

Of course, in order for the over-
head projector to become such an effi-
cient and effective teaching/learning
tool, proper materials must be devel-
oped. This paper presents four top-
ics, found in the junior high mathe-
matics curriculum, which could be
taught using the overhead projector.

TOPIC ONE: Deriving the Formula for
the Area of a Triangle

The teacher can allow the class to
derive the area formula for a trian-

gle. First, ask the students to sup-
ply the formula for the area of the
square outlined on an overhead trans-
parency. Next, place a precut paper
triangle inside the square. The stu-
dents easily recognize the shape of
the triangle and recognize that the
area of the triangle is one-half the
area of the square, or one-half the
base multiplied by the height. This
process can be repeated using a rect-
angle or parallelogram in place of the
square.

This demonstration assumes that
students have learned area formulae
associated with the square, rectangle,
and parallelogram. The illustration's
strength rests in enabling students to
visually encounter the relationship
between the area of a given triangle
and a square, rectangle, or parallelo-
gram. The overhead projector allows
this association to be made quickly,
yet requires only a few very simple
materials.

TOPIC TWO: Translations, Rotations,
and Reflections

Motion geometry is easier to 1il-
lustrate on the overhead projector
than on the blackboard. To demon-
strate translations, a transparency of
dot graph paper is constructed (see
Sample Transparency #1). Simply by
sliding a paper triangle (or other
figure) to various ©points on the
transparency, students are able to
visualize the process of a translation
and the relative orientation of the
resultant figure to the original.

A similar process wusing trans-
parencies and paper triangles would
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Sample Transparencies

TRANSPARENCY #1

..........

, A
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TRANSPARENCY #3

TRANSPARENCY #4




DIAGRAM 1.

TRANSPARENCY #5

DIAGRAM 2.
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enable students to visualize the other
two forms of geometric motion.

Orientation resulting from a rota-
tion is demonstrated by placing a sec-
ond transparency on the dot transpar-
ency and rotating it about a selected
point (see Sample Transparencies #2
and #3). Reflections are illustrated
by folding a transparency back upon
itself. The fold acts as the line of
reflection when the mirror image is
created (see Sample Transparencies #4
and #5). Resultant figures can be com-—
pared to original figures in terms of
location, orientation, direction, and
distance from a point of rotation or
line of reflection. These comparisons
allow students to summarize the in-
tended properties.

TOPIC THREE: Equilateral Triangles

Illustrating the properties of an
equilateral triangle with the overhead
projector does not constitute a proof
of these properties. At the junior
high level, the recognition of these
properties is more important than the
proof.

Place an outline of an equilateral
triangle on a transparency, and then
rotate a paper triangle of equal size
showing that the paper fits into the
outline from three directionms. The
student concludes that an equilateral
triangle not only has three -equal
sides but has three equal angles. The
demonstration is simple, yet effec-
tive, and allows students to draw the
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correct conclusion: an equilateral
triangle is also equiangular.

TOPIC FOUR: Pythagorean Theorem

To show the Pythagorean theorem, a
transparency of the figure in Diagram
1 is created. A piece of paper the
same size as the square on the hypote-
nuse must be cut into pieces as shown
in Diagram 2. These pieces are rear-
ranged once the theorem is presented,
and the squares are identified and
labeled to show that the area of the
square on the hypotenuse equals the
sum of the areas of the squares on the
other two sides. This 1illustration
does not prove the hypothesis, but
provides students with a visual expe-

rience to aid 1in wunderstanding the
theorem and remembering that 32 +
b2 = ¢2,

The overhead projector is not the
right tool to teach every concept
found in the mathematics curriculum,
but it can be used for more than sim-
ple diagrams or lecture notes. By ex-
perimenting with the projector's pos-
sibilities, the teacher can assist
most pupils to develop better visual-
ization skills while enhancing under-
standing of many mathematics topics.

Craig Loewen has taught at Rosalind
School, County of Camrose. Currently,
he is enrolled in a master of second-
ary education program at the Univer-
sity of Alberta.
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Creative Problem Solving Activity

Jacqueline Fischer
University of Lethbridge

The following activity was devel-
after attending a workshop on

creative problem solving, which was
presented by Julie Ellis of the Uni-

versity of Lethbridge.

It provides a

creative way to teach and reinforce
estimation skills and is most suitable
for students at the Division II level.

Fast Food Establishments and
Estimation

The following steps should be car~-

ried out in the order in which they

are

l.

listed below:

As a class, have students brain-
storm all the fast food outlets
they enjoy. The teacher should
list these on the chalkboard.

Ask students to pick one of
the fast food places on the list.
The choice may represent a favor-
ite place, the place the student
usually goes, or the outlet that
is closest to home. Each student
should write down his or her
choice on a sheet of paper.

As a class, brainstorm all of the
“"groups” with whom the students
would attend these places (for ex-—
ample, ball team or family). The
teacher should write the 1list of
suggestions on the chalkboard.
Only groups of four or more people
may be included in this list.

Ask students to pick one type
of group, and have each student

write down his or her choice on
the paper with the fast food out-
let choice.

Ask students to go to the fast
food outlet they have selected,
and write down a price list from
the menu. This part of the activ-
ity allows students to do homework
in a favorable atmosphere.

From the menu, students should
choose one type of Dbeverage,
main course, and dessert.

Ask students to estimate the
cost of their choices in item 6
above. Their estimation should be
derived from the price list ac-
quired earlier.

Ask students to estimate the
total cost of a complete meal for
their chosen group. The method
used to arrive at the estimation
should not be stipulated by the
teacher. That 1is, students may
decide to add up the totals of the
entire meal selection for each
member of the group, or may add up
all of the beverages, main
courses, and desserts chosen for
the entire group.

Ask students to check the accuracy
of their estimations by wusing a
calculator. Students will use the
calculator to add up the actual
cost and compare it to the esti-
mated total.

The following sample activity il-

lustrates the steps outlined above.
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Sample Activity

STEP 1:
(on chalkboard)

Fast Food Outlets

Al Submarine

Top Pizza & Spaghetti House
A & W Restaurant

Dairy Oueen

Taco Time

Kentucky Fried Chicken
Boston Pizza

Brownie Fried Chicken
Baaco Pizza

McDonald's

Burger King

The Sub Hut

Mary Brown's Chicken
Poppa's Pizza

STEP 3:
(on chalkboard)

Types of Groups

Family

Hockey Team

Ball Team

“"The Gang"”
Birthday Party
Brownies

Cubs

Scouts

Girl Guides
Classroom Students

STEPS 2 and 4:

If a student were to choose Taco
Time with his or her family, the
remaining steps in the activity might
turn out as the following do.

STEP 5:

Beverages

large $ .89
regular .69
children's .49
coffee 35
milk .65
hot chocolate .45
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_Tacos

natural soft taco $2.49
soft super taco 2.19
sof t taco 1.94
taco .99
Burritos

soft meat burrito $2.34
crisp meat burrito 1.59
soft combo burrito 1.84
soft bean burrito 1.34
Specialties

taco salad $1.94
nachos 1.79
casita burrito 2.99
tostado delight 2.54
torta con carne 1.79
refritos 1.29
mexi-fries .85

Desserts

apple or cherry empanada $ .75
crustos 44

STEPS 6 and 7:
(This estimation is to
dollar.)

the nearest

regular beverage $1.00
soft taco 2.00

cherry empanada 1.00
$4.00

STEP 8:
Family of 4
2 regular drinks 2 @ $1.00 =$ 2.00
2 large drinks 2@ 1.00= 2.00
2 tacos 2@ 1.00 = 2.00
1 soft taco 1@ 2.00= 2.00
1 soft super taco 1@ 2.00 = 2.00
3 crustos 3@ 0.00= 0.00
1 cherry empanada 1@ 1.00 = 1.00

Estimated Total $11.00

STEP 9:

The actual work, which may be com-
pleted on the calculator, will have
the following figures:



Family of 4

2 regular drinks 2@S$ .69 =S5 1.38
2 large drinks 2@ .89 = 1.78
2 tacos 2@ 99 = 1.98
1 soft taco 1@ 1.94 = 1.94
1 soft super taco 1@ 2.19 = 2.19
3 crustos 3@ A4 = 1.32
1 cherry empanada 1@ 75 = .75

regular beverage $ .69
soft taco 1.94
cherry empanada 75

Actual $3.38

Actual Total Cost $11.34

Extensions or Alternatives

The estimations in this activity
may be made to the nearest dime, quar-
ter, or half dollar, or all of these
may be tried to find the most effi-
cient method. This type of activity
can also be developed for other sub-
ject areas.

Jacqueline Fischer graduated from the
University of Lethbridge 1in May of
1986, with an education major 1In
mathematics.
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A Problem Solving Geometry Lesson
Using Groups of Four

Oscar Schaaf
University of Oregon

In the September 1981 issue of
Learning, Marilyn Burns describes a
classroom management scheme that en—
courages students to learn by working
cooperatively and independently. Cer-
tainly, this is a worthy educational
goal for any classroom. Her article
is based upon ideas given to her by
Carol Meyer, a classroom teacher in
Davis, California.

The scheme called "Groups of Four”
requires reorganizing the classroom
physically, redefining the students'
responsibilities, and carefully struc-
turing the role of the teacher. Stu-
dents are randomly assigned to groups
of four, and the assignments are
changed regularly throughout the year.
There are three rules for the students
in their groups of four:

1. Each student 1is responsible for
his or her own work and behavior.

2. Each student in the group is re-
sponsible for every other group
member.

3. A student may ask for help from
the teacher only when everyone in
his or her group has the same
question.

I suggest you read Marilyn Burns' ar-
ticle; it bas many good suggestions.

"Groups of Four” 1is just one of
several management schemes a teacher
should use. However, this scheme 1is
especially appropriate when problem
solving 1is the goal of instruction.
Why don't you try “Groups of Four”
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with the high school geometry lesson
"An Investigation: Polygons and Line
Segments,” which is given on the fol-
lowing page.

Commentary and Answers for
“An Investigation: Polygons and
Line Segments’’

Hand out the lesson sheet, one to
each student, and have the students
get into their groups of four. Follow
the "Groups of Four” rules given
above, especially rule 3. Most groups
should be able to figure out on their
own what to do through question 3.
Use your time observing and taking
notes on how the groups are function-
ing and on the different approaches
used in solving the problems. This
information will be useful later, when
summarizing the lesson with the class.
The table below contains the data col-
lected for questions 1, 2, and 3, and
the correct predictions called for in
questions 4 and 5.

s d D L
4 1 2 6
S 2 5 10
6 3 9 15
7 4 14 21
8 5 20 28
9 6 27 36
10 7 35 45
3 0 0 3
20 17 44 55



An Investigation: Polygons and Line Segments

s = number of sides

d = number of diagonals

from one vertex

D = total number of

diagonals

p—

L = total number of

(W] (=) V=1 (=2 ENT (=20 (.0 B3 (%)

line segments

N
o

—
.

5.
6.

10.

Draw the diagonals from a single vertex in each
of the polygons shown. Record the number in the
table.

Draw all the other diagonals for each polygon.
Record the total number in the table.

Record the total number of sides and diagonals
for each polygon.

Study the patterns in the table. Predict the
value for d, D, and L for an octagon, nonagon,
decagon, triangle, and icosagon.

Check your predictions by making drawings.

Write the formula for the relationships sug-
gested in the table.

(a) d in terms of s

(b) D in terms of s and d

(c) D in terms of s

(d) L in terms of s

Do your formulas work for all the data recorded
in your table? If not, make adjustments until
the equations accurately describe the situation.

Graph the formulas in 6a, 6c, and 6d. Let s

be the horizontal axis in each case. By careful
planning and labeling, the three graphs can be
placed on the same chart.

Does it make sense in this lesson to draw the
straight or curved line suggested by each graph?
Why or why not?

Does it make sense to use the formulas for find-
ing values for d, D, and L, when s is any
whole number? Explain.

\/

Quadrilateral

@

Hexagon

»

Heptagon

-

Pentagon




6. (a) d =s -3
O
@)D=ﬂs;ﬁ
o 5(353) +s

Za(s + 1)

7. Groups will use various strategies
to get their formula. Encourage
groups and individuals to keep
track of the strategies they used.
These should be discussed when the
lesson is summarized later.

8. Attention needs to be given to the
scale used for each graph. I sug-

gest a scale of 2 cm per unit for
the horizontal axis and 1/2 cm per
unit for the vertical axis.

9. No. Whole numbers from 3 and af-
ter make sense, but a mixed number
such as 6 1/2 for the number of
sides and diagonals of a polygon
does not make sense.

10. No. It does not make sense to say
that a polygon has 0, 1, or 2
sides.

Dr. Oscar Schaaf 1is professor emeri-
tus, Faculty of Education, University
of Oregon. Oscar has been a contribu-
tor to past 1issues of delta-K and
has also been a speaker at MCATA
conferences.

ERRATUM

our apologies for this oversight.

which are one mile long.

In "The Road to Four Villages"” problem appearing on page 43 of the
last issue of delta-k (Volume XXV,
root sign was omitted, making the problem meaningless.
The problem should have read:

Four villages are situated at the vertices of a square of sides
The inhabitants wish to connect the
villages with a system of roads,

to make V3 + 1 mile(s) of road. How do they proceed?

Number 3, July 1986), a square
Please accept

but have only enough material
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STUDENT PROBLEM CORNER

Students are encouraged to examine the problem presented below.
Send your explanation or solution to:

The Editor
delta=-K
c/o 2510 - 22 Avenue S
Lethbridge, Alberta
T1K 1J5

delta=-K will publish the names of students who successfully solve
the problem.

The Big Steal

Hank Boer

It was a cool morning in June as Inspector Marchand looked over the scene in
the Bronxton Mansion. The imperial diamond was gone, taken the night before,
sometime between 21:00, Thursday, and 22:00, Friday. He thought about the meth-
od the burglar used to enter the grounds, because the mansion was surrounded by
a 4 metre electrified fence some 134 metres from the house. A pathway lead from
the garden to a small pool measuring 3 metres by 4 metres and 1 metre deep. The
back edge of the pool stopped 0.5 metres from the patio doors at the rear of the
house. The burglar had entered the house through the back patio doors and made
his or her way to the upstairs reading room, where the diamond was kept in a
safe. The safe was not damaged, but somehow the burglar had dialed the correct
computer—controlled combination. Inspector Marchand suspected an inside job.

The yard between the fence and house was patrolled by 5 guard dogs. The in-
spector found no evidence that the dogs had been drugged. However, close to the
front of the house, he found the bone to a tenderloin roast,

The inspector sat on the bench by the pool as he reviewed his suspect list.
Each had a possible motive and a good alibi.

- Mary was the chambermaid; her alibi was that she and her cousin had gone
out to the movies. At the time, Mary was suffering from bad lung flu.

- Sebastian was the butler; he had evidence that he was visiting his mother
during the robbery. It was a well-known fact that he had a deathly fear
of heights.

- Ronald was an internationally known jewel thief, who had been in the area
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during the last three months. He said that he had been at a dance at the
convention centre. His height was 1.94 metres.

- Jean was Mr. Bronxton's daughter, who had left home to attend college in
the next city. She said that she was studying in the college library.
She enjoyed collecting art.

~ Freddie was the gardener; he said he was shopping at Rainbow Mall on the
other side of town. He was almost blind in one eye.

- Sharon was Mr. Bronxton's wife; she said that she was visiting a friend in
the hospital at the time. She was somewhat overweight at 165 kilograms.

— Earle was a close friend of Mr. Bronxton, and he said that he was playing
squash at the country club at the time. Earle enjoyed deep sea diving as
a hobby.

The inspector looked at the edge of the pool. A waterline was quite visible
along the entire edge of the pool. He pulled out his measuring tape and mea-
sured the distance from the top of the calm water in the pool to the waterline
that appeared above it. He wrote down 2.1 centimetres in his notebook.

The inspector walked around the pool. At the far end of the pool, away from
the house, he noticed a white cloth tangled in the branches of a tall 1lilac
bush. Upon closer inspection he found a parachute hidden behind the bush. The
instruments on the parachute pack indicated that the burglar had fallen about
1020 metres. Looking up, tne inspector saw a wristwatch caught in the branch of
the same bush. He measured the distance from the watch to the ground; it was
2.05 metres.

The inspector now knew how he would catch the thief. He arranged to have
all the suspects meet at the Bronxton house at 13:00. The suspects gathered
around the pool. The inspector asked Earle to go into the house to change into
a bathing suit. When Earle came back, the inspector asked him to go into the
water in the pool and completely submerge himself. While Earle was under the
water, the inspector measured the depth of the water with his measuring tape.
The depth was 1.04 metres.

The inspector then announced to the crowd that all the evidence was now in,
and that he now knew who had committed the robbery. Who did it, and how did the
inspector know?

Hank Boer is the mathematics and science consultant with the Lethbridge Public

School System. Hank was president of the South Western Regional of MCATA, and

was responsible for the highly successful annual meeting held in Lethbridge in
ctober 1985.
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College and University Responsibilities
for Mathematics Teacher Education

College faculty must become actively involved in the education of teachers
if the teaching of mathematics in the schools is to improve significantly. Ac-
tive leadership and support of college and university mathematicians, mathemat-
ics educators, and administrators is essential if our nation is to increase the
number of qualified teachers and strengthen their education. For this reason,
the Mathematical Association of America and the National Council of Teachers of
Mathematics have adopted the following recommendations for all individuals, in
whatever department, who are engaged in teaching mathematics or mathematics edu-
cation for current or prospective teachers:

1. Colleges and universities should assign significantly higher priority to
mathematics teacher education.

2, All individuats who teach preservice or inservice courses for mathematics
teachers should have substantial backgrounds in mathematics and mathematics
education appropriate to their assignments.

3, Mathematics methods courses should be taught by individuals with interest
and expertise in teaching and continuing contacts with school classrooms.

4. All individuals who teach current or prospective mathematics teachers should
have regular and lively contact with faculty in both mathematics and educa-
tion departments; for example, by regular meetings, seminars, joint faculty
appointments, and other cooperative ventures.

5. All college and university faculty members who teach mathematics or mathe-
matics education should maintain a vigorous dialogue with their colleagues
in schools, seeking ways to col laborate in improving school mathematics pro-
grams and supporting the professional development of mathematics teachers.

6. Faculty advisors should encourage their mathematically talented students to
consider teaching careers.

7. Colleges and universities should vigorously publicize the need for qualified
mathematics teachers and strive to interest and recruit capable students
info the profession; for example, by organizing highly visible campus-wide
meetings for students fo inform them of the opportunities, advantages, dis-
advantages, and requirements of a career in tepching mathematics.

8. Tenure, promotion, and salary decisions for faculty members who teach cur-
rent or prospective mathematics teachers should be based on teaching, ser-
vice, and scholarly activity that includes research in mathematics or mathe-
matics education.

9. Faculty members in mathematics and in mathematics education who are effec-
tive in working with activities in the schools and in the mathematical edu-
cation of teachers should be rewarded appropriately for this work.

10. All institutions involved in educating mathematics teachers should provide
specialized classroom and laboratory facilities equipped with state-of-the-
art demonstration materials, calculators, and computers at least comparable
to those used in the best elementary and secondary schools so that prospec-
tive teachers, |ike graduates from other professional programs, can be prop-
erly prepared for their careers.
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Geoffrey James Butler — 1944-1986

EDITOR'S NOTE: Geoffrey Butler served as mathematics representative on
the Mathematics Council from the fall of 1979 until hig death. The fol-
lowing is reprinted from the August 7, 1986, <issue of Folio, a Uni-
versity of Alberta publication.

Geof Butler was born on March 4, 1944, in Gitlingham, England. He
grew up and received his early schooling in Bournemouth. In 1965, he
earned a B.Sc (Special) degree, and in 1969, his Ph.D., both at Univer-
sity College, London, England, the latter under the tutelage of C.A.
Rogers.

In 1968, he came to the University of Alberta as a post-doctoral
fel low, was appointed to the academic staff in 1971, promoted to associ-
ate professor in 1974, and professor in 1980.

His research activities included convexity, ordinary differential
equations, and modeling in population biology. He supervised three
Ph.D. students: J. Chapin, G.S.K. Wolkowicz, and J. Roessler. His in-
volvement with students included chairing the Canadian Mathematical
Olympiad Committee and leading the Canadian team in the International
Mathematical Olympiad.

He has presented many papers in several continents. In 1982, he was
awarded a McCal la Professorship for excellence in research. Just before
his illness, he was appointed chairman of the Mathematics Department.

Dr. Butler died on July 13 peacefully in his sleep, only 70 days af-
ter being diagnosed as having cancer. He is sorely missed by those who
knew and loved him, but his kind nature, his good thoughts, and his mar-
velous ideas will be with us alwayse.

Geoffrey James Butler Memorial Fund

The Mathematics Department wishes to announce the establishment of
the Geoffrey James Butler Memorial Fund. Monies from the fund will be
used for student scholarships at all levels, as well as to fund the
Geof frey James Butler Memorial Lectures, the first of which will be giv-
en at a conference dedicated to Dr. Butler during the summer of 1988 at
the University of Alberta. Details of the conference will be announced
in due course.

Tax deductible contributions payable to the University of Alberta
shoutd be sent to H.!. Freedman, Mathematics Department, University of
Atberta, Edmonton, Alberta T6G 2G1.
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