Edmonton Junior High Mathematics Competition 2014/15

Part A: Multiple Choice

Each correct answer is worth four points. Each unanswered question is worth two points to a maximum of three unanswered questions.

1. Which of these numbers is greater than its reciprocal?
(a) $-1 . \overline{5}$
(b) 0.995
(c) -99.9%
(d) $0 . \overline{3}$
(e) $\frac{2}{5}$
2. What number is doubled when $\frac{3}{4}$ of it is sub-
tracted from 99 ?
(a) 32
(b) 36
(c) 40
(d) 44
(e) 52
3. A target is made of dark and white strips of equal width as shown at the right. If a dart is thrown and lands randomly inside the target, what is the probability that it will land on white?
(a) $\frac{2}{5}$

(b) $\frac{3}{8}$
(c) $\frac{4}{9}$
(d) $\frac{1}{2}$
(e) $\frac{1}{3}$
4. How many two-digit whole numbers less than 40 are divisible by the product of its digits?
(a) 5
(b) 4
(c) 3
(d) 2
(e) More than 5
5. A florist has 72 roses, 90 tulips and 60 daffodils, and uses all of them to make as many identical bouquets as possible. How many flowers does the florist put in each bouquet?
(a) 6
(b) 18
(c) 24
(d) 29
(e) 37

Part B: Short Answer

6. A rectangle has an area of $48 \mathrm{~cm}^{2}$ and a perimeter of 28 cm . What is the length of the rectangle's diagonal, rounded to the nearest whole centimetre?
7. When a two-digit number is multiplied by the sum of its digits, the product is 952 . What is the two-digit number?
8. Twenty-six people are seated in a circle and are lettered alphabetically from A to Z. Beginning with person A and proceeding in a clockwise direction, each alternate person leaves the circle. What is the letter of the last person to leave?
9. In the rectangle $\mathrm{BCDE}, \mathrm{BC}=$ 30 cm . A is on the extension of EB , and $\mathrm{AC}=34 \mathrm{~cm}$. The area of triangle $A B C$ is $30 \mathrm{~cm}^{2}$ less than half of the area of BCDE. What is the perimeter of the
 quadrilateral ACDE?
10. The age of a tortoise is 52 years more than the combined age of two elephants. In 10 years, the tortoise will be twice as old as the two elephants combined. How old is the tortoise now?
11. The angle bisectors of the two acute angles of obtuse triangle, $\Delta \mathrm{XYZ}$, intersect at point W . The measure of $\angle \mathrm{Z}$ is 98°. What is the measure, in degrees, of $\angle \mathrm{XWY}$?
12. Maria purchased a number of peaches and apples. The mean mass of the peaches is 170 g . The mean mass of the apples is 140 g . The mean mass of all the fruit is 152 g . What is the ratio of the number of peaches to apples purchased?
13. Two sides of a scalene acute triangle measure 12 cm and 13 cm . If the length of the third side is also an integer, then how many lengths are possible for the third side to be?
14. What is the largest n such that n^{n} is an n-digit number?

Part C: Short Answer

15. Consider the 2014 digit number consists of 2013 nines followed by 1 one.

$$
2013
$$

$99 . .991$
The smallest factor is 1 and the largest factor is the number itself. Let M be the second smallest factor and N be the second largest factor. What is the sum of the digits of M and N ?
16. $A B C D$ is a square with $A C=49.5 \mathrm{~cm} . P$ is a point inside $A B C D$ such that $P B=P C$, and the area of triangle $P C B$ is one-third of the area of $A B C D$. What is the length, in cm , of $P A$? Round your answer off to the nearest integer.

17 A three-digit number is equal to 17 times the product of its digits, and the hundreds digit is 1 more than the sum of the other two digits. Find all such three-digit numbers.
18. A magazine receives 32 articles, of length 1,2, ..., 32 pages, respectively. The first article starts on page 1 and all other articles start on the page after the preceding article. The articles may be arranged in any order. What is the maximum number of articles that can start on an oddnumbered page?
19. The diagram shows nine points. How many triangles are there whose vertices are chosen from the nine points?

Solutions

1. $(a)=-\frac{14}{9}<\frac{-9}{14}$
(b) $=\frac{199}{200}<\frac{200}{199}$
(c) $=\frac{-999}{1000}>\frac{-1000}{999}$
(d) $=\frac{1}{3}<3$
(e) $=\frac{2}{5}<\frac{5}{2}$

The correct answer is (c).
2. Let n be the number.
$2 n=99-\frac{3}{4}(n)$
$\frac{11 n}{4}=99$
$n=36$
The correct answer is (b).
3. The shape can be divided into 45 individual squares. The white squares are $\frac{18}{45}=\frac{2}{5}$ of the entire target.
The correct answer is (a).

4. There are exactly five of them: $11,12,15,24$ and 36.

The correct answer is (a).
5. The $\operatorname{GCF}(72,90,60)=6$. This gives 6 bouquets with 12 roses, 15 tulips and 10 daffodils; a total of 37 flowers in each bouquet.
The correct answer is (e).

Part B: Short Answer

6. Knowing that $\mathrm{L}(\mathrm{W})=48$ and $\mathrm{L}+\mathrm{W}=14$, we have $\mathrm{L}=8$ and $\mathrm{W}=6$. The diagonal is $\sqrt{8^{2}+6^{2}}=10 \mathrm{~cm}$.
7. The prime factorization of 952 is $2 \times 2 \times 2 \times 7 \times 17$. Two-digit divisors are $14,17,28,34,56$ and 68. Checking all cases, we have $952=68(6+8)$.
8. After the first round, BDFHJLNPRTVXZ are left. and the next to go is B. After the second round, DHLPTX, and the next to go is H. After the third round, DLT are left and the next to go is L. After the fourth round, DT are left and the next to go is D. After the fifth round, only T is left.
9. In the rectangle $\mathrm{BCDE}, \mathrm{BC}=30$ $\mathrm{cm} . \mathrm{A}$ is on the extension of EB, and $\mathrm{AC}=34 \mathrm{~cm}$. By Pythagoras' Theorem, $\mathrm{AB}=16 \mathrm{~cm}$ and the area of triangle $A B C$ is $240 \mathrm{~cm}^{2}$. Hence the area of
 BCDE is $2(240+30)$ or 540 cm^{2}, so that $C D=18 \mathrm{~cm}$. The perimeter of the trapezoid ACDE is $34+18+30+18+16=116 \mathrm{~cm}$.
10. Suppose the tortoise is x years old and the two elephants together are y years old. Then $x-y=$ 52. In 10 years' time; $x+10=2(y+20)$. Hence $y+52=2 y+30$ so that $y=22$ and $x=74$.
11. In degrees, $\angle \mathrm{X}$ plus $\angle \mathrm{Y}$ is $82, \angle \mathrm{WXY}+\angle \mathrm{WYX}$ is 41 and $\angle \mathrm{XWY}$ is 139 .
12. Let $p=$ number of peaches and $a=$ number of apples.
This gives $\frac{170 p+140 a}{p+a}=152$ or $18 \mathrm{p}=12 \mathrm{a}$.
Thus the ratio of $\mathrm{p}: \mathrm{a}=2: 3$.
13. Let ABC be the triangle where $\mathrm{AC}=13 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$.
When $\mathrm{AB}=5 \mathrm{~cm}$, we have a right angle triangle at $\angle \mathrm{ABC}$.
When $\angle \mathrm{ACB}=90^{\circ}, \mathrm{AB}=17.69$.
We now have $5<$ third side < 17.69 so that it is an acute triangle. This gives 12 possible lengths for the third side from 6 to 17 cm . In order to be scalene, we need to eliminate both 12 and 13 from the list; hence, there are a total of 10 possible lengths for the third side.
14. A quick check would reveal that 10^{10} would give a total of 11 digits. In fact when n is greater than 10 , the resulting power will always have more than n digits. Thus the greatest $n=9$ giving $9^{9}=$ 387420489 (9 digits).

Part C: Short Answer

15. First, we know the number is not divisible by 3 as it divides into all the 9 s except the last digit of 1 .
As for 7, it will divide into six 9 s evenly. The longest string of 9 s would be 2010 digits. This leaves 9,991 which 7 do not divide evenly.
Eleven divides into pairs of 99 but won't divide evenly into 91.
The number 13 will go into six 9 s evenly. Similar to 7 , it does not divide evenly into 9,991 .

Seventeen divides evenly into a string of sixteen 9 s . Leaving thirteen 9 's followed by a 1 , which 17 does not divide evenly.
Nineteen divides evenly into a string of eighteen 9 s . Leaving fifteen 9 s followed by a 1 , which 19 also does not divide evenly.
Similarly 23 divides evenly into a string of twenty-two 9 s . Leaving eleven 9 s followed by a 1 , which 23 does not divide evenly.
The next prime number to try is 29 . Like the previous quotients, 29 divides evenly into a number made up of a string of twenty-eight 9 s . The quotient is 0344827586206896551724137931. The sum of its digits is 126 . This also means there are 71 sets of this number giving a total of 1988 digits of 9 s . We still have a number with 25 digits of 9 s followed by a 1. A total of 26 digits left. Fortunately, 29 multiplied by the quotient less the last two digits of " 31 " results in exactly 25 digits of 9 s followed by a 1 . This concludes that 29 divides evenly into the original number.
To recap, the second smallest factor is 29 . The sum of the digits is $2+9=11$.
The second largest factor is a number of the form
71 sets
0344827586206896551724137931
03448275862068965517241379

The sum of the digits is $126 \times 72-4=9068$.
Therefore the total sum of the digits of M and N is $11+9,068=9,079$.

Note from the Committee

Below are several related problems on the 2014-digit number n consisting of all 9 s except for a 1 as its last digit.

Problem 1

Prove that n is a composite number.

Problem 2

Prove that n is not a square.
Problem 2 is needed to set up the next problem. A positive integer which is not a square has an even number of positive divisors because they form pairs whose product is n. If n is a square, which means that \sqrt{n} is a positive integer, then it is paired with itself. It counts as only one divisor, making the total number of divisors odd. By problem $2, n$ has $2 k$ positive divisors for some positive integer k, namely, $1=d_{1}<d_{2}<\cdots<d_{k}<d_{k+1}<\cdots<d_{2 k-1}<d_{2 k}=n$.

Problem 3

Find the combined digit sum of d_{k} and d_{k+1}.

Problem 4

Find the combined digit sum of d_{2} and $d_{2 k-1}$.
Problem I was proposed for this year's contest. Since numerical answers were desired, it was intended to be modified asproblem3. However, the problem was worded so that problem 4 became what was actually asked.
Solution to Problem 1
Note that $n=10^{2.014}-9=\left(10^{1.007}\right)^{2}-3^{2}=\left(10^{1.007}+3\right)$ $\left(10^{1,007}-3\right)$. Since each factor is clearly greater than $1, n$ is a composite number.

Solution to Problem 2

Note that $n=999 \ldots 991=999 \ldots 9 \times 100+91 \equiv 0+$ $3=3(\bmod 4)$ since $100 \equiv 0(\bmod 4)$. Since all squares are congruent to 0 or $1(\bmod 4), n$ is not a square.
Solution to Problem 3
Note that $d_{k}=10^{1.007}-3=999 \ldots 997$ so that its digit sum is $1,006 \times 9+7=9,061$. On the other hand, $d_{k+1}=1,000 \ldots 003$ so that its digit sum is $1+3=4$. Hence the combined digit sum is $9,061+4=9,065$. The rest of the article is devoted to the solution to problem 4.
Clearly, $d_{2} \neq 2$ or 5 . By the tests of divisibility, it is neither 3 nor 11 . If $d_{2}=7$, then we must have $10^{2 \cdot 1+} \equiv 9 \equiv 2(\bmod 7)$. Now $10 \equiv 3(\bmod 7)$, $10^{2} \equiv 3 \times 3=9(\bmod 7), 10^{3} \equiv 3 \times 9=27 \equiv 6(\bmod 7)$, $10^{4} \equiv 3 \times 6=18 \equiv 4(\bmod 7), 10^{5} \equiv 3 \times 4=12 \equiv 5$ $(\bmod 7)$ and $10^{6} \equiv 3 \times 5=15 \equiv 1(\bmod 7)$. It is not necessary to go on any further. This is because $2,014=335 \times 6+4$, so that $10^{2.014}=\left(10^{6}\right)^{335} \times 10^{4} \equiv$ $1^{335} \times 4=4 \neq 2$. It follows that $\mathrm{d}_{2} \neq 7$.
A key step in the above argument is that $10^{k} \equiv 1$ $(\bmod 7)$ for some positive integer k, which happens to be 6 . How do we know that such a k always exists, if we replace 7 by another prime number? Let us understand why $k=6$ for the prime number 7. Suppose we wish to convert the fraction $\frac{1}{7}$ into a decimal. By long division, we find that $\frac{1}{7}=0 . \overline{142857}$, a decimal expansion consisting of repeating blocks of the six digits 142857.The reason that there are six digits is that when we divide by 7 , the only possible remainders are $0,1,2,3,4,5$ and 6 . Here 0 will not appear since no power of 10 is divisible by 7 . By the time we have seen each of the non-zero remainders once, repetition must start. Thus the repeating block of decimal digits has length at most 6 . In this case, it happens to be exactly 6 . This means that $\frac{1}{7}=\frac{142857}{999999}$ so that 999999 is divisible by 7. It follows that $10^{6} \equiv 1$.
In a similar manner, we can prove that $d_{2} \neq 13,17$, 19 or 23 . We know that $10^{12} \equiv 1(\bmod 13), 10^{16} \equiv 1$ $(\bmod 17), 10^{18} \equiv 1(\bmod 19)$ and $10^{22} \equiv 1(\bmod 23)$. As it turns out, $10^{6} \equiv 1(\bmod 13)$, but the other powers,
namely, 16,18 and 22 , cannot be reduced. Since $10^{4} \neq 9(\bmod 13), d_{2} \neq 13$.
Now $2,014=125 \times 16+14$ but $10^{14} \not \equiv 9(\bmod 17)$, $2,014=111 \times 18+16$ but $10^{16} \equiv 9(\bmod 19)$, and $2,014=91 \times 22+12$ but $10^{12} \neq 9(\bmod 23)$. Hence $\mathrm{d}_{2} \neq 17,19$ or 23 .
The next candidate for d_{2} is 29 . We know that $10^{28} \equiv 1$, but perhaps one of $10^{2}, 10^{4}, 10^{7}$ and 10^{14} may be too. In modulo 29 , we have $10^{2}=100 \equiv 13,103 \equiv$ $10 \times 13=130 \equiv 14,10^{+} \equiv 10 \times 14=140 \equiv 24,10^{7} \equiv$ $14 \times 24=336 \equiv 17$ and $10^{14} \equiv 17^{2}=289 \equiv 28$. So this does not happen. Since $2,014=28 \times 71+26$, what we need is $10^{26} \equiv 9$ Now $10^{5} \equiv 24 \times 10=240 \equiv 8$, $10^{25} \equiv 8^{5}=32,768 \equiv 27$ and $10^{26} \equiv 10 \times 27=270 \equiv 9$. This is exactly what we want. We are lucky that $n=10^{2.017}-9=\left(10^{1.007}+3\right)\left(10^{1.007}-3\right)$ has a prime factor as small as 29 . Each of $10^{1.007}+3$ and $10^{1.007}-3$ has more than 1,000 digits. Even if they were not prime numbers, they could have been products of prime numbers with over 500 digits. It would be very diffcult to find d_{2} then. From $d_{2}=29$, we have $d_{2 k-1}=\frac{n}{29}$. There remains only the trivial matter of determining their combined digit sums, via the following long division: 9999999 999999 9999999 9999999

29

344827586206896551724137931
The sum of the digits of the quotient is 126 , and there are 71 such blocks. In the last incomplete block, the quotient is without the last 2 digits 3 and 1. It follows that the digit sum of $d_{2 k-1}$ is $126 \times 71+122=9,068$. Since the digit sum of d_{2} is 11 , the combined digit sum is 9,079 . The solution of the following two problems are left to the readers.
Problem 5
Determine which of $10^{1.007}+3$ and $10^{1.067}-3$ is divisible by 29 .
Problem 6
For what year $y>2,014$ would the second smallest positive divisor of 10 -9 be
(a) 7
(b) 13
(c) 17
(d) 19
(e) 23 ?
16. Let L be the length of one side of the square.
Using Pythagorean property, we have $2 \mathrm{~L}^{2}=49.5^{2}$. This gives $L^{2}=1225.125$, $\mathrm{L}=35 \mathrm{~cm}$

As well, knowing that 3 times the area of $\Delta \mathrm{PCB}$ is equal to L^{2}, we have $3\left(\frac{\overline{\rho N} \times 35}{2}\right)=35^{2}$, or $\overline{P N}=23 \frac{1}{3}$ and $\overline{P M}=11 \frac{2}{3}$
It follows that $\overline{P A}=\sqrt{17.5^{2}+11 \frac{2^{2}}{3}}=21 \mathrm{~cm}$
17. Let a, b, c be the three digits not necessarily different. As well, we should only consider product that is less than $999 \div 17=59$. Since we have the hundreds digit 1 more than the sum of the other two digits, we could use the following table to sort out the three digits.
Therefore, only one such number exists and it is 816 .

Alternate solution:

The number is divisible by any of its digits. Using its hundreds digit, the quotient is greater than 100 and less than 111. It is also a multiple of 17 , so that it has to be 102 . Now $102=17 \times 6$. So the last two digits are 1 and 6 or 2 and 3. It is easy to check that 861,632 and 623 are not multiples of 17 but 816 is.

Original number	a	b	c	Product abc
	9	1	7	63
	9	2	6	108
	9	3	5	135
	9	4	4	144
$17(48)=816$	8	1	6	48
	8	2	5	80
	8	3	4	96
$17(35)=595$	7	1	5	35
$17(56)=952$	7	2	4	56
	7	3	3	63
$17(24)=408$	6	1	4	24
$17(36)=612$	6	2	3	36
$17(15)=255$	5	1	3	15
$17(20)=340$	5	2	2	20
$17(8)=136$	4	1	2	8
	3	1	1	3

of the points on the straight line; this gives $10 \times$ $4=40$ triangles.
Last, all three vertices can be chosen from the curve alone. There are 10 ways to do so. In total, there are $30+40+10=80$ triangles.

