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Guidelines for Manuscripts 
deltn-K is a professional journal for mathematics teachers in Alberta. It is published twice a year to 

• promote the professional development of mathematics educators, and 

• stimulate thinking, explore new ideas and offer various viewpoints. 

Submissions are requested that have a classroom as we ll as a scholarly focus . They may include 

• personal explorations of significant classroom experiences; 

• descriptions of innovative classroom and school practices; 

• reviews or evaluations of instructional and curricular methods, programs or ma terials; 

• discussions of trends, issues or policies; 

• a specific focus on technology in the classroom; or 

• a focus on the cutTiculum, professional and assessment standards of the NCTM. 

Suggestions for Writers 
I. delta-K is a refereed journal. Manuscripts submitted to delta-K should be original material. Articles c urrently 

unde r consideration by other journals will not be reviewed. 

2. If a manuscript is accepted for pub I ication, its author( s) w ill agree to transfer copyright to the Mathematics 
Council of the Alberta Teachers ' Association for the republication, representation and distribution of the 
original and derivative material. 

3. All manuscripts should be typewritten and properly referenced. All pages should be numbered. 

4. The author's name and full address should be provided on a separate page. If an article has more than one 
author, the contact author must be clearly ide nti fied . Authors should avoid all other references that may 
reveal their identities to the reviewers. 

5. A ll manuscripts should be submitted electronica lly, using Microsoft Word format. 

6 . Pictures or illustrations should be clearly labelled and placed where you want the m to appear in the article. 
A caption and photo credit should accompany each photograph. 

7. Refere nces should be formatted consistent ly using The Chicago Manual of Style's author-date system or 
the American Psychological Association (APA) sty le manual. 

8. If any student sample work is included, please provide a release letter from the stude nt' s parent/guardian 
allowing publication in the journal. 

9. Articles are normally 8-10 pages in length. 

I 0 . Letters to the ed itor or reviews of curriculum materials are welcome. 

11. Send manuscripts and inquiries to the editor: Lorelei Bosch man, c/o Medicine Hat College, Division of Arts 
and Education, 299 College Drive SE, Medicine Hat. AB Tl A 3Y6; e -ma il lboschman@mhc.ab.ca. 

MCATA Mission Statement 

Providing leadership to encourage the continuing enhancement 
of teaching, learning and understanding mathematics. 

Cover illustration: ''Frontispiece: Journeys Through Three Worlds of Mathematics," copyright 2013 David Tall. 
fn Hmr Humans Leom to Think Marhematirnlly: E1p/ori11g the Three Wo rlds of Mathematics. by David Tall, 
page xii. Copyright © 2013 Cambridge University Press. Reprinted with the permiss ion of Cambridge 
University Press. 
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From Your Council 

From the Coeditors' Desks 

My Thanks to You 
Gladys Sterenberg 

Over the past 11 years, I have had the pleasure of editing delta-K. This has provided me with many oppor
tunities, the most significant of which has been to work alongside passionate mathematics educators on the 
executive of the Mathematics Council of the Alberta Teachers' Association. In particular, the leadership provided 
by members of MCATA has shaped my professional learning and. consequently, the content of this journal. 
I'm pleased to know many as colleagues and friends. This has been both a professional and personal journey. 

I've had a great opportunity to meet and be mentored by those involved in the production of delta-K. The 
publication team at the Alberta Teachers' Association has been tremendously helpful in providing editorial, 
artistic and creative advice. Contributors to delta-K have also encouraged me through supportive e-mails and 
postcards (yes, some sent news of vacations) that reminded me of the importance of relationships. Past editors 
of delta-K have shared their stories and experiences with me. 

The first issue that I was involved with was coedited with Dr A Craig Loewen, dean of the Faculty of Educa
tion at the University of Lethbridge. He graciously mentored me in this process and offered much of his time 
to help me with the many questions I had. He was instrumental in providing direction and guidance as we 
transitioned to a peer-reviewed journal. 

Other opportunities for working alongside a coeditor emerged. Lynn McGarvey initiated the idea for a special 
issue (2011, volume 48, number 2) focused on early childhood and mathematics education. The special issue 
of March 20 I 3 (volume 50, number 2) grew out of work with Egan Chernoff on the book celebrating 50 years 
of delta-K (see the description of the book included in this issue). 

And finally, it is fitting that this issue (my last one) is coedited with Elaine Simmt. It represents all that is 
generative about mathematics education in our province. The collection of articles was written by mathematics 
teachers engaged in a graduate course. These articles show deep connections between theory and practice, a 
hallmark of delta -K since its inception. This collection demonstrates the importance of professional learning 
within a community. Elaine has provided an in-depth introduction in her editorial. I know that you will enjoy 
reading about how your colleagues are making sense of David Tail's notion of three worlds of mathematics. 

It is with mixed feelings that I make a transition out of being part of MCATA, but I'm very pleased that 
Lorelei Boschman has volunteered to become delta-Ks new editor. I got to know her when she became an instruc
tor for the mathematics curriculum and instmction course offered through the University of Alberta BEd program 
at Medicine Hat College. She has impressed me with her enthusiasm and commitment to mathematics education 
in Alberta. She has already shared ideas for forthcoming issues and wi ll bring her own leadership gifts to the 
MCATA team. I'm proud to have been part of this legacy and know that delta-K is in great hands going forward. 

Editing delta -K has been an experience where I have stood on the shoulders of giants. To those whom I have 
met throughout this journey, I thank you for the pleasure of your company. 

Gladys Sterenberg, PhD, was a classroom teacher in Lethbridge for I 5 years before pursuing graduate studies. 
As a faculty member at the unil'ersities of Lethbridge and Alberta, her passion for mathematics education was 
supported as she was mentored by professionals and academics in rhe fie ld. Currently, she is an associate 
professor in the Department of Education at Mount Royal U11frersity. where she continues to •,vork alongside 
teachers and teacher candidates in the province to enhance mathematics learning and teaching. 
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From the Guest Editor 
Elaine Simmt 

Reading, Writing and Arithmetic: Professional Development Through Communal 
Reading and Reflection as Mathematics Educators 

Ongoing professional growth can be achieved in many ways. As a professor of mathematics education at the 
University of Alberta, I meet teachers who choose graduate studies as a means to grow as educators. In the 
winter of 2014, a group of PhD and MEd students participated in a course on mathematics learning systems. 
In that course the participants read about complex learning systems from a complexity science perspective. As 
a class we read Professor Emeritus David Tall's new book, How Humans Leam to Think Mathematicallv: 
Exploring the Three Worlds of Mathematics, published in 2013 by Cambridge University Press, and discuss~d 
each chapter. The ideas in the book came alive as the teachers interpreted his ideas in the context of their own 
teaching practices. In this issue we present a number of the papers that teachers wrote to reflect on Tall 's work. 

Tall is a British mathematics educator who studied under Richard Skemp (best known for his distinction 
between instrumental and relational understanding) and spent a lifetime working with learners of mathematics. 
His book is an ambitious account of how mathematical thinking develops from infancy through adulthood and 
why mathematics in one context may be quite meaningful for a person, but when taken up in another context 
it lacks meaning or may inteifere with the new way of thinking mathematically or the new mathematics to be 
learned. 

At the core ofTall's (2013) theory is a model of three worlds of mathematics with which humans interact: 
the embodied, the symbolic and the formal. This model suggests that a person's development as a mathematical 
thinker requires perception and action across these three worlds. The embodied mathematical world is the 
starting place for all humans and all mathematics. Shape and space provide the grounding on which humans 
generalize and from which they can symbolize. Humans act on objects in the physical world with their bodies 
(hence through their bodily senses) and are acted on by the physical world in which they exist (through their 
bodily senses). Once symbols begin to replace objects, humans begin to act on the symbols. And like other 
objects that act on the learner (eg, a curved surface with no edges in contrast with a flat suiface with multiple 
edges), symbols begin to act on the learner. Traces (physical and conceptual) are left when the learner interacts 
with the objects (concrete or symbolic [which becomes "concrete" for the learner]). The world of mathematics 
also includes the formal dimension. As the reader will learn, Tall points to both mathematicians' notions of of 
formalism (set-theoretic definition and formal proofs) and psychologists' (ie, Piaget's) notion of fonnal opera
tional stage as aspects of formal mathematics. 

A key concept developed by Tall (2013 ), the met-before really struck a chord with the teachers in the gradu
ate course. Most simply stated, a met-before is a piece of mathematics or a result from some mathematics that 
sticks with a student and affects subsequent encounters with mathematics. A met-before can be most helpful 
to a student learning something new or making a connection among mathematical concepts. Consider the con
nections between a square number (being the result of a number multiplied by itself) and a square root (the 
fac tor that was multiplied by itself to give the radicand). Also think about the connection between integer 
multiplication and division. Positive numbers multiplied together will result in a positive product, and two 
negative numbers multiplied together will result in a positive product. Hence, the middle school teacher takes 
advantage of this met-before to help students understand that the radicand of a square root can be positive or 
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negative. However, this met-before can become problematic when the high school teacher introduces the notion 
of the principal root. At that point, students need to let go of the generalization they have made of roots being 
positive or negative and now need to distinguish the principal root. 

In this set of papers we see various interpretations of Tail's (20 13) theory. In sum, the papers reflect many 
ways in which teachers not only read theory but how they interpret it for teaching practice. Powell, Asquith 
and Luo explore the met-before concept most directly in their papers and illustrate from their experience how 
met-befores affect the development of mathematics. Powell does so in the context of graphing functions on the 
graphing calculator, whereas Luo explores the power of using met-befores to develop algebraic forms of qua
dratic equations. Asquith uses the notions of both set-before and met-before to explore possibilities for teaching 
ELL students mathematics. Barton and Charles discuss Tail's three worlds. Barton reflects on an experience 
she had doing a new piece of mathematics, from embodied pattern generating through symbolism and formal
ism. Through her reflection she unpacks Tall 's theory and in doing so unpacks her own understanding of the 
mathematics. Charles's paper proposes a deliberate sequence of activities based on Tall's three worlds to scaf
fold learners' meaning making in trigonometry. Finally, Dias Correa offers Tail's model as one of three different 
theories for observing student meaning making in mathematics. 

I hope this focus issue of delta-K has introduced you as a mathematics teacher to some interesting theoretical 
perspectives on learning and on mathematics, and to some pragmatic suggestions for teaching mathematics. At 
the same time I hope you might consider initiating a reading group or book club in your school or among a 
group of neighbouring schools as a weekly or monthly professional development opportunity. Whether you 
initiate a reading group or do some personal professional reading, David Tail's How Humans Leam to Think 
Mathematically might be a good selection for your next book. 

Elaine Simmt, PhD, is a former secondary school teacher of mathematics, chemistry and physics. For the past 
17 years she has been a professor of secondary education at the University of Alberta. Her research is focused 
in mathematics education. In particular, she explores teaching and teaming as understood through the frame 
of complexity theory. A second and complementary area of study is centred in teacher education, specifically 
mathematics-for-teaching. In her most recent work, she has been doing i11temational research and development 
projects in Tanzania to explore possibilities for mathematics teacher development in rural and remote com
munities. Simmt received the 201 I Friend of MCATA award from the Mathematics Council of the Alberta 
Teachers' Association. 
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MCATA Conference 2014 

MCATA Conference Committee 2014 

Front, L-R: Marj Farris, Donna Chanasvk, Alicia Burdess, Taney La::ar 
Back, L-R: Robert Wong, Debbie Duvall, Carmen Wasylynuik, Rod Lowry, Daryl Chichak, John Scammell, 
Mark Mercer 
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Conference Fun 2014 

Executive Photos 
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Alberta Mathematics 
Educator Award 
Recipient-Leann Miller 
Presented bv Marj Farris 
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Feature Articles ________________ _ 

Solve the Following Equation: 
The Role of the Graphing Calculator in the 

Three Worlds of Mathematics 

Jayne Powell 

In 2013, David Tall published a book entitled How 
Humans Learn to Think Mathematicalfy: Exploring 
the Three Worlds of Mathe,natics, which tries to make 
sense of how mathematics is taught and learned in a 
world where the spectrum of positions on mathemat
ics ranges from feelings of absolute beauty and power 
to anxiety and distress (p xiii). He proposes a frame
work of three worlds of mathematics through which 
learners constrnct mathematical meaning. As graph
ing calculators are now a near-ubiquitous tool in the 
mathematics classroom, this paper will explore how 
using a graphing calculator is both supportive and 
problematic within these three worlds of mathematics, 
by considering how students may come to solve 
quadratic functions. 

The presence of the graphing calculator in the 
mathematics classroom has become naturalized. One 
does not often step back and ask how it came to be 
here or what it is currently doing to mathematical 
thinking, pedagogy and cuniculum. Historically, the 
first device that could be considered a calculator, the 
abacus, began to extend mathematical thinking as 
early as 5,000 years ago. Then, in 1692, the French 
mathematician Pascal created the first mechanical 
calculator, which had the ability to add and subtract 
numbers. However, at the time Pascal concluded that 
it was too expensive for any practical use (Grinstein 
and Lipsey 2001, 87). Calculators would remain too 
expensive for common household use until the I 970s. 
Since that time, the increased use of calculators in 
society quickly forced educators to adapt, which gave 
rise to the prominent and lasting mathematics educa
tion debate about whether and how calculators should 
be implemented in classrooms (Banks 2008, 1-2). 
Then, in the early l 990s, a more powerful type of 
calculator-the graphing calculator-emerged on the 
education scene, and it was soon commonly seen in 
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most high school mathematics classrooms. Graphing 
calculators allow students to graph, analyze, calculate 
and solve problems graphically, numerically and al
gebraically. Since nongraphing calculators had be
come common in schools, aside from some discus
sions surrounding their monetary expense, the 
addition of graphing calculators to the classroom was 
less contentious. However, even if the addition of the 
graphing calculator was met with less resistance, it 
is still considered in the literature as the instigator of 
massive change in the high school mathematics class
room in the last 25 years. In 1992, near the beginning 
of the integration of the graphing calculator into the 
classroom, Kaput described this new technology as 
"a newly active volcano of the mathematical mountain 
... changing before our eyes, with a myriad of forces 
operating on it and within it simultaneously" (p 515). 
Yet today, its presence goes nearly unquestioned. 
Leaming to use a graphing calculator is merely part 
of the progression of learning about mathematics. 
The presence of the graphing calculator in education 
has gone from being seen as an active volcano to be
ing naturalized. Teaching high school mathematics 
now implicitly includes teaching how to use a graph
ing calculator to aid in developing mathematical 
thinking and understanding. 

The Three Worlds of 

Mathematics 

Tall (2013) puts forth a framework in which to 
consider mathematical learning that he calls the 
"three worlds of mathematics": conceptual embodi
ment, operational symbolism, and axiomatic formal
ism (p 133). Through these worlds, language, catego
rization and repetition produce thinkable concepts 
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that can be developed into crystalline concepts, 
which occur from the compression of understanding 
into a structure that has "inevitable properties in 
its given context" (p 27). The use of the word em
bodiment, in conceptual embodiment, can be prob
lematic. In everyday language the word embodiment 
can mean a concrete representation of an abstract 
idea, or the embodiment of an idea can be linked to 
knowing through the body. Yet, Tail's explanation of 
the first world of mathematics, conceptual embodi
ment, is more open and points to any human percep
tions and actions that develop mental images that 
give meaning to abstract concepts, be it through 
the body, concrete materials or other experiences 
such as using a graphing calculator. The second world 
of mathematics, operational symbolism, often devel
ops from embodied understandings and includes 
"symbolic procedures of calculation and manip
ulations that may be compressed into ... flexible 
operational thinking" (Tall 2013, 133 ). The third 
world of mathematics, axiomatic formalism, builds 
formal mathematical knowledge by developing 
definition and proof. Learners do not move through 
these three worlds linearly; instead they continually 
"fold back" (Pirie and Kieren 1994) to previous 
learning in order to move their understanding for
ward. Learners never come back to the same place 
in the same way, and they are always taking some
thing different away. To think of developing under
standing in this way "reveals the non-unidirectional 
nature of coming to understand mathematics" (Pirie 
and Kieren 1994, 69). 

In many Alberta schools, students begin to learn 
to use and rely on their graphing calculators in 
Grade I 0. Leaming to use this tool develops through 
both formal instruction and other experiences of using 
the calculator, such as trial and error or play. Many 
students begin their formal experiences with the 
graphing feature by working with linear functions. 
When students move on to Grade 11 they will start 
to explicitly study nonlinear functions, often begin
ning with quadratic functions. The calculator then 
becomes more than a tool used for routine calcula
tions and displaying the odd graph, but instead de
velops into an incredibly useful extension of their 
thinking. This extension will become as prized for its 
instant graphing capabilities as it is for its ability to 
convert rational numbers from decimal form into 
fractions. Yet, there are previous understandings, 
which Tall (2013) calls met-be/ores, that can be both 
supportive and problematic in developing an under
standing of quadratic functions. Teachers need to be 
aware that "a sensible approach to learning requires 
not only the building towards powerful ideas that will 
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be encountered in the future but also addressing the 
problematic issues in the present that may have long 
tenn consequences" (p 116). Thus, in unpacking the 
graphing calculator's role in learning about solving 
quadratic functions through the three worlds of math
ematics, it is important to remember that both prob
lematic and supportive met-befores are being created. 

When beginning to study quadratic functions, a 
common starting place is to look at the features of 
quadratic functions and their corresponding graphs. 
Students place equations often given in standard, 
y = ax"+ bx+ c, vertex, _v == a(x - p}" + q, and fac
tored, y == a(x-b)(x- c), fonns into the [Y=] function 
of their calculator. They observe the U-shaped curves. 
opening up and down, wider and skinnier, with the 
vertex in multiple locations. This may further perpetu
ate a common met-before related to the meaning of 
the equals sign. For some students, an equals sign 
often does not represent equivalence between the two 
sides of an equation, but initiates a problematic "put 
the answer here" response. 

t1ot1 P1Qt.~ t1~t3 
,v 1 =I ,v2= 
,Y3 = 
,Y 11= 
,Ys= 
,Y6= 
,.'y'7= 

Figure I: Home screen of graphing feature of 
TI 83+ 

Figure I shows how, on the main input screen for 
a graphing calculator, they-variable is isolated on the 
left side of the screen and an equals sign indicating 
"put the expression here' ' on the right side. The y
variable becomes separated from the rest of the equa
tion, decreasing its appearance of importance within 
the function. Functions may begin to lose their two
variable appearance, and importance, as the x-variable 
becomes the focus . It is possible that when given an 
equation that is not in one of the common forms, such 
as y - 6 = x 2 

- Sx, to see some students reach for their 
calculators and enter Y 

1 
= x7 

- Sx. This response to 
an equals sign builds on the previous misunderstand
ing of the meaning of the Y

1 
in their calculator's 

graphing feature. This met-before is possibly perpetu
ated because students are often given equations with 
the y-variable already isolated and will then repeti
tively enter equations without having to enter a _v or 
equals sign into their graphing calculator. 
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This met-before can be built upon further for some 
students when they start to solve quadratic equations, 
such as x2 + 3x - IO = 0, with their graphing calcula
tors. Suddenly, the y-variable is gone, replaced with 
a 0, and although teachers may explicitly discuss this 
change some students may not build these understand
ings into their creation of meaning. They are now 
working with only a specific case of the function
when it is equal to 0. This change is made easy by 
the previous met-before regarding the meaning of an 
equals sign, for some students can ignore the O in the 
same way that they were ignoring they-variable, the 
only difference being that the part being ignored is 
often located on the right side rather than the left. 
Thus, students who enter x2 + 3x - 10 into [Y

1
] are 

at times completely unconcerned with the meaning 
of the 0. There is a lack of awareness that on their 
calculator screen is a representation of the function 
y = x2 + 3x - 10, not the equation x=' + 3.x - IO = 0. 
Students can then use the [CALC] feature to find the 
zeros, perhaps unmindful that the zeros are interesting 
because the equation is currently equal to 0. lf instead 
x~ + 3x - 10 = 2, the interest would be in the x-values 
of the graph when the function is at 2. Using the 
graphing feature of a calculator to graph the related 
function as a way to learn to solve equations can lead 
to a possible misunderstanding of the definition and 
meaning of a function. 

When learning to solve quadratic equations by 
factoring, an algebraic method, the calculator can be 
used as a bridge between the worlds of operational 
symbolism and conceptual embodiment. Making the 
conceptual embodiment of the graph a method of 
developing a visual representation of the solutions 
arrived at algebraically in the world of operational 
symbolism. Students can look at the equations in fac
tored form, such as (x - 2)(x + 5) = 0, and the corre
sponding graph, Y

1 
= (x- 2)(x+ 5)orY

1 
=x 2 + 3x- 10 

to recognize relationships between the two. The con
nection between the x-intercepts of (2, 0) and (-5, 0) 
and the numerical values of 2 and -5 in the factored 
form of the equation seem straightforward. This 
demonstrates how conceptual embodiment and op
erational symbolism can blend together, allowing 
more powerful ways of thinking mathematically 
(Tall 2013, 145). However, thinking about the con
nection between the values in factored form and the 
x-intercepts of the graph is not enough. In using 
factoring to solve a quadratic, it is difficult to develop 
meaningful understanding of the connection to zero. 
The graphing calculator reinforces the numerical 
values, for example the 2 and the 5, not the reason 
for their signs, +2 and -5. Students may inappropri
ately generalize their own understanding to solve a 
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quadratic equation as a rule articulated as "just factor 
and take the opposite signs of the numbers." This met
before becomes troublesome in problems such as 
(2.x - 3)(x + 4) = 0, where using this "rule" often 
results in the incorrect solution x = 3 and x = -4. This 
met-before is created from experiencing many ex
amples that have had integer solutions, which are 
reinforced further through seeing these integer solu
tions on their calculators. Although the calculator 
may play a role in creating this met-before, it is also 
incredibly supportive in considering why this under
standing is incorrect. In returning to the graphical 
representation, students can see that the graph does 
not cross the x-axis at 3, but seemingly half-way 
between I and 2. As students build more and more 
of these ex.periences with conceptual embodiment 
and start learning the associated algebraic approach 
to solutions, in the world of operational symbolism, 
they begin to rely less and less on the calculator. 

As students progress, the graphing feature of the 
calculator is used less to make meaning of equations 
or to check algebraic solutions. 'The use of algebra 
becomes more sophisticated, and operational symbol
ism takes on a role of its own that no longer needs to 
be permanently linked to embodiment" (Tall 2013, 
145). Taking these thinkable concepts and compress
ing their meaning, "in the symbolic world we begin 
to shift to a new way of making sense of the symbols 
themselves and the coherent ways in which they oper
ate, without consciously referring back to their earlier 
meanings" (Tall 2013, 145). Yet, having created a 
conceptual embodiment of these concepts allows for 
folding back to these ideas if necessary, allowing for 
more flexible mathematical thinking and meaning 
making as teachers push their students into the world 
of operational symbolism. 

Many students will begin to get comfortable with 
factoring to find the solutions to an equation, until 
they come to a problem where the quadratic equation 
is not easily factorable. Often, the first response is 
that "not easily factorable" means that the problem does 
not have a solution. If students are mathematically 
flexible they can fold back to the conceptual embodi
ment provided by the graphing calculator and are able 
to graph the equation to look for what they often 
understand to be the solutions to a quadratic equation, 
the x-incercepts. Some students, often through the 
guidance of their teacher, will come to understand 
polynomial solutions as being either real and unequal, 
real and equal, and unreal and unequal, for real solu
tions only. However, some students might create 
different meaning. Perhaps some equations might 
show a graph crossing the x-axis, disproving students' 
previous conjecture that an equation that is not 
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factorable has no solutions. Students can work back 
and forth between the worlds of conceptual embodi
ment and operational symbolism to create meaning 
and find resolutions to their questions. However, other 
equations will show no x-intercepts, and students 
would feel more confident in their initial response of 
there being no solution to equations that are not easily 
factorable. This line of thinking could lead to a rule 
that there can be none, one or two solutions to a 
quadratic equation. When students further their math
ematical learning, having a conceptual embodied 
understanding of the solution(s) to equations as 
x-intercepts of a graph creates a challenging met
before when students encounter complex roots for 
the first time. Students may have been told that no 
solutions exist when there are no x-intercepts, and 
yet complex roots do exist, just not in the same way. 
Thus, students must be flexible not only in their ability 
to fold back to other meanings but also to let go of 
constructed meanings, or "rules," as they continue 
their learning. 

The issue of how to find the solutions to quadratic 
equations when they are not factorable transitions 
students into the third world, axiomatic formalism. 
This is the world of formal mathematics that relies 
on definition and proof. Here the quadratic fommla 
can be derived symbolically, often using the method 
of completing the square. Once this formula is derived 
in the world of axiomatic formalism, students will 
return to operational symbolism to work with and test 
this formula, often checking it against the conceptual 
embodied world of the calculator's graphing feature. 
Again, the conceptual embodiment that the calculator 
creates allows for acceptance and understanding of 
very abstract concepts and meanings. 

Tall (20 13) hypothesizes "that mathematical think
ing builds on . .. faculties set-before birth in our genes 
and develops through successive experiences where 
new situations are interpreted using knowledge struc
tures based on experiences that the individual has met 
before" (p 11 7). As teachers. we need to be aware of 
the beneficial and problematic consequences of the 
mathematical experie nces that occur in our class
rooms, especially since problematic understandings 
are often created accidentally and unconsciously. The 

14 

inclusion of the graphing calculator in learning to 
solve quadratk equations allows rapid access to the 
world of conceptual embodiment that just 25 years 
ago was not readily available for high school students. 
This inclusion brings deeper understanding as well 
as the reinforcing and creation of problematic met
befores. By moving between the worlds of conceptual 
embodiment on the calculator and the algebra used 
in operational symbolism, deeper meanings can be 
created. Even the world of axiomatic formalism ben
efits from the graphing calculator. as generalizations 
created here can be tested out in the world of concep
tual embodiment. The graphing calculator as a tool has 
changed how mathematics is taken up in the class
room, allowing access in the high school classroom to 
the conceptual embodiment of abstract concepts that 
were previously considered not practical to explore. 
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Repetition as a Mean�s of Encouraging 
Tall's Met-B�efores 

Lixin Luo 

In a classroom teaching and learning situation, it 
is common for individual students to respond differ
ently to a new topic introduced by the teacher. While 
some students might be able to understand the new 
topic quickly, others might feel lost or confused. 
Students' different responses can be explained using 
David Tall's (2013) idea of met-be/ores. In this paper, 
I first interpret Tall's concept of met-before, and then 
I explore using repetition to help students to construct 
and activate met-befores in order co facilitate their 
mathematical growth. 

Met-Befores 

The term met-before is used to "describe how we 
interpret new situations in terms of experiences we 
have met before" (Tall 2013, 88). Tall defines a met
before as "a mental structure we have now as a result 
of experiences we have met before" (p.84 ). The term 
met-before refers not to a person's actual experience, 
but rather to the embodied influence of the person's 
previous conscious and unconscious experience. Met
befores are personal; two people who have learned 
the same topic might not have the same understanding 
of the topic. Met-befores can exist unconsciously and 
might not present themselves until a person is 
prompted by certain situations that make her met
befores problematic. For example, a student might 
not realize that she believes that "multiplication 
makes more" until she encounters fraction multiplica
tion and the fact that multiplication makes less. Tall's 
met-befores are similar to presumptions, prejudices, 
attitudes or habitual ways of thinking formed through 
a person's former experience. 

Of particular significance, met-befores affect how 
we interpret a new situation, thus influencing our 
learning. Some met-befores are supportive because 
they help learners to understand new experience, 
while some are problematic because they cause 
initial confusion (Tall 2013). For example, knowing 
2x + 3x = 5x is helpful for one to understand 
2x� + 3x2 = 5xc, but understanding that addition makes 
a bigger number, based on one's experience with 
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positive numbers, is problematic when one first en
counters adding negative numbers. Tall sees that 
supportive and problematic met-befores arise natu
rally in mathematical learning, and the development 
of mathematical thinking involves a change of mean
ing of met-befores: some supportive met-befores 
might continue to be helpful in a new context while 
some become problematic. Thus, whether a met
before is supportive or problematic is contextualized 
rather than a fixed attribute. For instance, a student 
who has calculated the square of a real number many 
times would find the statement "Any real number's 
square is positive" easy to understand, but find the 
idea of i� = -1 hard to grasp. 

A person can have some supportive aspects of a 
given concept and some problematic aspects at the 
same time (Tall 2013). Students who can understand 
a new topic quickly might have sufficient supportive 
met-befores or they can suppress their problematic 
met-befores in order to move on, while students who 
find the topic hard to grasp might lack supportive 
met-befores or have problematic met-befores that 
they cannot resolve. 

Both supportive and problematic met-befores are 
important for mathematical learning, yet they are not 
equally valued in school curriculum (Tall 2013). Sup
portive met-befores are commonly valued in curricu
lum design through the emphasis of prerequisite 
knowledge and skills and in teaching practices through 
connecting new ideas with students' experience. 
Problematic met-befores, however, are rarely used in 
mathematics classrooms as "an integral part of learn
ing" (Tall 2013, 89). Contradictions between the new 
idea and one's previous understanding are not wel
come because they seem to interrupt and trouble one's 
learning. Tall sees curriculum's focus on supportive 
met-befores as a problem. He argues that problematic 
met-befores can have "debilitating effects in long-term 
learning'' (p 89), and the resolution of problematic 
met-befores is needed for confident new learning. 
Therefore, Tall suggests considering ways to deliber
ately reveal problematic met-befores so that they can 
be addressed. This leads us to the use of repetition. 
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Using Repetition to Construct 
and Activate Met-Befores 

Repetition is one of Tail's (2013) three fundamental 
mental structures that humans are born with. These 
structures (ie, recognition. repetition, language) take 
time to mature as the brains make connections in early 
life. Tall calls these structures set-be.fores. He argues 
that the development of mathematical thinking is based 
on set-befores and built on met-befores. The impor
tance of repetition is somehow self-evident: without 
our mental ability to repeat actions to form repeatable 
sequences, mathematical thinking is impossible. Rep
etition encourages generalization and abstraction. 
Through repetition, one can notice patterns and com
press a sequence of actions into a mental object, which 
becomes the object for manipulations at a higher level 
of abstraction. While considering ways to deliberately 
reveal problematic met-befores, I see the possibility 
of using repetition to help students construct and ac
tivate both supportive and problematic met-befores . 

Supportive Met-Befores 
Teachers can facilitate students' construction and 

activation of supportive met-befores by using examples 
that repeat with variation. Here is a set of examples 
that a mathematics teacher might write one by one on 
the board during a lesson on solving equations: 

x=O 
x-1 = 0 

L :- 1=0 
x2 -1 = 0 
2x1 -I = 0 

This set can be used at different times in a quadratic 
equations unit. If the students are new to solving quad
ratic equations, the first three linear equation exam
ples serve as a deliberate review for students. The 
skills they use to solve these equations can be carried 
into solving the last two quadratic equations. Yet, they 
have to modify their skills in order to solve these 
quadratic equations. For example. to solve x2 - 1 = 0, 
after students iso late the variable term, as they have 
done for solving x-1 = 0, to obtain x2 = I , they might 
see x 2 somehow similar to 2 (both terms include an 
operation done to x), yet different (multiplying x by 
itself vs doubling x) . Thus they have to think about a 
way different from dividing both sides by 2 to undo 
the operation in order to obtain x. The equation x = 0 
is included as the first example because it has the form 
of the final stage of solving an equation . 

This example illustrates a way to help students to 
construct and activate supportive met-befores for new 
learning. Each equation in the set repeats the previous 
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one with a subtle change. Therefore, when students 
move from one equation to another, they have seen 
part of the new equacion before. The new element in 
each equation is noted in bold. The students' experi
ence with the previous equations contributes to sup
portive met-befores for their encounter with a new 
equation. These supportive met-befores facilitate 
students' interpretation of the new situation and en
hance students' confidence as well. The repetition in 
this set of equations encourages generalization, and 
the subtle yet salient difference between equations 
helps to shift student attention to the change and 
consequently the structure of each equation. The new 
equation is comparable with the old ones, yet it is not 
a simple extension. For instance, the change from 
x 2 - 1 = O to 2x2 

- I = 0 can be significant from a stu
dent 's perspective, as many students tend to have 
difficulty handling a variable term with a coefficient 
not equal to I . This kind of change brings in a new 
structure or attribute to the new equation. Thus it is 
possible that after working through this set of equa
tions, students establish sufficient met-befores, which 
make solving equations like 2(x -I)' -I = 0 or 
2 (sinx)2 - I = 0 imaginable. 

Problematic Met-Befores 
Tall (20 I 3) suggests that the teacher rationalize a 

problematic situation and make the contradiction 
between a met-before and a new situation obvious by 
deliberately having students recall situations during 
which the met-before works. For example, have stu
dents review a situation where "taking away makes 
less'' works before being introduced to taking away 
negative numbers. Tall believes that this approach 
also facilitates new learning by enhancing students' 
confidence: "Giving confidence in an earlier situation 
may make it easie r to see what is different in the new 
situation to address the issue in a position of confi
dence'' (pp 88- 89). From my point of view, Tail's 
approach is a form of repetition with variation. It 
starts with a review that activates and reinforces stu
dents' met-befores. Then, students encounter prob
lems that resemble the old ones yet are significantly 
different, making students' met-befores problematic 
and demanding a breakthrough in students' thinking. 

Similarly, teachers also can use repetition with 
variation to deliberately help students construct prob
lematic met-befores. Here is a set of quadratic relations 
that can be used a~ an example of the method proposed. 

V = X2 - ] 

_y = 2x2 - 2 
v = -3x2 -3 
)' = - 3x2 + l 
y=-3x2+12 
y = - 3x2 - 3 
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This set can be used in different grades for various 
purposes. Assume that this set is used in a Grade 10 
mathematics lesson after students have learned find
ing zero(s) either by factoring or by completing a 
square. All the relations in this set repeat the ones that 
come before in some ways. While the first three rela
tions are very much alike, the last three differ quite 
dramatically. After students have graphed the first 
three relations, they are likely to form an understand
ing that these graphs open upward, share the same 
x-intercepts (1 and -I), and cross the x-axis twice. 
They might not realize the met-befores' presence until 
they encounter the last three relations: these met
befores, one after another, are problematized (the 
fourth graph opens downward, the fifth graph's 
x-intercepts are 2 and -2, and the sixth graph does 
not touch the x-axis). This change from the similar 
examples (as represented by the first three) to not
quite-similar examples (the last three), as Watson and 
Mason (2006) argue, is important: it breaks the pattern 
perceived or conjectured by the learners to nudge 
learners into thinking mathematically. While working 
on the set of relations presented above, it is possible 
that students will begin to understand how the co
efficient on the quadratic term of a quadratic relation 
affects the graph, or notice some commonalities of 
quadratic relations with two x-intercepts opposite to 
each other, or wonder about the common form of 
quadratic relations with no x-intercepts (and even 
whether x2 =-1 is possible) after graphing the fourth, 
fifth and sixth relation respectively. 

Repetition has potential for helping students con
struct and activate both supportive and problematic 
met-befores. This possibility is related to repetition's 
contribution in generalization when combined with 
variation. Through repeating with variation, students 
get a chance to generalize patterns, maintain enough 
supportive met-befores to be confident and perceive 
differences at the same time. Bateson 's (2002) theory 
of mind asserts that mental activities are triggered by 
differences. Difference is needed for the mind to 
work. When the difference is small for a learner, her 
met-befores can be supportive enough for her new 
learning so she can progress in a smooth continuity. 
When the difference is big for the leaner, her met
befores can become so problematic for her new 
learning that a significant change in her understand
ing is needed for her to move on. Such interruption 
of the smooth continuity of a learner's cognitive de
velopment is essential because it can break the 
learner's equilibrium and force her into a cycle of 
rebuilding equilibrium. According to Piaget (in Doll 
1993 ), it is through the recursive cycle of equilibrium
disequilibrium-equilibrium that cognitive development 
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becomes possible. Clearly, with the help of variation, 
repetition has the capacity to both reinforce something 
old and generate something new. 

Difference can be either a difference between two 
things or a change between a thing in time 1 and the 
same thing in time 2 (Bateson 2002). Thus, a looking
back activity, which invites students to revisit and 
reflect on the same topic later in time or from different 
perspectives, can enable them to perceive the differ
ence between their met-befores and their current 
understanding of the concept. In this sense, repetition 
can be integrated into students' forward movement 
(ie, learning new knowledge) and their backward move
ment (ie, reviewing previously learned knowledge). 

Conclusion 
Tail's ideas of met-befores, although not entirely 

new, invite us to reconsider the balance of supportive 
aspects and problematic aspects in teaching and learn
ing. Tall shows us that the change of met-befores from 
supportive to problematic is natural for the develop
ment of mathematical thinking. Thus, teachers need 
to consider both supportive and problematic met
befores of students. Repetition can be used to help 
students construct and activate met-befores, thus 
benefiting their mathematical growth. It is worth our 
attention to explore more ways to employ repetition 
to integrate met-befores, particularly the problematic 
ones, into teaching and learning mathematics. 
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ELL Students' Set-Befores and 

Met-Befores in Mathematics 

Tom Asquith 

Recently, teachers and researchers alike have 
observed growing numbers of English language 
learning students (ELL) in American and Canadian 
classrooms (National Council of Teachers of Math
ematics 2013). For example, Riel and Boudreau 
(20 I 2) found that 15 percent of all students in Ca
nadian classrooms do not have English as their first 
language. In Alberta alone, 17 per cent of all schools 
responding have ELL students. Of those Alberta 
schools, 34 per cent have at least I to 5 students, 
39 per cent have 6 to 25 students, and 26 per cent 
reported more than 25 ELL students (Alberta Educa
tion 2006a, 2006b). 

Not surprisingly, this demographic shift poses 
interesting challenges for Canadian teachers. Given 
that some ELL students may have received little or 
no formal instruction in their first language, the ex
perience of school might be novel to them. Even for 
ELL students who have received prior schooling, 
there is the challenge of making sense of material in 
a language with which they are completely unfamiliar 
(Boaler 2008). 

However, what is not obvious is that many ELL 
students can find a subject such as mathematics also 
challenging. Although mathematics is sometimes 
regarded as a universal language (perhaps errone
ously), its structures and nuances pose a significant 
challenge to mathematics students-especially if they 
are learning mathematics in a second language. (Clark 
1975; Barrow 2014). In fact, success in an English 
language-based mathematics classroom requires a 
variety of language and coding skills that go beyond 
merely learning mathematics (Barwell 2005, 2008; 
Barrow 2014). 

In this paper, I aim to examine two things. First, I 
will look at what challenges ELL students face in 
terms of learning and understanding mathematics. 
This will be done by using some of the ideas of the 
respected English mathematics education researcher 
and theorist, David Tall, as a guide. Second, we will 
examine how mathematics teachers can make the task 
of mastering and understanding mathematics con
cepts and processes easier for these students. 
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Set-Befores and Met-Befores 
of English Mathematical 
Language 

To assist in the discussion of some of the language 
and coding issues relating to ELL students, I will 
borrow some concepts and ideas from Tail's writings 
(Tall 2008, 2013; McGowen and Tall 2010, 2013), in 
particular the set-before and met-before. A set-before 
is a mental structure that humans are born with, which 
mature as our brains make early connections. In this 
category, Tall includes things like posture, identifying 
direction, social abilities such as gestures (eg, point
ing at objects) and so on. 

For math educators in particular, Tall (2008, 2013) 
identified the following set-befores as essential for 
mathematical understanding: 

• T he recognition of patterns, similarities and
differences between mathematical concepts

• The repetition of sequences of actions until they
become automatic

• The use of languaf?e to describe and refine the way
we think about things

These three set-befores (recognition, repetition and
language) form the basic skills required for learning 
mathematics in all of its forms. Note how the first and 
last in particular relate to language use. We will return 
to these in a moment. 

In addition to the set-befores, we also need to 
introduce the idea of a met-before. For Tall, a met-be
fore is a mental structure formed in an individual's 
brain based upon their previous experiences (ie, "built 
from experience that the individual has 'met-before'" 
[McGowen and Tall 20 I 0, 169]). Though simple, the 
idea of a met-before can be quite helpful in dealing 
with mathematics, because met-befores can be sup
portive or problematic. A supportive met-before as
sists or facilitates the learning of mathematical con
cepts and processes; problematic met-befores, on the 
other hand, inhibit or make the learning of math
ematics more difficult for the student (Tall 2008, 
2013; McGowen and Tall 2010, 2013). 

delta-K, Volume 52, Number 2, June 2015 



To illustrate, let us consider a phenomenon I have 
often seen in my junior high mathematics classes, 
when students first encounter the concept of multi
plication of fractions. Initially, when students are first 
introduced to multiplication in elementary school, it 
becomes engrained that a small number times another 
small number gives a bigger number as a result (a 
supportive met-before). However, when students are 
first exposed to the multiplication of proper fractions 
in the junior high classroom, confusion often arises. 
This is because when multiplying proper fractions, 
the product has a much smaller value-an idea that 
does not appear to make sense to the students, given 
their previous experience (a problematic met-before). 

Now, in tum, let us examine the set-befores and 
met-befores as they relate to ELL mathematics 
learning. 

On the Linguistic Set-Befores 
and Met-Befores of ELL 
Students 

Every student comes to class with his or her own 
unique experiences. But ELL students come to class 
with their own set-befores and met-befores that were 
formed prior to joining a classroom where the medium 
of instruction is English. This difference in back
ground will greatly affect how the student interacts 
with the discourse and instruction in the mathematics 
classroom (Clark 1975; Cuevas 1984; Barrow 2014). 

Indeed. per Tall (2013), this background, formed 
before entering the classroom, is important for the 
young student if they are to study objects correctly in 
a mathematical sense. Without the necessary English 
academic language (in an English-medium class
room), it becomes much more difficult for the students 
to make the steps necessary toward working in a world 
of conceptual embodiment, where they are able to take 
ideas introduced to them as they relate to the physical 
world and convert them into mental entities they can 
manipulate with their minds. Consequently, it will be 
very difficult for them to communicate their under
standings to the teacher or to fellow students or to 
make sense of the materials before them. 

Furthermore, in terms of language as a set-before 
for math instruction, it is a little more complicated, 
because there are two types of languages that the ELL 
student must master. First, there is the social language, 
which is the language of everyday social transactions. 
Luckily for the ELL student, it has been demonstrated 
that he or she usually has a useful working grasp of 
this societal language within two years (Cummins 
nd, 1979, 200 I). However, at the same time as he or 
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she is working to master the language necessary to 
function in society, the student must be also able to 
concurrently learn the mathematical academic lan
guage of the classroom. This academic language can 
take anywhere from five to seven years to master: the 
rich and complex vocabulary used, the unique techni
cal jargon and symbols, the grammatical conventions 
unique to mathematical discourse, and specific read
ing techniques required to make sense of mathemati
cal problems (Cummins nd, 1979, 2001; Collier and 
Thomas 1989; Slavit and Ernst-Slavit 2007; Alberta 
Education 2010). 

At this point, it is worth keeping in mind that while 
the student is receiving instruction in a new language, 
he or she is engaged in a task of trying to compress 
knowledge into thinkable concepts in mathematics. 
In particular, the student is placed in a situation 
whereby he or she must decide whether to try and 
process the concepts in the student's native language 
(by first translating it) or in the new English language, 
or try to make sense of these ideas by using both 
language systems (sometimes referred to as code 
switching). This turning of the new mathematical 
knowledge into thinkable concepts is an important 
step, as noted in Tall (2013): 

Compression of knowledge enables us co think of 
essential ideas, without being diverted by unneces
sary detail. Language facilitates this process by 
enabling us to name important aspects of compli
cated situations and talking about them to refine 
their meaning. This focus gives rise to a thinkable 
concept, conceived by the biological brain as a 
selective binding of neuronal structures, that allows 
us to focus our attention on it. (p 5 I; cf p 86) 

This is particularly problematic for ELL students. 
Given the tug-of-war between using their original 
language and their new English language to catego
rize new ideas, encapsulate processes based on repeat
ing actions, and define and fonnulate concepts for 
mathematical usage, it is not surprising that the re
search has shown that ELL students regularly create 
problematic met-befores as they try to make sense of 
the mathematics that is before them (eg, Lager 2006; 
Chamot et al 1992; Cuevas 1984; Bernardo and 
Calleja 2005). 

Teachers could identify an ELL student's use and 
reliance on problematic met-befores by looking to 
see if the student is generating errors or mistakes via 
any one of the following pieces of evidence: 

• Misusing common words or phrases in understand
ing word problems (Barwell 2008)-to illustrate, 
I have observed some of my past ELL students 
attempt to rephrase a given word problem in 
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English, but because their vocabulary is still de
veloping, often the final question in the word 
problem would be read and misinterpreted by the 
student (for example, a question like "How many 
brown chickens does the farmer have altogether?" 
may lead the ELL student to try to work out the 
number of all the chickens- not just the brown 
chickens that the problem asked for). 

• Creating and relying on faulty student-created dia
grams- in the past , I have observed some of my 
ELL students quickly draw a figure to assist them 
in making sense of a question but, unfortunately, 
their rushed readings lead them to miss key details 
or words. This leads them to draw initial figures 
that may have the wrong dimension. For example, 
consider a question that asks students to find the 
volume of a circular swimming pool having a ra
dius of 5 metres and a height of 2 metres, but 
unfortunately, in their work the students draw 
pictures of cylinders that have diameters of 5 me
tres. Then, after these students have found their 
answers, when they check their work they do not 
return to the original text but instead they depend 
solely upon their diagrams to verify their answers 
(see Lager 2006). 

• Misinterpreting graphics-for example, a diagram 
of a right triangle may lead the ELL student to 
conclude that the base needed for an area formula 
is the largest side (ie, the hypotenuse), considering 
how it is situated on the page, when the actual base 
is one of the legs, even when both of the legs have 
provided numerical measurements (see Lowrie, 
Diezmann and Logan 2011 ). 

• Not recognizing real-world constraints as they relate 
to word problems- for example, failing to check 
and notice that the answer a student provided would 
not be possible if they stopped and treated it as if 
it were a true rea l-world situation (Bernardo and 
Calleja 2005; Verschaffel, De Corte and La~ure 1994 ). 

• Missing or neglecting semantic aspects of math
ematical words, such as the difference between 
divided by and divided into (Lager 2006). 

• Missing or misreading contextual cues that would 
suggest an alternative understanding of the math
ematical meaning of commonly used words- for 
example, seeing the words less than in a word 
problem might tempt a student to leap to the con
clusion that subtraction is required to find the solu
tion when addition is actually what is called fo r 
(eg, Betne and Stanchina 2005). 

• Confusing meanings for mathematical words that 
also have everyday meanings outside of the class
room-eg, volume, table or power (see Lager 
2006; Moskovitch 20 I 0). 
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These difficulties in understanding and using the 
language successfully in a mathematics classroom 
can lead to what Tall describes as an epistemological 
anxiety, or a " knowledge-based anxiety," for these 
ELL students (Tall 2013, 127). As Tall (201 3) put it, 

Epistemological anxiety is a sign of inability to 
achieve the goal of relational understanding in 
mathematics. To relieve the frustration, the goal 
may switch to an instrumental understanding of 
being able to perform the requisite procedures . . . 
with a level of success but a sense of underlying 
doubt. (p 127) 

To clarify, Tall is suggesting that to avoid fee ling 
uncomfortable when doing mathematics, students 
may be tempted to seek less cognitively demanding 
methods of understanding the mathematics before 
them. Thus, they will be enticed to focus on rote 
learning or on algorithms (ie, instrumental under
standing) rather than choosing to build up the con
ceptual structure or schema needed to extend their 
knowledge beyond the task at hand (ie, relational 
understanding) in their work in class. In short, for an 
ELL student, although the rewards may be immediate 
and provide a quick and reliable method in a particular 
context, the success may be short-lived, in that the 
depth of the mathematical knowledge gained may not 
readily extend to future mathematics learning (Skemp 
1976; Willingham 2009). 

We now look at what could be done to help ELL 
students achieve success in our classrooms. 

Designing Curricula and 
Assessing Progress of ELL 
Students 

Looking at the above, it is clear that the goal of a 
good mathematics educator when working with ELL 
students is to promote the formation of supportive 
met-befores, while avoiding or preventing the forma
tion and/or use of met-befores that could become 
problematic and thereby inhibit the progress of the 
student in understanding the mathematics being 
taught. For this, I offer four rules of thumb to guide 
teachers. 

F irst. a mathematics teacher instructing ELL stu
dents must make efforts to ensure that problematic 
met-befores are avoided. This could be accomplished 
by ensuring that nonacademic mathematics language 
is avoided or minimized in problems, activities and 
instructions (Be liveau 2001; Lager 2006); ensuring 
that the language used in the classroom is suited to 
the level of ability of the ELL students-in particular. 
the teacher should ensure that the English used is 
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more likely to be encountered by students in everyday 
life, and the use of passive tense should be avoided 
in word problems (Haag et al 2013); being cautious 
when the mathematical words used in the classroom 
are polysemic (ie, words that have two different mean
ings, such as plane, square, point and vo/ume)-par
ticularly if such words may commonly be encountered 
outside of the mathematics classroom (see Jarrett 
1999; Dale and Cuevas 1992; Beliveau 2001); and 
drawing on as many resources as possible to assist 
the students in the formation of useful, viable and 
accurate mental images. 

For example, realia (ie, objects from real life used 
in the classroom, such as using a pizza or a wheel to 
discuss fractions or circles), manipulatives (ie, hands
on instructional tools like fraction tiles or interlocking 
cubes), drawings and graphics (ie, to illustrate word 
problems), graphs (eg, from newspapers or maga
zines), gestures (eg, using a hand gesture to clarify 
which parts of an equation or geometric shape are 
being worked on) and making connections to the 
learners' own culture and community (eg, using a 
First Nations folk story to assist in the teaching of 
surface area or volume, or a Cree bead bracelet to 
discuss ratio and proportion) have all been found to 
be helpful in guiding ELL students (Moschkovich 
2012; Nguyen and Cortes 2013; Barwell 2005; Civil 
and Menendez 2010; Civil 2011 ;Amason et al 2001 ). 
Further, it should be noted that providing materials 
in the ELL students' first language, where possible, 
has been deemed very helpful in promoting and fur
thering the students' mathematical understanding 
(Abedi, Hofstetter and Lord 2004; Moschkovich 
2002, 2012; Barwell 2005; Clarkson 2005 ; Civil and 
Menendez 20 I 0; Civil 2011; Civil and Planas 2012; 
Nguyen and Cortes 20 I 3). 

Second, the mathematics teacher must make efforts 
to ensure that ELL students are guided through correct 
problem-solving techniques to allow them to person
ally filter through their met-befores and understand 
which certain meanings and concepts are fit to use in 
certain contexts. It has been acknowledged that in
structing students how to tackle word problems is 
very he lpful in guiding ELL students toward the 
learning of the English language and simultaneously 
mastering the academic language of mathematics 
(Cuevas 1984; Moschkovich 2012). As noted in 
Reyhner (1994) and Jarrett (l 999), modelling and 
guiding ELL students through a systematic approach 
to problem solving is most helpful. To illustrate, let's 
consider this word problem: 

Allan 's cat has a mass that is 2 kilograms less than 
Bert's cat. Together, their mass is 15 kilograms. 
How much do they each weigh? 
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When presenting such a word problem in the 
classroom, it has been found helpful to introduce ELL 
students to a comprehension technique, such as 
Polya's ( 1957) four-step problem-solving method 
(Al-Jamal and Miqdadi 2013). That is, initially the 
students must understand the problem (ie, the question 
denotes the sum of the masses of two cats, and they 
don't know the mass of either, only that one cat is 
two kilograms less than the other). Then the students 
must generate a plan to solve the problem (eg, assign 
the variables to the unknown weights of the cats, 
create the equation needed to solve, and solve for x 
where x is equal to the weight of Bert's cat); carry 
out the plan (ie, write out and solve the problem) and 
then check their work ( eg, does the final answer make 
sense, based on how the question is worded? If one 
substitutes the found answer of 6.5 kg for Bert's cat 
into the planned equation, x + (x + 2) = 15, then does 
the equation still balance?). 

Training the students to make sense of the text and 
carefully consider all the numbers, words and sym
bols present and their relations before attempting to 
solve the problem is invaluable (Adams 2003; Al
Jamal and Miqdadi 2013). It should be noted that the 
teaching of comprehension and problem-solving 
techniques to ELL students should not just focus on 
the keywords present. While teaching students to rely 
on the identification of keywords could help in some 
situations, such a technique could lead to the develop
ment of the formation of bad habits, create new 
problematic met-befores and hamper students ' 
problem-solving skills (Carpenter, Hiebert and Moser 
1983; Secada and Carey 1990). To draw on our ex
ample, imagine the potential confusion and difficul
ties a keyword-trained ELL student would have ifhe 
or she just focussed on the words, less than and to
gether (ie, depending on how the words are used, less 
than can refer to a difference in value, an inequality 
or subtraction, while together can refer to an equality 
or a sum). 

Third, when instructing ELL students, a teacher 
must remember that discussion and culture within the 
classroom can be quite important in the development 
of mathematical understanding. As such, the teacher 
should make efforts to create an environment that can 
encourage ELL students to attach their learning to 
their own experiences and participate in mathematical 
discussions as they learn English (Moschkovich 2012; 
Barwell 2008). A warm, friendly and tolerant class
room, where students will not be afraid to make 
mistakes as they explain a mathematical concept, 
can be extremely helpful for a student who is trying 
to learn not just mathematics but English as well 
(Kersaint, Thompson and Petkova 2013, 137-43). 
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Fourth and finally, care must be taken when per
forming assessments. Assessments for ELL students 
need to be continuous and ongoing. Ideally, the lan
guage of assessment should be in the language of 
instruction (Moschkovitch 20 I 2; LaCelle-Peterson 
and Rivera 1994). This means that for written tests, 
the words used should be familiar to the ELL student; 
synonyms in the same word problems should be 
avoided; complex phrases should be reduced or sim
plified; the use of conditional clauses ( eg, if ... then) 
is limited; and active verb tenses are used (Abedi and 
Lord 200 l; Kersaint, Thompson and Petkova 2013, 
127-35). Accommodations such as audiotaping ques
tions, the use of personalized notes for use during 
tests, access to word walls and glossaries, and the 
ability to use concrete materials such as manipulatives 
during tests have been shown to be effective (Kersaint, 
Thompson and Petkova 2013, 127-35). Further. 
mathematics teachers of ELL students should avail 
themselves of more than one type of assessment to 
provide a more accurate view of the students· math
ematical understanding and where they may need 
assistance (Jarrett 1999; Buchanan and Helman 
1997). These other modes of assessments could in
clude performance assessments, project-based assess
ments, personal interviews and examining written 
responses (Kersaint, Thompson and Petkova 2013, 
127-35; Moschkovich, 2010, 164). It would behoove 
the teacher when creating assessments to bear in mind 
a student· s set-befores and met-befores-in particu Jar, 
the concepts, knowledge, skills and applications re
quired for the student to complete the challenge or 
problem presented (Jarrett 1999). 

Concluding Remarks 
In sum, care must be taken when working with 

ELL students in the mathematics classroom to avoid 
the raising of problematic met-befores. The mathe
matics teacher faced with the challenge of teaching 
ELL students must keep in mind the set-befores and 
met-befores facing his or her students. The teacher 
must aim to promote relational understandings in his 
or her students to assist them in the long term to find 
success, although the students may attempt to head 
to a weaker instructional understanding. Further, the 
teacher must remember to take precautionary steps 
to avoid the problems relating to faulty met-befores, 
make efforts to develop proper problem-solving 
techniques, promote a positive culture in his or her 
classroom to make the learning of mathematics wel
coming and, finally, he or she must ensure that the 
assessments used in the classroom do not place the 
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ELL students at a disadvantage as they try to master 
the challenges of two new languages: the language 
of English and the language of mathematics. 
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Mathematical! Thinking: 
An Argument for Not C)efining Your Terms 

Shelley Barton 

A hum of activity ebbs and flows in the room. 
Seated at round tables, the participants are all en
gaged, although not all in the same fashion. Some are 
noisily working in pairs, meticulously laying out rows 
of neatly organized dominos, row upon row. Some 
are working independently, slowly, thoughtfully, rear
ranging the dominos in front of them. As progress is 
made, the ideas flow through the room, rushing by 
those who already know, and forcing others to pull 
their attention from their own thoughts and attend to 
the ideas in the room. This is the picture of a room 
learning-as Doll ( 1989) writes, a room that is doing 
"more dancing and less marching" (p 67). This pro

ductive hive of activity is the outcome of a good 
mathematics problem. However the participants are 
not students-they are teachers. 

This is not a unique occurrence. Put any group of 
mathematics teachers together with a good problem 
and the hive will spontaneously erupt. The definition 
of a good problem lurks just out of reach, like an idea 
from a dream you cannot quite remember. Some 
mathematics teachers have a good intuition when it 
comes to judging a problem as good; a select few can 
even produce good problems effortlessly. All math
ematics teachers know a problem is good by the re
sponse of their class. It may not even be the problem 
alone. Instead it may be a perfect storm coming to
gether, out of unidentifiable elements like day of the 
week, time of the day, the past of the participants, the 
safety of the learning atmosphere and more. However, 
like the good problem, the perfect storm is recogniz
able when it rains down. 

As a participant in this particular hive, I discerned 
new ideas about mathematical thinking as I worked 
on the mathematics. The problem was a tiling activity 
with dominos that ended up generating the Fibonacci 
sequence. I started with the dominos but quickly 
moved to paper, developing a symbolic representation 
for the problem so that I could organize the arrange
ments into types and count using combinatorics. 
Others in the group were using the language of trans
formational geometry. This did not occur to me. Some 
had completely abandoned the dominos and were 
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working exclusively on paper. Still others were work
ing solely with the dominos. 

After the emergence of the Fibonacci sequence 
was discovered and agreed upon, the group moved 
on to something else, but I stayed with this problem. 
I found myself listing the terms of the sequence and 
the symbolic pattern until the 11th iteration, then 
looking for a formula that would generate the se
quence using sigma notation. There is something 
about this experience that is deeply connected to the 
kind of mathematical thinking l would like to support 
s1tudents in developing. 

Tall (2013) has two ideas related to mathematical 
thinking that are connected to this experience with a 
good problem. The first is the concept of the met
before, which Tall initially describes as "a structure 
we have in our brains now as a result of experiences 
we have met before" (p 23). Later Tall writes that 
'"met-before' refers not to the actual experience itself, 
but to the trace that it leaves in the mind that affects 
our current thinking" (p 88). Both of these descrip
tions create a picture of something left behind in the 
mind as a result of a mathematical experience that 
may or may not be a complete object. The decision 
to use combinatorics to approach the problem was 
not a conscious one. I did not have the thought "I will 
use combinatorics," nor did I decide to stop using the 
dominos and start using a symbolic representation. 
These approaches seemed to evolve organically, just 
as equally valid approaches evolved organically in 
other members of the group (this may point to one of 
the qualities of a good problem). This could be similar 
to the experience of a met-before, a residual experience 
with a mathematical idea that unconsciously appeared 
in my work and influenced my thinking. A met-be
fore, like take it to the other side and change the sign, 
is supportive for a student in solving 2x - 6 = I 0. 
When the same student is faced with 2x + 5 = 6x- I 0, 
then the met-before can become problematic. What 
should I move and which side should I take it to? This 
residual left behind in the mind can lead students to 
productive approaches or stop them in their tracks, 
depending on the situation. 
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Tall's (2013) idea of "three mental worlds of math
ematics" (p 133) forced me to reflect on teaching and 
doing mathematics differently. The three worlds of 
mathematics are cmzceptual embodiment, operational 
symbolism and axiomatic Jonna/ism. For Tall, con
ceptual embodiment occurs when "human perception 
and action" (p 133) lead to the development of mental 
images that grow into "perfect mental entities in our 
imagination" (p 133). Tall uses conceptual embodi
ment to refer to the initial formulation of thinkable 
concepts "through recognition and categorization'' 
(p I 33). Conceptual embodiment is a "compression 
from procedure to process that can be seen by shifting 
the focus of attention from the steps of a procedure 
to the effect of the procedure'' (Tall 2008, 12), where 
"compression is seen as a general cognitive process 
that compresses situations in time and space into 
events that can be comprehended in a single structure 
by the human brain" (Tall 2008, 13) that involves both 
conceptual embodiment and operational symbolism. 
Compression is not a linear progression through 
stages. In itself. compression is a process that moves 
backward and forward as new situations confront 
met-befores and inconsistencies are resolved. Con
ceptual embodiment is a process that begins when 
repeated actions become embodied procedures. Then 
the procedures come to be understood by their effect 
and, finally, this effect becomes an embodied concept 
in the mind. 

Operational symbolism occurs when "embodied 
human actions" (Tall 2013, 133) develop into ''sym
bolic procedures of calculation and manipulation that 
may be compressed into procepts to enable flexible 
thinking" (p 133). A procept is a mathematical idea 
that is both a process and a concept (object). A student 
learning mathematics typically learns one first, then 
becomes aware of the other and then, through the 
process of compression, gains understanding of and 
the ability to utilize both fl exibly, as required. A 
symbol can suggest "a process that produces a math
ematical object" (Gray and Tall 1994, 121 ). Thus, the 
symbol for the minus sign has three components 
embedded into it: it represents the process of subtrac
tion, it represents the concept of difference and it is 
a symbol with its own meaning. When a child learns 
to count.four is a process. Later when the child adds 
two to four by counting on from four.four has become 
a mathematical object. 

According to Tall (20 I 3 ), conceptual embodiment 
and operational symbolism are intertwined and occur 
together in overlapping layers through compression. 
However, there is a key distinction. Conceptual em
bodiment focuses on objects (and actions on the ob
jects) and operational symbolism focuses on symbols 
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(and the manipulation of symbols) (p 155). By 
focusing on objects, conceptual embodiment offers 
the possibility of sensing what happens as a conse
quence of the operation. "It has an effect that can be 
seen" (p 155). For example, a student is asked to 
compare the graph of f(x) = 12

-'-, ~
1
; +:ii with the graph 

of g(x) = 2x - I , and decides to use the zoom feature 
on a graphic display calculator (GDC) in the neigh
bourhood of x = -3. When the hole in the graph of 
f(x) at x = -3 appears. it allows the student to see the 
effect the (x - 3) factor has in the denominator. The 
procedure of using the zoom function on a GDC shows 
(perceived through sight) the effect of the (x - 3) factor. 
The conceptual embodiment of this effect repre
sents the visual difference and similarities of the 
graphs of f(x) and g(x) Manipulating the symbolic 
representation of by dividing out the common factor 
(x - 3), is a symbolic procedure. This is part of the 
process of simplifying rational expressions to dem
onstrate the concept thatf(x) is equal to g(x), every
where except at x = 3. The compression of the 
process of simplifying rational expressions with 
the concept that the original and the simplified func
tions name the same thing ( except at the restrictions) 
is a procept. 

Finally, when Tall (20 13) uses the term axiomatic 
formalism, he is referring to "bui lding formal 
knowledge in axiomatic systems specified by set
theoretical definitions, whose properties are deduced 
by mathematical proof' (p 133). This world is a dif
ferent world all together. Ax iomatic formalism 
turns the processes discussed thus far upside down. 
" Instead of studying objects or operations that have 
(natural) properties, the chosen properties (axioms) 
are specified first and the structure is shown to 
have other properties that can be deduced from the 
axioms" (p 149). Consider the axiom "If x and y are 
sets, then the set of pairs (x, y) or the set of pairs 
(y. x) exists" (Wells 2006, 2 137). This is the axiom 
that allows for the creation of new sets from existing 
sets and thus forms the basis for the definitions of a 
relation and a function. Note that this axiom does not 
require a list of the elements of a set to make the claim 
the set exists. Axiomatic fonnalism sits atop the in
tertwined conceptual embodiment and operational 
symbolism. Tail 's discussion (20 13, 2008) of his 
model of these three worlds is summarized in 
Figure I . This model is at the root of my reflection 
on my teaching in light of the domino tiling. If axi
omatic formalism comes after the intertwined con
ceptual embodiment and operational symbolism, why 
do I consider it important to start with a formal proof? 
Is there a better way to help students develop math
ematical thinking? 
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Figure 1 

Formal Axiomatic Formal 

Conceptual embodiment of Procept (as both process and 
Object 

this effect 

Effect (of procedure or 
action) 

Procedure (through 

perception or action) 

EMBODIED 

Returning to my experience with the domino activ
ity, and considering this experience in the light of 
Tall's (2013) three mathematical worlds, there are 
some interesting observations. To explain the activity, 
Figure 2 illustrates the possible tilings for 2 x 1 space, 
2 x 2 space and 2 x 3 space respectively. 

I moved away from physically manipulating the 
dominos rather quickly ; however, I stayed in the 
conceptual embodiment world throughout the activity, 
continuing to draw possible tilings for eleven itera
tions. The drawing of the three possible 2 x 3 tilings 
seen in Figure 2 looked similar to { III, I=, =I} . I 
continued to draw iterations of the tilings long after 
I had established the numerical sequence and sym
bolic representations. I moved quickly into the opera
tional symbolism world, creating symbolic represen
tations for each specific group of tilings. However, I 
did not leave the conceptual embodied world behind . 
Beside each of the drawings depicting each iteration 
was a combination formula equivalent to the numeri
cal values of the number of arrangements of each 
configuration. These formulas were symbolically 
manipulated to highlight the various components. 

thinkable concept) 

Process (seen as a whole) Process 

Procedure (expressed 
Action 

symbolically step by step) 

SYMBOLIC 

Figure 3 is a sample row from the table I con
structed showing how I recorded the information for 
a 2 x 8 space. Changing the number of vertical and 
the number of horizontal dominos generated different 
arrangements. I did not physically create all of these 
arrangements. My conceptual embodiment continued 
as I continued to draw arrangements; however, I did 
not draw dominos. Thus, the symbolic representation 
took two different forms. For the first I used symbols 
to represent the dominos in each tiling. For example, 
one of the possible 2 x 8 tilings was depicted by 
HIIII=, which represented six vertical dominos and 
two horizontal dominos. The second symbolic repre
sentation, combinatorics notation, was used to count 
the arrangements of each iteration. The six vertical 
and two horizontal tiling can be arranged in seven 
different ways, as seen in Figure 3. However, I 
counted these arrangements ways using combinator
ics: of the seven possible places for the two horizontal 
dominos select one. All the possible tilings for this 
two-by-eight example are summarized in Figure 3 
using my conceptual embodiment (the drawings) and 
my operational symbolism (combinatorics). 

Figure 2 

One possible 2 x 1 tiling Two possible 2 x2 tilings Three possible 2 x3 tilings 

• 
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Figure 3 

Iteration Size Conceptual Embodiment Operations Symbolism Term in the 
Sequence 

Number of Area (in Drawing with the number Combination formulas Total number of 

Dominos "½ domino of possible iterations 
units") 

lllllll (I) 

2x8 
llllll= (7) 

n=8 
rectangle 

11)1== (] 5) 

II=== (10) 

==== (I) 

In the end, I was able to generalize the decon
structed pattern and derive a function that, given the 
size of the space to be tiled, returns the number of 
possible tilings, accounting for all possible arrange
ments of horizontal and vertical arrangements. 

In truth, while I have read about tiling activities, 
this was my first experience actually working on a 
tiling problem and the first time in a long time I sat 
down to do mathematics with which I am unfamiliar. 
Reflecting on this work, it is clear to me that there 
were occasions I was working in the conceptual em
bodiment world, which is in some cases distinct from 
and in others interrelated with occasions when I was 
creating an operational symbolism. It is equally clear 
how these two worlds are intertwined and how they 
worked together to create. in my mind, a procept that 
represents this problem. Now the physical model, the 
symbolic representation of this model. the processes 
used to generate the symbolic iterations and the gen
eralized formula sit together in my mind and my at
tention can float between them. What is most interest
ing is that I never moved into the axiomatic formalized 
world. For years. I have taught students to use the 
method of proof by mathematical induction, yet I did 
not produce a formal proof of my generalized for
mula, which normally I would have. I was satisfied 
that my formula was valid because my formula was 
able to generate the numerical values I was expecting 
for the first three iterations. This was all the pmofI 
needed. The compression process of the two worlds
conceptual embodiment and operational symbol
ism-creates the flexible procept. 

This is the point where I can now explain why Tail's 
three mathematical worlds absorbed my attention. I 
teach Grade I 0, 11 and 12 mathematics. Functions 
are a part of each of these courses, and I use functions 
as the theme for teaching each of these mathematics 
courses, introducing each topic as a new function. 
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arrangements 

G) + C) + C) +CD+(!) 34 

Volume. surface area and perimeter become functions 
of their linear measure(s). Quadratics and lines are 
functions. Simplifying rational expressions becomes 
investigating rational functions. The logarithmic 
function is introduced as the inverse of the exponen
tial function. Sequences and series are discrete func
tions on the positive integers. Probability becomes 
functions on random variables. Trigonometry begins 
with trigonometric functions then moves into triangle 
trigonometry. Using the theme offu11cti011 has allowed 
me to circle back to topics to create deeper under
standing. Yet I always begin with formal definitions 
like those of relation, function, domain and range. I 
always begin in the world of axiomatic formalism . 

My absorbing thought is why start the topic of func
tions in the axiomatic formalism world? The answer 
may be that this approach is my own met-before that 
is problematic for students. These worlds of conceptual 
embodiment and operational symbolism lead me to 
rethink the way I introduce functions. Creating situa
tions in which students can move between these two 
worlds and up and down the compression continuum 
may help students build flexible mathematical procepts 
as opposed to problematic met-befores. One such situ
ation is the function machine. "A function may be 
represented in a more concrete manner as a function 
machine (or function box) that has the property that 
can be imagined both as a process (as a machine taking 
an input and producing an output) or as an object (a 
box that contains the machine preforming the opera
tions)" (McGowen and Tall 2013, 531 ). The use of a 
function machine can allow students to work in the 
conceptual embodiment world at the same time as they 
work in the operational symbolism world, which in 
tum will help students build a flexible function procept. 
As seen in Figure 4, functions can have rules that vary 
depending on the input. have more than one input, work 
in multiple discrete stages or fo llow other rules in 
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addition to algebraic rules. All of this helps students 
build a more flexible procept for function at the same 
time as it intertwines the conceptual embodiment and 
operational symbolism worlds, which in tum will cre
ate a solid platform for the movement into the axiom
atic formalism world. 

Figure 4 

X 
For an even number output 2 
For an odd number output 3x + 1 

Another example that can help students build flex
ible procepts is the wrapping function. Consider the 
image below, Figure 5, a square with sides of length 
two. Starting at any vertex or midpoint, a path can be 
traced around the perimeter of the square. This simple 
process can create many functions. 

D 

Figure 5 

C 

B 

A 

For example, starting at A and travelling in a 
counter-clockwise direction for a length of two units, 
the path ends at C. This instruction could be repre
sented as the (A, 2), both of which are inputs. The 
output would be C. However, this is only one of the 
many functions that can be generated from the model 
in Figure 5. The input (A, 1) could be linked to an 
output of 2 ( vertical height), or O (horizontal distance 
from start) or both (2, 0). Cartesian graphs can be 
generated from a variety of mappings from one set 
onto another set. An input of (A, -2) would have an 
output of B , the path length of negative 2 being a path 
in a c lockwise direction. Figure 6 shows examples of 
different shapes that can be used as the wrapping 
function and the Cartesian graphs of different map
pings that can be drawn. 

The periodic nature can be explored in both the 
conceptual embodied world and the operational sym
bolism world. Not only does an activity like this lead 
into the generating idea for sine and cosine functions, 
it also provides a conceptual embodiment experience 
that relates to other mathematical concepts such as 
vectors. 

The concept of a function is central to a significant 
part of the high school mathematics program; there
fore, devoting more time to encouraging students to 
create a flexible procept based on the worlds of con
ceptual embodiment and operational symbolism may 
be more beneficial to them than spending time in the 
axiomatic formalism world. Creating problems linked 
to mathematics curriculum that allow students to 
move between the conceptual embodiment and op
erational symbolism worlds as they feel comfortable 
will help students create flexible procepts. Addition
ally, the potential to work in the two worlds may be 
another quality of a good problem. 

Figure 6 

◄ IIIIHHIIHIIH • 
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Teaching the Trigonometric Ratios 
Through Embodiment, 

Symbolism and Formalism 

Christopher Charles 

Introduction 

In today's classrooms, sound pedagogic practices 
are priceless. In the mathematics classroom, these 
pedagogic practices must provide students with op
portunities to create a deeper understanding of math
ematics. A deeper understanding of mathematics 
means that students understand the underpinnings of 
mathematical concepts; are able to represent math
ematical ideas in multiple ways (concrete, numerical, 
graphical, geometrical, and symbolic); are able to use 
appropriate "mathematical language, vocabulary, and 
notation to represent ideas, describe relationships, 
and model situations"; and are able to "make mean
ingful connections within mathematics, to other 
content areas, and to real-life situations" (New 
Mexico State University nd, I). 

If students are to attain these standards and achieve 
deeper understanding of mathematics, teachers must 
create the pedagogic opportunities that will engage 
students in higher levels of thinking. D' Ambrosio, 
Johnson and Hobbs ( 1995) proposed twelve peda
gogic strategies that teachers can employ to engage 
students in higher levels of thinking. 

I. Encourage exploration and investigations: in
volve students in activities that will help them to
construct mathematics knowledge as well as
explore and investigate mathematics ideas.

2. Use students' prior knowledge: students bring
to class different world knowledge and experi
ences that affect the way they view and solve
problems.

3. Use manipulatives: the proper use of manipula
tives is critical to the understanding of new
mathematical ideas.

4. Use real-world problem-solving activities: link
mathematics and the real world through a wide
range of problem-solving activities.

5. Integrate mathematics with other content areas:
this helps students to apply previously acquired
knowledge to new situations.
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6. Use culturally relevant materials: this helps to
motivate students as the mathematics relate to
students' different cultures and interests.

7. Use technology: saves time by performing com
plex calculations quickly and allows for drawings
and demonstrations that are difficult if not impos
sible to achieve using a chalkboard.

8. Use oral and written expression: explaining their
thinking orally and/or in writing help students to
organize their thought and solution strategies.

9. Encourage collaborative problem solving: this
encourages active involvement in learning by
sharing and negotiating meaning, verbalizing
understanding, and providing constructive
criticism.

l 0. Use errors to enhance learning: to simply say an
answer is correct or incorrect is insufficient if 
students are to improve their understanding of 
mathematics. The thinking behind students' er
rors must be explored if misconceptions are to 
be ironed out. 

11. Offer an enriched curriculum and challenging
activities: all students must be exposed to math
ematically demanding tasks. This allows students
to develop their critical thinking skills and
problem-solving ability beyond routine and
watered-down procedural tasks.

12. Use a variety of problem-solving experiences:
use a wide variety of problems to include prob
lems that can be solved in different ways, with
more than one correct answer, and that may in
volve decision making and allow for different
interpretations. (pp 125-35)

These twelve pedagogic strategies, however, must 
be used within a framework that will enhance their 
effectiveness whereby students and teachers will gain 
maximum benefit from their use. To this end, I pro
pose Tail's framework called the "three worlds of 
mathematics." 

In this paper I demonstrate how the sine, cosine, 
and tangent ratios can be introduced to secondary 
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(Grade 9 or I 0) students using Tail's three worlds of 
mathematics to scaffold their learning. I begin by 
providing theoretical perspectives of the three 
worlds-embodiment, symbolism, and formalism 
(Tall 20 I 3 )-and draw on the work of others to further 
develop the ideas. I also provide a brief recap of the 
concepts of sine, cosine, and tangent ratios along with 
some areas of difficulty commonly experienced by 
students. Some plausible activities and relevant prob
lems along with some guidelines are also provided. 
I conclude this paper with a word of caution on how 
these activities may be interpreted. 

The Three Worlds of 
Mathematics 

Embodiment involves the use of one or more body 
senses to help internalize abstract mathematical ideas 
through the manipulation of physical objects and/or 
through physical actions (Tall 201 3). Tail's notion of 
embodiment is supported by Husserl (cited in Behnke 
2011). who argued that embodiment goes beyond 
practical action, but is an essential factor that influ
ences the attainment of deep understanding. Dubinsky 
(2000) also reflected upon the " widespread agreement 
that mathematical ideas begin with human activity 
and move from there to abstract concepts·· (p 216). 
These perspectives are all in keeping with the pro
posed pedagogic strategies of D' Ambrosio, Johnson 
and Hobbs ( 1995), which encourage exploration and 
investigation and make use of manipulatives, but go 
beyond these strategies to include the use of body 
actions. Here, the essential point for teachers is that 
engaging students in actions relevant to mathematical 
concepts help these students to better internalize the 
concepts. 

5\mbolism, according to Tall (201 3), "grows out 
of embodiment by focusing on the actions on objects 
rather than on the objects themselves" (p 14 I ). Tall 
refers to this as operational symbolism- a notion that 
calls for students to perform mathematical operations 
on symbols. That is. while embodiment focuses on 
the physical properties of objects. symbolism focuses 
on manipulating these properties. Manipulating ob
jects ' properties includes, but is not lim ited to, per
forming calculations, writing and verbalizing math
ematical symbols and notations, substituting values 
for variables, rearranging symbols. using relation
ships among properties, and connecting properties to 

other content areas and real-world situations. Hence, 
many of D' Ambrosio, Johnson and Hobbs 's ( 1995) 
pedagogic strategies can be applied to Tall's notion 
of symbolism, thus providing rich pedagogic experi
ences for students. 

It is important to note at this juncture that although 
symbolism is purported to grow out of embodiment, 
the transition is not always a smooth one and teachers 
need to afford students time and support in making 
that transition. D' Ambrosio, Johnson and Hobbs 
(1995) recommend a three~stage transition process: 
( I ) the use of embodiment alone, followed by (2) the 
use of the embodiment together with symbolic rep
resentation, and then (3) the use of the symbolic 
representation alone. The second stage is critical, and 
adequate time must be spent during this stage if stu
dents are to make a successful transition from em
bodiment to symbolism (D'Ambrosio, Johnson and 
Hobbs 1995 ). 

Fonnalism, according to Tall (2013), may take on 
several meanings in mathematics education. For in
stance, Tall refers to Piagetian formalism, when an 
individual reaches the formal operational stage and 
that person's thought process no longer needs the 
involvement of physical referents. Hilbert, 1 on the 
other hand, conceptualizes formalism as focusing on 
axiomatic definitions and proofs, and it is this con
ceptualization that Tall makes use of in his frame
work. Therefore ,Jonnalism in this paper is restricted 
to the use of formulas, production of images (dia
grams) and basic proofs of relationships. Drawing on 
the strategies of D' Ambrosio, Johnson and Hobbs 
( 1995), tasks given to students at this level should be 
cognitively demanding, should make use of collabora
tive/cooperative groupings and should make use of 
technological resources such as calculators, comput
ers and the Internet. 

Concepts of Sine, Cosine and 
Tangent Ratios 

Sine, cosine and tangent, the three primary trigo
nometric ratios, are used in this paper to demon
strate how embodiment, symbolism and formalism, 
as proposed by Tall (2013), can be employed in 
teaching mathematics. To provide the background 
for this demonstration, however, a brief revision 
of these ratios and the ir underlying concepts is 
presented. 

1. Hilbert (1862-1943 ), one of the first formalists, believed that all theorems could be proved using only the 
axioms of the system. 
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Trigonometry is grounded in the study of triangles. 
The basis for the trigonometric ratios is the right
angled triangle. In a right-angled triangle, one angle
the largest- measures exactly 90° and that angle is 
always opposite the longest side-the hypotenuse. 

Hyp otenuse 

This is an essential fact , and it is important tha t 
learners know that the hypotenuse is opposite the 90° 
angle, the angle in the above triang le marked with the 
conventional symbol of a right angle- a box rather 
than an arc. That is. students need to know that the 
longest s ide of any triangle is al ways oppos ite 
the biggest angle. A proof of this theorem can be 
found at www.youtube.com/watch?v=LeeiVVAoPUk. 
In re latio n to the ratios, the two othe r sides of the 
right-angled triangle are called the opposite and 
adjacent sides but, unlike the hypotenuse, the ir 
positions are not fi xed but change as the angle of 
reference changes. That is, the opposite side and the 
adjacent s ide of a right-angled triangle switch when 
the reference angle-which is never the right angle
switches. This is demonstrated in the following two 
triangles, with x being the reference angle in both 
cases . 

~ 
Ad

. Hypotenuse _., . ~ 

L0ooo .. ,----~ 
~ 

Opposite Hypotenuse 

L Ad~cc< ~ 
The sine, cosine and tangent ratios are formed us

ing the sides of the right-angled triangle as follows: 

• S. f angle x = opposite side 1 ne O · hypotenuse 

• C . e of angle x = adjacent side 
OSIII hypotenuse 

or . _ opposite 
sinx · hypotenuse 

Or. cosx _ adjacent 
- hypotenuse 

• Tangent of ang le x = o pposite siae or 
ad1acent side 

tanx = o~pos1te 
a Jacent 

delta-K, Volume 52, Number 2, June 2015 

I have taught and observed others teach the sine, 
cosine and tangent ratios on numerous occasions 
throughout my twenty-plus years as a mathematics 
educator. I have observed that a very common ap
proach to teaching these concepts is to present stu
dents the above formulas and an acronym- SOH
CAH-TOA- for remembering them, followed by a 
few examples with explanation s. Drawing on Tall' s 
work, this approach places instruction in the world 
of formali sm without affording students the oppor
tunity to embody the concept and/or develop critical 
skills in symbolism. As a consequence, students may 
not develop a deep understanding of the primary 
trigonometric ratios, which in tum impedes their 
understanding of other concepts in trigonom etry that 
make use of these ratios. 

One common sign of misunderstanding is that 
many students struggle to identi fy the opposite and 
adjacent sides in problems where the right-angled 
triangle fo rms part of a bigger shape, where right
angled triangles are orientated in ways students are 
not familiar with or where the right angle is not shown 
but must be calcula ted . A second common sign of 
misunderstanding occurs when students struggle with 
identifying which ratio must be used when given a 
s ide and an angle of the right-angle triangle and asked 
to find another side , or when given two sides and asked 
to determine an angle. It is in an attempt to reduce 
these problems that Tail's model of the three worlds 
of mathematics is being proposed as an alternate ap
proach to teaching the sine, cosine and tangent ratios. 

Teaching with Embodiment 
Since embodiment involves the use of the physical 

body-the manipulation of phys ical objects and/or 
bodily actions (Tall 20 l 3)-p edagogic strategies 
employed at this stage call for students to be engaged 
in physica l activities that will help them make sense 
of new concepts. Therefore , when the concepts of 
sine, cosine and tangent ratios are being introduced, 
students can be called upon to act out some of the 
underlying concepts, and the teacher can pose some 
relevant questions to help direct students' thoughts and, 
hence, their internalization of these concepts . Follow
ing are two activities thal demonstrate how teachers 
can help students internalize underlying concepts of 
hypotenuse, opposite side and adjacent side. 

Activity 1: Walking the Lines (50 minutes): The aim 
of this activity is to help students understand the dif
ference in the hypotenuse, opposite and adjacent sides 
of a right-angled triangle. 
• In an open space , draw (or use masking tape on 

the floor to mark off) a large right-angled triangle. 
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The triangle must be large enough for students to 
walk along its sides. The teacher stands at the right 
angle and asks students to walk along the hypot
enuse. The teacher then changes position to stand 
at one of the acute angles and asks students to walk 
along first the side opposite to where he/she is 
standing and then to walk along the side adjacent 
to where he/she is standing. Repeat the activity 
with the teacher (or a student) standing at the other 
acute angle. This time, however, instead of saying 
"side opposite to where he/she is standing" or "side 
adjacent to where he/she is standing," use the terms 
opposite side and adjacent side. Repeat as needed. 

Suggested key questions to pose to students: 
I. In relation to the right (90°) angle, where is the 

hypotenuse? (Opposite to the right angle.) 
2. The right angle is the largest angle in the right

angled triangle. What can you say about the 
hypotenuse in relation to the other sides? (The 
hypotenuse is the longest side of the right
angled triangle.) 

3. In relation to where the teacher was standing, 
what do you notice when walking the opposite 
side versus the adjacent side? (When walking 
the opposite side you will never meet the 
teacher, but you meet the teacher when walking 
the adjacent side.) 

Activity 2: Point and Feel (50 minutes): This is an 
extension of activity 1 but more individualistic in 
nature. It may serve as a follow-up activity for stu
dents who still have difficulty in identifying the hy
potenuse, opposite and adjacent sides. 
• Provide students with a sheet ( or several sheets) 

with several right-angle triangles drawn in different 
orientations and with the right angle and one other 
angle marked. 
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V 
a. b. 

C. d. 
Ask students to place one finger at the right 
angle of each triangle and run another finger 
along the hypotenuses, then label each. With 

one finger at the lettered angles, let students run 
a finger along the opposite sides and label them, 
then along the adjacent sides and label them. 

Suggested key question: 
1. What do you notice about the opposite and 

adjacent sides in shape d? (In shape d, the op
posite side of angles is the adjacent side of angle 
r. In some composite shapes, one side may serve 
as both opposite and adjacent.) 

Teaching Through Symbolism 
While the embodiment activities focused on the 

physical lines and the student's kinesthetic interaction 
with the lines as mathematics concepts (hypotenuse, 
opposite side and adjacent side), activities in this 
section focus on actions that can be taken on the re
lationships that exist among these lines. Here, stu
dents are called upon to perform calculations, write 
and verbalize mathematical symbols and notations, 
substitute numbers for symbols, rearrange symbols, 
and identify and use existing relationships among the 
ratios. These are just a few skills, taken from the world 
of symbolism, that are necessary if students are to 
successfully solve problems involving various con
textualized situations. Following are three activities 
that demonstrate how teachers can help students 
develop their skills in symbolism. 

Activity 3: Deck of Cards: This activity is designed 
to help students develop fluency in recognizing and 
writing the sine, cosine and tangent ratios using 
symbols. 
• The names sine, cosine and tangenr must be written 

on separate index cards. The ratios without the 
names must also be written on separate cards. The 
inverse of these ratios must also be written on 
separate cards. All cards are placed in a deck and 
drawn at random. If a name is drawn, students must 
explain/discuss briefly the ratio. If a ratio is drawn, 
students must give its name and say something 
about it. The inverse ratios must be identified and 
discarded, with reason. Students are encouraged 
to use gestures, diagrams and other available re
sources in their explanation and/or discussions. I 
encourage this as a whole-class activity, but it can 
also be done in small groups as needed. 

Activity 4: Journal Writing: This activity is de
signed to help students make meaning of sine, cosine 
and tangent ratios as presented in problems. 
• Provide students with one or more problems similar 

to the one following and ask them to write about the 
symbolic statement contained therein. Encourage 
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them to express any difficulty experienced in un
derstanding the symbols and if/how they were able 
to overcome such difficulty. Students are reminded 
of activity 2 and are encouraged to use it to help 
them identify the ratios in the diagrams. I encour
age this as an individual activity with opportunities 
for students to share in a whole-group setting. 

,/1/B'~ 

/ ·~ , /c 
:? 

//~'" 
A~ SinA = T and TanC= ~ 

Both activity 3 and activity 4 bridge the gap be
tween the world of embodiment and the world of 
symbolism because they provide students with op
portunities to use their bodies while performing ac
tions in symbolism. This is important to help students 
make the transition from embodiment to symbolism, 
and time and practice must be given to individuals as 
needed. 

Activity 5: Multi-Levelled Computational Tasks: 
This activity will improve students' fluency, compe
tence, understanding and confidence in manipulating 
the trig-ratios in symbolic forms. 
• Teachers must engage students in problem-solving 

tasks in which a number of mathematics problems 
are solved through the manipulation of the sym
bolic representations of the sine, cosine and tangent 
ratios. The following provide the structure of the 
problems needed to develop what Tall (2013) calls 
operational symbolism. 
I. Calculate sin35°. 
2. Given the following diagram, find cosB. 

C 12 cm 
,-,-------------~ B 

San 
13 cm 

A 
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3. Find the length of QR. 
p 

R 

Q 

4. Find angle A if Tan A == 0.381 . 

5 . From the following diagram, calculate angle x. 
giving your answer to the nearest degree. 

15 cm 

X 

4 cm 

6. Given the following diagram, show that ;::=;~ . 

D 

GO' 
A B C 

Student textbooks such as Foundations and Pre
Calculus: Mathematics JO (Davis et al 2010) provide 
a wide range of problems that teachers may consider 
using with their students. 

Teaching Through Formalism 
Using Hilbert's conceptualization of formalism, 

as presented by Tall (2013 ), I focus this section on 
the use of axiomatic definitions and basic proofs. I 
use this restriction because the fonnal world of sine, 
cosine and tangent extends beyond the scope of this 
paper. Therefore, formalism in this context is re
stricted to the use of formulas, production of images 
(diagrams) and basic proofs of relationships among 
the sine, cosine and tangent ratios. I encourage the 
use of collaborative/cooperative groupings because 
this pedagogic practice encourages discussion, which 
helps students to refine their thinking (D ' Ambrosio, 
Johnson and Hobbs I 995). I also encourage the use of 
computers and other forms of technology, which may 
help students save valuable time while performing 
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complex calculations. Following is an activity that 
presents four situations in which students will be 
required to delve into the world of formalism. 

Activity 6: Problems and Proofs: Given the follow
ing formulae, solve the following problems and/or 
derive the relevant proofs, giving meaningful explana
tions for each step in your solution or proof. 

Formulae: 
• . _ opposite 

SLnx - hypotenuse 

adjacent 
• COSX =- hypotenuse 

• tanx = op~osite 
adJacent 

1. A home owner wishes to build a ramp to his front 
door to make it wheelchair accessible. The door is 
I .Sm above ground level and the ramp must have 
an angle of elevation of 15°. What will be the 
length of the ramp? 

2. A man 2m tall standing at the top of a cliff 25m high 
observes two ships in a straight line at sea. He ob
served one ship at an angle of depression of 30° and 
observed the other at an angle of depression of 55°. 
How far away from each other are the ships? 

SinB 3. Prove that: TanB = - 
CosB 

4. Given that S:nA =; and Tanx = 5 
prove that 

:, 12 ' 16 
Ta>iA- Con:= -
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Reflecting on the Instructional 
Progression 

Learning is not a linear process, and to engage 
students in a few well-sequenced activities does not 
guarantee that they will achieve a deep understanding 
of the concepts being taught. To gain a deep under
standing of concepts, learners need to move back and 
forth among the three worlds of mathematics, and 
need to do so at their own pace. Therefore, in teaching 
sine, cosine and tangent ratios using Tall 's (2013) 
worlds of embodiment, symbolism and formalism, it 
should be expected that all learners will not progress 
at the same pace and that some learners will need to 
revert to the level of embodiment while working at 
the symbolic and/or formal levels. This is healthy and 
should not be discouraged. ln this regard, teachers 
will find repeating activity 2, or variations of it, at 
appropriate times useful in helping students overcome 
difficulties such as the inability to correctly identify 
opposite and adjacent sides in unfamiliar shapes. I 
also feel compelled to state that the suggested activi
ties are not exhaustive and neither are they cast in 
stone, but may be adapted to meet the pedagogical 
needs of teachers who choose to use them. 
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Conclusion 
This article presents secondary school mathematics 

teachers with a framework for teaching mathematics 
in a way that will provide students with opportunities 
to gain a deeper understanding of mathematics con
cepts. It uses the concepts of sine, cosine and tangent 
ratios to illustrate how embodiment, symbolism and 
fonnalism can be enacted in the classroom. These 
illustrations are given in the fonn of activities that may 
be adapted and used by teachers. While a compre
hensive list of activities is not given, it is nevertheless 
my hope that the activities presented will raise and/ 
or heighten teachers· awareness of activities spanning 
the three stated worlds of mathematics and provide 
them with an entry point into acts of embodiment to 
complement the acts of symbolism and formalism 
that inform most teachers' pedagogy. Further, the 
tasks and questions posed, especially in the symbol
ism and formalism sections, are commonly found in 
textbooks. The difference here is that tasks are pre
sented so as to take into account the three worlds of 
mathematics in an order that scaffolds understanding. 
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Teaching Mathematics for 
Understanding: 

Approaching and Observing 

Priscila Dias Correa 

Introduction 

Mathematics teaching has been the target of criti
cism recently (take, for example, the extensive media 
response to the latest PISA results). In part, these 
criticisms are derived from the belief that doing 
mathematics regardless of the nature of a learner's 
understanding is sufficient for schooling purposes, 
and that thinking mathematically is necessary only 
for mathematicians. These beliefs seem to be deeply 
rooted in our society and are difficult to change. 
Because of that, new approaches for teaching math
ematics are being judged negatively. Sierpinska 
( I 994) states that 

Sometimes understanding is confused ( or deliber
ately merged) with knowing, and argued that this 
is perhaps not a desirable thing to do in education. 
Unfortunately, institutionalized education is 
framed to develop students' know ledge rather than 
thinking. This is a heritage of a long-standing tradi
tion. (p 68) 

Regardless, many different approaches to teaching 
mathematics for understanding have been investi
gated over the last few decades (Kilpatrick, Swafford 
and Pindell 2001 ). In spite of positive learning out
comes demonstrated by many of the approaches, 
discussions continue about what it means to teach 
for mathematical understanding. Therefore, one 
purpose of this paper is to discuss teaching mathe
matics for understanding by considering its rele
vance, advantages and challenges, as well as the 
factors that contribute to the implementation of 
mathematical understanding activities in class. The 
second purpose is to present three theories of math
ematical understanding: Pirie and Kieren's (1994) 
model of the growth of mathematical understand
ing; Tall's (2013) model of the three worlds of 
mathematics; and Kilpatrick, Swafford and Findell's 
(2001) model of mathematical proficiency, each of 
which can be used to observe students' mathematical 
understanding. 
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Teaching Mathematics for 
Understanding 

As many teachers are aware, mathematical under
standing can be related to more than one kind of 
understanding in mathematics. Skemp (2006), for 
instance, proposes two different meanings for the 
word understanding. He claims that understanding 
can be instrumental or relational. Relational under
s1a11ding means ''knowing both what to do and why" 
(p 89), while instrumental undersranding is described 
by ''rules without rea<;ons" (p 89). This paper will 
refer to relational understanding when discussing 
teaching for understanding. 

Teaching for understanding presents advantages. 
For students to develop understanding, the required 
instruction will correspond to what Ben-Hur (2006) 
calls concept-rich instruction-ie, instruction based 
on conceptual knowledge. As a consequence, the 
constructed knowledge should be stronger and longer 
lasting; hence students can draw on the meanings and 
understandings they have assimilated rather than 
depending on (perhaps long-forgotten) memorized 
facts and processes when they encounter new math
ematical situations and problems. Kilpatrick, Swaf
ford and Pindell (2001) remind educators that if 
students cannot make different associations among 
the learned concepts, they might not be able to use 
them in various problem-solving situations. In this 
sense, the students· mathematical knowledge will be 
compromised because they do not understand what 
they are learning. 

Stein, Grover and Henningsen (1996) claim that 

Complete understanding [of mathematics] ... in
cludes the capacity to engage in the processes of 
mathematical thinking, in essence doing what 
makers and users of mathematics do: framing and 
solving problems, looking for patterns, making 
conjectures, examining constraints, making infer
ences from data, abstracting, inventing, explaining, 
justifying, challenging, and so on. (p 456) 
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But how does one achieve this "complete under
standing" of mathematics? Involving students in 
high-level mathematics activities (cognitively de
manding activities) seems to be an effective way to 
teach students for mathematica l unde rsta nding; 
however, this is a challenging task . Henningsen and 
Stein ( 1997) argue that many factors are necessary to 
support engagement in cognitively high-level math
ematics thinking during mathematical activities, in
c luding ( 1) building connections with students' 
background knowledge; (2) providing students with 
an appropriate amount of time to do the activity-not 
too little and not too much; (3) emphasizing meaning 
and requiring students to explain their understand
ings; (4) having students model their thinking pro
cesses and strategies; (5) providing scaffolding when 
necessary; ( 6) enabling students to self-monitor and 
self-question; and (7) having students draw concep
tual connections. The authors point out that the activ
ity itself will not be able to engage students in math
ematical thinking if students are not properly provided 
with a supportive environment, including the specific 
assistance a teacher can provide . 

If teachers are aware of these factors, why is rela
tional understanding so difficult to achieve? The 
problem is not due to lack of interest or commitment 
by teachers. Indeed, traditional instruction is losing 
time to instrnction that values re lational understand
ing, rather than instrumental understanding (Silver et 
al 2009). So why is teaching for re lational understand
ing so difficult to implement? In their research, Silver 
et al indicate that, when talking about their practice, 
teachers mention many different goals that they aim 
to achieve, of which relational understanding is but 
one. As the amount of necessary work to accomplish 
all these goals is great, teachers may need to make 
choices and choose some goals at the expense of oth
ers (Silver et al 2009). Henningsen and Stein ( 1997) 
highlight some issues that might hinder the engage
ment in the mathematical thinking process: ( 1) inap
propriateness of the task , (2 ) classroom management 
problems, (3) inadequate amount of time spent with 
the task. (4) lack ofaccountability, (5 ) challenges that 
become nonproblems; and (6) foc us on finding the 
right answer. Further, Henningsen and Ste in explain 
that high-level activities require students to take ri sks 
that they might not be willing to take. This may ex
plain why teachers feel pressured to reduce their 
lessons to a set of step-by-step instructions or to re
duce their expectations of what learners need to do 
within a learning activity. 

Unfortunately. simple awareness of issues does not 
mean that teaching for understanding is trouble-free. 
Indeed, recent research (Silver et al 2009) has shown 
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that teaching can still be based on old strategies, and 
founded on procedural knowledge and instrumental 
understanding . But telling students what to do or how 
to do and requiring them to do only low-demanding 
activities will not develop their mathematical under
standing. If students do not involve themselves in 
class activities that require them to think, reflect, try 
different strategies and go over the activity again and 
again. they will be just doing manipulations based on 
someone else's guidance. Hence, students will not be 
developing and enhancing their mathematical under
standing. In this sense, it is important for teachers to 
observe students' understanding processes, in order 
to help them to benefit the most from the activities 
they do. The next section describes some models that 
might be useful in the course of observing student 
meaning making. 

Observing Students' 
Mathematical Understanding 

As teachers invest in teaching mathematics for 
understanding, it becomes necessary for teachers to 
have conceptual tools to observe the effectiveness of 
their teaching practice as it results in learner under
standing. The capacity to observe student under
standing is an important aspect of the whole process 
of instruction, because it enables improvements 
and encourages the ongoing promotion of mathemati
cal understanding in lessons. By examining the 
following task and one possible solution for it, we 
can illustrate some ideas about how students' math
e matical understanding is de monstrated when solv
ing a problem. Note that this analysis is based solely 
on written records of one student' s response to a 
task and the understanding displayed in the student's 
working papers. This partial data from the student' s 
work most certainly means there will be incom
ple teness in the ana lys is o f her mathematical 
understanding. 

The Task 
Consider the two following cell phone plan s. 

Compare them and discuss best customer options. 

I . Plan A- The customer has a total of 200 province
wide minutes of outgoing and incoming calls for 
$22 per month. Extra minutes will cost $0 .40 each. 
Text messages are unlimited. As for data usage, 
the customer will pay per use: up to 25MB, $4; up 
to 100MB, $ 12; up to 500MB, $20; up to 1 GB, 
$30; over I GB, $ 0 .02 per MB. 

2. Plan B- The customer has unlimited Canada-wide 
talk, text and data usage for $42 per month. 
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One Possible Solution 
The student recognizes that there are linear func

tions involved in the problem and thinks about graph
ing the situation as a way of comparing the different 
scenarios. In order to accomplish that, the student 
analyzes each situation and comes up with two func
tions for plan A and one function for plan B. 

Plan A 
The customer pays a minimal monthly amount 

no matter how low her/his cell phone call usage. 
If the customer uses more than 200 minutes, 
she/he will pay the extra cost following a propor
tion. This situation can be represented by the 
following piecewise function. 

{
22 0 5 X 5 200 

f(x)= 22 +0.40(x-200) x > 200 

Plan A 

As for data usage, if less or equal to 1 GB, the 
cost is constant according to the usage. lf the 
usage is more than I GB, the cost is a function of 
the usage. This situation can be represented by 
the following piecewise function. 

0 l =O 
4 0 < t ::::; 25MB 

g(t) = 
12 25MB < t ::::; 100MB 

20 100MB < t ::::; 500MB 

30 500MB < t s 1GB 

[ X 0.02 t > 1GB 

60 CAD$ 

Figure 1: 50 Plan A - 1GB 
Monthly cost for five 
different scenarios 40 Plan A- 500 MB 

30 Plan A - 100 MB 

Plan A- 25 MB 
20 Plan A - 0 MB 

10 

Then the student realizes she can add f ( x) to each 
case of g ( t), in which g ( t) is a constant function, 
resulting in five different functions. She could have 
added f ( x) to the last case of g ( t), too. However, 
because the variables are different, she would have a 
function of two variables, and this is problematic for 
her. Thus, the student's choice was to graph the five 
different functions to illustrate at least five scenarios 
of monthly cost (in case the chosen plan was plan A). 
These five graphs can be seen in Figure I. 

Plan B 

The customer pays a constant amount no matter 
how low or how high her/his cell phone usage. This 
situation can be represented by a constant function, 
which means the customer will always pay the same. 

h(x)= 42 

The graph of the function h ( x) would be constant 
on y = 42, which partially coincides with the plan A 
500MB scenario. 

Based on the described reasoning, the student was 
able to compare and discuss the different scenarios and 
come to a personal conclusion in terms of the customer's 
best options. It is important to notice that other aspects 
could be considered in this analysis as well-for in
stance, whether the plans are provincewide or coun
trywide and what is the customer need in those terms. 

Different ideas and nuances can be associated with 
students' mathematical understanding when analyz
ing the above solution. In the same way, different models 
can be used to observe for understanding. ln this paper, 
three contemporary models will be described for this 
purpose: Pirie and Kieren (l 994), Tall (2013), and 
Kilpatrick, Swafford and Pindell (2001 ). These models 
do not reflect a progression; that is, they are umelated 
to each other and have different underpinnings. 

o Minute 
0 20 40 60 80 100 120 140 160 180 200 220 240 260 
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Pirie and Kieren's Model 
Tom Kieren, a retired professor from the Univer

sity of Alberta, and his colleague Susan Pirie devel
oped a model for observing mathematical under
standing in action (Pirie and Kieren 1994). Their 
model considers eight different stages (Figure 2), 
and students are observed in relation to the stages 
they demonstrate during their learning process. Al
though this model proposes that stages are increas
ingly more comprehensive, students' levels of un
derstanding do not necessarily evolve in a linear 
process. Quite the opposite-students can experience 
a nonlinear process that might fold back to previous 
stages according to each student's learning con
straints and affordances. 

The first stage of Pirie and Kieren's ( 1994) model, 
the primitive knowi11g stage, refers to the background 
knowledge that the student brings with him/her to 
start developing other content. The image making 
stage builds on this prior knowledge as the learner 
makes distinctions in previous knowing and uses it 
in new ways (p 170). Once students can take actions 
without directly associating a new situation to the 
original one, students will have achieved the image
having stage. The next step, if it were linear, would 
be property noticing, when students are able to infer 
properties based on the images they have constructed. 
The fonnalising phase is accomplished when students 
are able to abstract "a method or common quality 
from the previous image-dependent knowhow which 
characterised her noticed properties" (p 170). After 
that, students are expected to come up with new un
derstandings, in the so-called obsen,i11g stage. After 
this point, once students are able to think in terms of 
theories, they have achieved the structuri11g stage, 
which "occurs when one attempts to think about one's 
formal observations as a theory" (p 171 ). Finally, 
when students can follow a rationale and pose reason
able questions about what they know to create new 
structures, new forms and new mathematics. they are 
at the i1ll'entising stage. 

Analyzing the given example based on Pirie and 
Kieren 's model, it is possible to say that the student 
starts on the primitive knowing stage, in that she is 
able to bring her knowledge into the situation. She is 
able to associate the task with linear and constant 
functions. Then the student enters the image-making 
stage, as she takes up graphical representations as a 
tool for analyzing the problem. As the student ana
lyzes each cell phone plan and comes up with the 
functions for each situation and their formal equa
tions, we observe the student at the image-having 
stage. Realizing that she can add two functions as a 
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way of representing two scenarios (call usage and 
data usage) in only one function demonstrates prop
erty noticing. She is assimilating function properties 
such as adding. After this stage, the student goes back 
to the image-making stage, because she needs to feed 
her graph with the added functions she has just found 
out, in order to create new objects with which to make 
meaning. Finally, based on this image, she is able to 
go to the observing stage to come up with her under
standings and conclusions about the task. The for
malising stage, the structuring stage and the inventis
ing stage seem not to be present. In the case of the 
formalising stage, there is no data to determine 
whether the student now understands that there is a 
class of piecewise functions that can be used across 
many situations. Further, a single episode such as the 
one presented does not normally lead to structuring 
and inventising, since it is too narrow in scope. 

Following the student's path based on Pirie and 
Kieren 's ( 1994) model is a nice way of acknowledg
ing the diverse ways that a student can choose to 
pursue when solving a problem and also the different 
needs that a student might have. In this case, for 
example, the student needed to go back to the image
making stage once the graph became the basis of 
her reasoning. The teacher has a significant role in 
this scenario- not the role of inducing his or her 
students to take a specific path, but the role of encour
aging the students to act with what they know and to 
pursue deeper understanding of the situation using 
mathematics. 

Figure 2: Pirie and Kieren's model of the growth 
of mathematical understanding 
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Tall's Model 
Tall (2013), a British mathematics education re

searcher, also presents a model that could be used for 
analyzing students ' mathematical understanding. 
Tail's perspective can be viewed as similar to Pirie 
and Kieren's, since both of them base their models 
in mathematical stages that students might demon
strate in their activity with mathematics. However, 
Tall contemplates only three stages, and so seems to 
have less detail in terms of the development of math
ematical understanding. 

Tail's (20 I 3) model (Figure 3) presents what he 
calls the three mental worlds of mathematics: the 
conceptual world (embodiment), the operational 
world (symbolism) and the axiomatic world (formal
ism). Ac~ording to the author, these worlds are "based 
on human recognition, repetition and language to 
evolve through perception, operation and reason" 
(p 153). The conceptual world refers to experiences 
that students have that enable the embodiment of 
mathematical concepts and, as a result, their better 
assimilation. These experiences emerge from stu
dents' perceptions and actions, and can be associated 
with concrete materials, schemas, images, gestures 
and so forth. Tall highlights that in this stage the focu s 
in on objects. From there, the second world- the 
operational world-will build on the objects, and its 
focus will shift to actions on objects. Thus, students 
work on procedures related to the concepts acquired 
in the world of embodiment. These procedures refer 
to manipulations and calculations, and they might 
result in new understandings that are not tied to em
bodiments. Finally, when students achieve the third 

Axiomatic World 
(Formal ism) 

Figure 3: Tail's model of the three worlds of 
mathematics 
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world, the world of formalism, they are expected to 
think in terms of mathematical abstraction. At this 
point, students will work on formal definitions and 
on properties derived from formal proofs. These three 
worlds are likely to blend. yielding combined settings 
for understanding. Tall calls these combined settings 
embodied symbolic, embodied formal. symbolic for
m a I and proof combining embodiment and 
svmbolism. 
, Following a student's activity according to this 

framework can be useful in helping teachers to ob
serve for the student's mathematical understanding 
and guide the student through it. In the given example, 
the student starts within the world of embodiment, 
given her necessity to illustrate the situation through 
a graph. The graph was the embodied way she used 
to understand and analyze the problem. After that, 
the student evolves to the world of symbolism, figur
ing out the functions, features and formal equations. 
Although she advances to the second world, she 
continues to draw on the embodiment world, since 
she still needs the graph to analyze the problem. It is 
reasonable to say that she ends up in the embodied 
symbolic combined world when she analyzes her 
findings and comes to a conclusion. Finally. it seems 
that the student does not work in the third world-the 
world of formalism- which might not be expected 
at all in this particular problem-solving activity. 

With Tail's model, the teacher uses awareness of 
this threefold understanding process in order to help 
the students. The teacher might need to scaffold the 
student's understanding so that from the embodied 
idea the student can shift to the symbolic representa
tion of this embodied idea. After this stage, the 
teacher's support might be even more critical in help
ing the student evolve to the axiomatic world by 
formalizing the student's ideas and understandings. 

Kilpatrick, Swafford and 
Findell's Model 

Kilpatrick, Swafford and Findell 's (2001 ) model 
of five strands of mathematical proficiency (Figure 4) 
provides yet another observational tool for teachers. 
The five strands are connected as a complex whole 
and all of them are aspects of the development of 
students' mathematical proficiency. As a conse
quence, these strands reflect the development of 
students' mathematical understanding. 

The first strand that Kilpatrick, Swafford and 
Findell describe is conceptual understanding, which 
means a connected and coherent understanding of 
mathematical ideas. The second strand, procedural 
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fluency, relates to the abi lity to choose the right math
ematical procedure and effectively perform it. It is 
not only about knowing what to do, it is also about 
knowing how to do. In this sense, it is a relevant 
strand; however, it is not enough, given that being 
procedurally fluent in mathematics does not mean 
understanding the concept, having a strategy to solve 
the task or even being able to reason. The third strand 
of mathematical proficiency is strategic competence. 
This refers to the ability to identify and build strate
gies to understand, represent and solve problems. 
Kilpatrick, Swafford and Findell point out that this 
ability is different from trying out some possibilities 
with the given numbers in a task, hoping to get the 
right answer. The fourth strand is adaptive reasoning, 
which is the ability to make connections between 
concepts in order to adapt and transfer relationships 
from one situation to another. For example, if a stu
dent has a prior knowledge about linear functions and 
then is introduced to arithmetic sequences, this stu
dent will be invited/required to adapt her/his reason
ing to make connections between the two situations/ 
concepts. Finally, productive di~position is related to 
students' attitude toward mathematics. Kilpatrick, 
Swafford and Findell affirm that if a student perceives 
mathematics as worthwhile and believes that he or 
she is capable of doing and learning mathematics, he 
or she has productive disposition. In the aforemen
tioned example, having productive disposition would 
mean that the student believes she is capable of com
ing up with a connection between I inear functions and 
arithmetic sequences and also believes in the potential 
this connection might have. Although productive 
disposition is a personal characteristic, it is highly 
influenced by teachers' attitudes and teaching styles. 

Kilpatrick, Swafford and Findeirs (2001) model 
for investigating students· mathematical understand
ing can be a useful tool for a teacher, because it is a 

Figure 4: Kilpatrick, Swafford and Findell 's model 
of mathematical proficiency 
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broad model that considers the process as a whole. 
In the given example, the student presents conceptual 
understanding, given that she can effectively connect 
the problem with previous conceptual knowledge 
about linear and constant functions. Also, she shows 
strategic competence when she establishes the graph 
as a tool to analyze the problem and looks for data to 
feed the graph. Procedural fluency is also present, 
given that she can successfully find the formal equa
tions of each function involved in the problem. As for 
adaptive reasoning. it might be the case that the 
student connected previous knowledge in a way that 
would require adaptive reasoning. It might be also 
the case that adaptive reasoning was necessary to 
compare and discuss the different scenarios. None of 
this can be verified with the given data. However, by 
doing this activity in class with students, adaptive 
reasoning might be easily detected by the teacher. 
The same is valid for productive disposition. 

Once more, if the teacher is able to identify that 
students do not demonstrate some of the five strands, 
the teacher can help students develop them by prompt
ing and guiding students through the process until 
they achieve proficiency in each of the five strands. 
For instance, if a student realizes the problem is about 
linear and constant functions, but is not able to come 
up with a strategy to solve it, the teacher may ask 
questions to trigger ideas of different strategies that 
could be used or not. Nevertheless, it is important to 
let the student analyze the options and choose one of 
them. This will allow for the student's development 
of strategic competence. 

Each of the aforementioned models has particulari
ties that can better fit a particular teacher's teaching 
style. Choosing one of these three models to observe 
students' mathematical understanding may be helpful 
in supporting teachers in the challenging role of 
teaching mathematics for understanding. 

Final Considerations 
This paper intended to address mathematical (re

lational) understanding as a critical issue that needs 
to underpin the teaching of mathematics. However, 
teaching mathematics for understanding is a difficult 
and complex task. This paper spoke to some of the 
challenges that are faced during this process. Because 
teaching for understanding is a beneficial and doable 
choice for mathematics teachers, three different mod
els for observing and formatively assessing mathe
matics understanding were described. The models 
described are tools for the teacher who is seeking 
ways to better understand learners and who hopes to 
teach for relational understanding. 
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The teaching and learning of mathematics in 
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Specialist councils' role in promoting 
diversity, equity and human rights 

Alberta's rapidly changing demographics ore creating an exciting cultural diversity that is 
reffected in the province's urban and rural classrooms. The new landscape of the school 
provides an ideal context in which ta teach students that strength lies in diversity. The 
challenge that teachers face is to capitalize on the energy of today's interculturol classroom 
mix to lay the groundwork for all students to succeed. To support teachers in their critical 
roles as leaders in inclusive education, in 2000 the Alberta Teachers' Association 
established the Diversity, Equity and Human Rights Committee (DEHRC). 

DEHRC aims to assist educalors in their legal, professional and ethical responsibilities to 
protect all students and to maintain safe, caring and inclusive learning environments. Topics 
of focus for DEHRC include intercultural education, inclusive learning communities, gender 
equity, UNESCO Associated Schools Project Network, sexual orientation and gender 
variance. 

Here ore some activities the DEHR committee undertakes: 

• Studying, advising and making recommendations on policies that reAect respect for 
diversity, equity and human rights 

• Offering annual Inclusive Learning Communities Grants (up to $2,000) to support 
octiviries that support inclusion 

• Producing Just in Time, on electronic newsletter that can be found at www.teachers 
.ob.ca; Teaching in Alberta; Diversity, Equity and Human Rights. 

• Providing and creating print and web-based teacher resources 

• Creating o list of presenters on DEHR topics 

• Supporting the Association instructor workshops on diversity 

Specialist councils Of8 uniquely si!Oated to learn about diversify issues direc~y from teachers 
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