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Introduction 

Mathematics teaching has been the target of criti­
cism recently (take, for example, the extensive media 
response to the latest PISA results). In part, these 
criticisms are derived from the belief that doing 
mathematics regardless of the nature of a learner's 
understanding is sufficient for schooling purposes, 
and that thinking mathematically is necessary only 
for mathematicians. These beliefs seem to be deeply 
rooted in our society and are difficult to change. 
Because of that, new approaches for teaching math­
ematics are being judged negatively. Sierpinska 
( I 994) states that 

Sometimes understanding is confused ( or deliber­
ately merged) with knowing, and argued that this 
is perhaps not a desirable thing to do in education. 
Unfortunately, institutionalized education is 
framed to develop students' know ledge rather than 
thinking. This is a heritage of a long-standing tradi­
tion. (p 68) 

Regardless, many different approaches to teaching 
mathematics for understanding have been investi­
gated over the last few decades (Kilpatrick, Swafford 
and Pindell 2001 ). In spite of positive learning out­
comes demonstrated by many of the approaches, 
discussions continue about what it means to teach 
for mathematical understanding. Therefore, one 
purpose of this paper is to discuss teaching mathe­
matics for understanding by considering its rele­
vance, advantages and challenges, as well as the 
factors that contribute to the implementation of 
mathematical understanding activities in class. The 
second purpose is to present three theories of math­
ematical understanding: Pirie and Kieren's (1994) 
model of the growth of mathematical understand­
ing; Tall's (2013) model of the three worlds of 
mathematics; and Kilpatrick, Swafford and Findell's 
(2001) model of mathematical proficiency, each of 
which can be used to observe students' mathematical 
understanding. 
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Teaching Mathematics for 
Understanding 

As many teachers are aware, mathematical under­
standing can be related to more than one kind of 
understanding in mathematics. Skemp (2006), for 
instance, proposes two different meanings for the 
word understanding. He claims that understanding 
can be instrumental or relational. Relational under­
s1a11ding means ''knowing both what to do and why" 
(p 89), while instrumental undersranding is described 
by ''rules without rea<;ons" (p 89). This paper will 
refer to relational understanding when discussing 
teaching for understanding. 

Teaching for understanding presents advantages. 
For students to develop understanding, the required 
instruction will correspond to what Ben-Hur (2006) 
calls concept-rich instruction-ie, instruction based 
on conceptual knowledge. As a consequence, the 
constructed knowledge should be stronger and longer 
lasting; hence students can draw on the meanings and 
understandings they have assimilated rather than 
depending on (perhaps long-forgotten) memorized 
facts and processes when they encounter new math­
ematical situations and problems. Kilpatrick, Swaf­
ford and Pindell (2001) remind educators that if 
students cannot make different associations among 
the learned concepts, they might not be able to use 
them in various problem-solving situations. In this 
sense, the students· mathematical knowledge will be 
compromised because they do not understand what 
they are learning. 

Stein, Grover and Henningsen (1996) claim that 

Complete understanding [of mathematics] ... in­
cludes the capacity to engage in the processes of 
mathematical thinking, in essence doing what 
makers and users of mathematics do: framing and 
solving problems, looking for patterns, making 
conjectures, examining constraints, making infer­
ences from data, abstracting, inventing, explaining, 
justifying, challenging, and so on. (p 456) 

37 



But how does one achieve this "complete under­
standing" of mathematics? Involving students in 
high-level mathematics activities (cognitively de­
manding activities) seems to be an effective way to 
teach students for mathematica l unde rsta nding; 
however, this is a challenging task . Henningsen and 
Stein ( 1997) argue that many factors are necessary to 
support engagement in cognitively high-level math­
ematics thinking during mathematical activities, in­
c luding ( 1) building connections with students' 
background knowledge; (2) providing students with 
an appropriate amount of time to do the activity-not 
too little and not too much; (3) emphasizing meaning 
and requiring students to explain their understand­
ings; (4) having students model their thinking pro­
cesses and strategies; (5) providing scaffolding when 
necessary; ( 6) enabling students to self-monitor and 
self-question; and (7) having students draw concep­
tual connections. The authors point out that the activ­
ity itself will not be able to engage students in math­
ematical thinking if students are not properly provided 
with a supportive environment, including the specific 
assistance a teacher can provide . 

If teachers are aware of these factors, why is rela­
tional understanding so difficult to achieve? The 
problem is not due to lack of interest or commitment 
by teachers. Indeed, traditional instruction is losing 
time to instrnction that values re lational understand­
ing, rather than instrumental understanding (Silver et 
al 2009). So why is teaching for re lational understand­
ing so difficult to implement? In their research, Silver 
et al indicate that, when talking about their practice, 
teachers mention many different goals that they aim 
to achieve, of which relational understanding is but 
one. As the amount of necessary work to accomplish 
all these goals is great, teachers may need to make 
choices and choose some goals at the expense of oth­
ers (Silver et al 2009). Henningsen and Stein ( 1997) 
highlight some issues that might hinder the engage­
ment in the mathematical thinking process: ( 1) inap­
propriateness of the task , (2 ) classroom management 
problems, (3) inadequate amount of time spent with 
the task. (4) lack ofaccountability, (5 ) challenges that 
become nonproblems; and (6) foc us on finding the 
right answer. Further, Henningsen and Ste in explain 
that high-level activities require students to take ri sks 
that they might not be willing to take. This may ex­
plain why teachers feel pressured to reduce their 
lessons to a set of step-by-step instructions or to re­
duce their expectations of what learners need to do 
within a learning activity. 

Unfortunately. simple awareness of issues does not 
mean that teaching for understanding is trouble-free. 
Indeed, recent research (Silver et al 2009) has shown 
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that teaching can still be based on old strategies, and 
founded on procedural knowledge and instrumental 
understanding . But telling students what to do or how 
to do and requiring them to do only low-demanding 
activities will not develop their mathematical under­
standing. If students do not involve themselves in 
class activities that require them to think, reflect, try 
different strategies and go over the activity again and 
again. they will be just doing manipulations based on 
someone else's guidance. Hence, students will not be 
developing and enhancing their mathematical under­
standing. In this sense, it is important for teachers to 
observe students' understanding processes, in order 
to help them to benefit the most from the activities 
they do. The next section describes some models that 
might be useful in the course of observing student 
meaning making. 

Observing Students' 
Mathematical Understanding 

As teachers invest in teaching mathematics for 
understanding, it becomes necessary for teachers to 
have conceptual tools to observe the effectiveness of 
their teaching practice as it results in learner under­
standing. The capacity to observe student under­
standing is an important aspect of the whole process 
of instruction, because it enables improvements 
and encourages the ongoing promotion of mathemati­
cal understanding in lessons. By examining the 
following task and one possible solution for it, we 
can illustrate some ideas about how students' math­
e matical understanding is de monstrated when solv­
ing a problem. Note that this analysis is based solely 
on written records of one student' s response to a 
task and the understanding displayed in the student's 
working papers. This partial data from the student' s 
work most certainly means there will be incom­
ple teness in the ana lys is o f her mathematical 
understanding. 

The Task 
Consider the two following cell phone plan s. 

Compare them and discuss best customer options. 

I . Plan A- The customer has a total of 200 province­
wide minutes of outgoing and incoming calls for 
$22 per month. Extra minutes will cost $0 .40 each. 
Text messages are unlimited. As for data usage, 
the customer will pay per use: up to 25MB, $4; up 
to 100MB, $ 12; up to 500MB, $20; up to 1 GB, 
$30; over I GB, $ 0 .02 per MB. 

2. Plan B- The customer has unlimited Canada-wide 
talk, text and data usage for $42 per month. 
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One Possible Solution 
The student recognizes that there are linear func­

tions involved in the problem and thinks about graph­
ing the situation as a way of comparing the different 
scenarios. In order to accomplish that, the student 
analyzes each situation and comes up with two func­
tions for plan A and one function for plan B. 

Plan A 
The customer pays a minimal monthly amount 

no matter how low her/his cell phone call usage. 
If the customer uses more than 200 minutes, 
she/he will pay the extra cost following a propor­
tion. This situation can be represented by the 
following piecewise function. 

{
22 0 5 X 5 200 

f(x)= 22 +0.40(x-200) x > 200 

Plan A 

As for data usage, if less or equal to 1 GB, the 
cost is constant according to the usage. lf the 
usage is more than I GB, the cost is a function of 
the usage. This situation can be represented by 
the following piecewise function. 

0 l =O 
4 0 < t ::::; 25MB 

g(t) = 
12 25MB < t ::::; 100MB 

20 100MB < t ::::; 500MB 

30 500MB < t s 1GB 

[ X 0.02 t > 1GB 

60 CAD$ 

Figure 1: 50 Plan A - 1GB 
Monthly cost for five 
different scenarios 40 Plan A- 500 MB 

30 Plan A - 100 MB 

Plan A- 25 MB 
20 Plan A - 0 MB 

10 

Then the student realizes she can add f ( x) to each 
case of g ( t), in which g ( t) is a constant function, 
resulting in five different functions. She could have 
added f ( x) to the last case of g ( t), too. However, 
because the variables are different, she would have a 
function of two variables, and this is problematic for 
her. Thus, the student's choice was to graph the five 
different functions to illustrate at least five scenarios 
of monthly cost (in case the chosen plan was plan A). 
These five graphs can be seen in Figure I. 

Plan B 

The customer pays a constant amount no matter 
how low or how high her/his cell phone usage. This 
situation can be represented by a constant function, 
which means the customer will always pay the same. 

h(x)= 42 

The graph of the function h ( x) would be constant 
on y = 42, which partially coincides with the plan A 
500MB scenario. 

Based on the described reasoning, the student was 
able to compare and discuss the different scenarios and 
come to a personal conclusion in terms of the customer's 
best options. It is important to notice that other aspects 
could be considered in this analysis as well-for in­
stance, whether the plans are provincewide or coun­
trywide and what is the customer need in those terms. 

Different ideas and nuances can be associated with 
students' mathematical understanding when analyz­
ing the above solution. In the same way, different models 
can be used to observe for understanding. ln this paper, 
three contemporary models will be described for this 
purpose: Pirie and Kieren (l 994), Tall (2013), and 
Kilpatrick, Swafford and Pindell (2001 ). These models 
do not reflect a progression; that is, they are umelated 
to each other and have different underpinnings. 

o Minute 
0 20 40 60 80 100 120 140 160 180 200 220 240 260 
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Pirie and Kieren's Model 
Tom Kieren, a retired professor from the Univer­

sity of Alberta, and his colleague Susan Pirie devel­
oped a model for observing mathematical under­
standing in action (Pirie and Kieren 1994). Their 
model considers eight different stages (Figure 2), 
and students are observed in relation to the stages 
they demonstrate during their learning process. Al­
though this model proposes that stages are increas­
ingly more comprehensive, students' levels of un­
derstanding do not necessarily evolve in a linear 
process. Quite the opposite-students can experience 
a nonlinear process that might fold back to previous 
stages according to each student's learning con­
straints and affordances. 

The first stage of Pirie and Kieren's ( 1994) model, 
the primitive knowi11g stage, refers to the background 
knowledge that the student brings with him/her to 
start developing other content. The image making 
stage builds on this prior knowledge as the learner 
makes distinctions in previous knowing and uses it 
in new ways (p 170). Once students can take actions 
without directly associating a new situation to the 
original one, students will have achieved the image­
having stage. The next step, if it were linear, would 
be property noticing, when students are able to infer 
properties based on the images they have constructed. 
The fonnalising phase is accomplished when students 
are able to abstract "a method or common quality 
from the previous image-dependent knowhow which 
characterised her noticed properties" (p 170). After 
that, students are expected to come up with new un­
derstandings, in the so-called obsen,i11g stage. After 
this point, once students are able to think in terms of 
theories, they have achieved the structuri11g stage, 
which "occurs when one attempts to think about one's 
formal observations as a theory" (p 171 ). Finally, 
when students can follow a rationale and pose reason­
able questions about what they know to create new 
structures, new forms and new mathematics. they are 
at the i1ll'entising stage. 

Analyzing the given example based on Pirie and 
Kieren 's model, it is possible to say that the student 
starts on the primitive knowing stage, in that she is 
able to bring her knowledge into the situation. She is 
able to associate the task with linear and constant 
functions. Then the student enters the image-making 
stage, as she takes up graphical representations as a 
tool for analyzing the problem. As the student ana­
lyzes each cell phone plan and comes up with the 
functions for each situation and their formal equa­
tions, we observe the student at the image-having 
stage. Realizing that she can add two functions as a 
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way of representing two scenarios (call usage and 
data usage) in only one function demonstrates prop­
erty noticing. She is assimilating function properties 
such as adding. After this stage, the student goes back 
to the image-making stage, because she needs to feed 
her graph with the added functions she has just found 
out, in order to create new objects with which to make 
meaning. Finally, based on this image, she is able to 
go to the observing stage to come up with her under­
standings and conclusions about the task. The for­
malising stage, the structuring stage and the inventis­
ing stage seem not to be present. In the case of the 
formalising stage, there is no data to determine 
whether the student now understands that there is a 
class of piecewise functions that can be used across 
many situations. Further, a single episode such as the 
one presented does not normally lead to structuring 
and inventising, since it is too narrow in scope. 

Following the student's path based on Pirie and 
Kieren 's ( 1994) model is a nice way of acknowledg­
ing the diverse ways that a student can choose to 
pursue when solving a problem and also the different 
needs that a student might have. In this case, for 
example, the student needed to go back to the image­
making stage once the graph became the basis of 
her reasoning. The teacher has a significant role in 
this scenario- not the role of inducing his or her 
students to take a specific path, but the role of encour­
aging the students to act with what they know and to 
pursue deeper understanding of the situation using 
mathematics. 

Figure 2: Pirie and Kieren's model of the growth 
of mathematical understanding 
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Tall's Model 
Tall (2013), a British mathematics education re­

searcher, also presents a model that could be used for 
analyzing students ' mathematical understanding. 
Tail's perspective can be viewed as similar to Pirie 
and Kieren's, since both of them base their models 
in mathematical stages that students might demon­
strate in their activity with mathematics. However, 
Tall contemplates only three stages, and so seems to 
have less detail in terms of the development of math­
ematical understanding. 

Tail's (20 I 3) model (Figure 3) presents what he 
calls the three mental worlds of mathematics: the 
conceptual world (embodiment), the operational 
world (symbolism) and the axiomatic world (formal­
ism). Ac~ording to the author, these worlds are "based 
on human recognition, repetition and language to 
evolve through perception, operation and reason" 
(p 153). The conceptual world refers to experiences 
that students have that enable the embodiment of 
mathematical concepts and, as a result, their better 
assimilation. These experiences emerge from stu­
dents' perceptions and actions, and can be associated 
with concrete materials, schemas, images, gestures 
and so forth. Tall highlights that in this stage the focu s 
in on objects. From there, the second world- the 
operational world-will build on the objects, and its 
focus will shift to actions on objects. Thus, students 
work on procedures related to the concepts acquired 
in the world of embodiment. These procedures refer 
to manipulations and calculations, and they might 
result in new understandings that are not tied to em­
bodiments. Finally, when students achieve the third 

Axiomatic World 
(Formal ism) 

Figure 3: Tail's model of the three worlds of 
mathematics 
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world, the world of formalism, they are expected to 
think in terms of mathematical abstraction. At this 
point, students will work on formal definitions and 
on properties derived from formal proofs. These three 
worlds are likely to blend. yielding combined settings 
for understanding. Tall calls these combined settings 
embodied symbolic, embodied formal. symbolic for­
m a I and proof combining embodiment and 
svmbolism. 
, Following a student's activity according to this 

framework can be useful in helping teachers to ob­
serve for the student's mathematical understanding 
and guide the student through it. In the given example, 
the student starts within the world of embodiment, 
given her necessity to illustrate the situation through 
a graph. The graph was the embodied way she used 
to understand and analyze the problem. After that, 
the student evolves to the world of symbolism, figur­
ing out the functions, features and formal equations. 
Although she advances to the second world, she 
continues to draw on the embodiment world, since 
she still needs the graph to analyze the problem. It is 
reasonable to say that she ends up in the embodied 
symbolic combined world when she analyzes her 
findings and comes to a conclusion. Finally. it seems 
that the student does not work in the third world-the 
world of formalism- which might not be expected 
at all in this particular problem-solving activity. 

With Tail's model, the teacher uses awareness of 
this threefold understanding process in order to help 
the students. The teacher might need to scaffold the 
student's understanding so that from the embodied 
idea the student can shift to the symbolic representa­
tion of this embodied idea. After this stage, the 
teacher's support might be even more critical in help­
ing the student evolve to the axiomatic world by 
formalizing the student's ideas and understandings. 

Kilpatrick, Swafford and 
Findell's Model 

Kilpatrick, Swafford and Findell 's (2001 ) model 
of five strands of mathematical proficiency (Figure 4) 
provides yet another observational tool for teachers. 
The five strands are connected as a complex whole 
and all of them are aspects of the development of 
students' mathematical proficiency. As a conse­
quence, these strands reflect the development of 
students' mathematical understanding. 

The first strand that Kilpatrick, Swafford and 
Findell describe is conceptual understanding, which 
means a connected and coherent understanding of 
mathematical ideas. The second strand, procedural 
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fluency, relates to the abi lity to choose the right math­
ematical procedure and effectively perform it. It is 
not only about knowing what to do, it is also about 
knowing how to do. In this sense, it is a relevant 
strand; however, it is not enough, given that being 
procedurally fluent in mathematics does not mean 
understanding the concept, having a strategy to solve 
the task or even being able to reason. The third strand 
of mathematical proficiency is strategic competence. 
This refers to the ability to identify and build strate­
gies to understand, represent and solve problems. 
Kilpatrick, Swafford and Findell point out that this 
ability is different from trying out some possibilities 
with the given numbers in a task, hoping to get the 
right answer. The fourth strand is adaptive reasoning, 
which is the ability to make connections between 
concepts in order to adapt and transfer relationships 
from one situation to another. For example, if a stu­
dent has a prior knowledge about linear functions and 
then is introduced to arithmetic sequences, this stu­
dent will be invited/required to adapt her/his reason­
ing to make connections between the two situations/ 
concepts. Finally, productive di~position is related to 
students' attitude toward mathematics. Kilpatrick, 
Swafford and Findell affirm that if a student perceives 
mathematics as worthwhile and believes that he or 
she is capable of doing and learning mathematics, he 
or she has productive disposition. In the aforemen­
tioned example, having productive disposition would 
mean that the student believes she is capable of com­
ing up with a connection between I inear functions and 
arithmetic sequences and also believes in the potential 
this connection might have. Although productive 
disposition is a personal characteristic, it is highly 
influenced by teachers' attitudes and teaching styles. 

Kilpatrick, Swafford and Findeirs (2001) model 
for investigating students· mathematical understand­
ing can be a useful tool for a teacher, because it is a 

Figure 4: Kilpatrick, Swafford and Findell 's model 
of mathematical proficiency 
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broad model that considers the process as a whole. 
In the given example, the student presents conceptual 
understanding, given that she can effectively connect 
the problem with previous conceptual knowledge 
about linear and constant functions. Also, she shows 
strategic competence when she establishes the graph 
as a tool to analyze the problem and looks for data to 
feed the graph. Procedural fluency is also present, 
given that she can successfully find the formal equa­
tions of each function involved in the problem. As for 
adaptive reasoning. it might be the case that the 
student connected previous knowledge in a way that 
would require adaptive reasoning. It might be also 
the case that adaptive reasoning was necessary to 
compare and discuss the different scenarios. None of 
this can be verified with the given data. However, by 
doing this activity in class with students, adaptive 
reasoning might be easily detected by the teacher. 
The same is valid for productive disposition. 

Once more, if the teacher is able to identify that 
students do not demonstrate some of the five strands, 
the teacher can help students develop them by prompt­
ing and guiding students through the process until 
they achieve proficiency in each of the five strands. 
For instance, if a student realizes the problem is about 
linear and constant functions, but is not able to come 
up with a strategy to solve it, the teacher may ask 
questions to trigger ideas of different strategies that 
could be used or not. Nevertheless, it is important to 
let the student analyze the options and choose one of 
them. This will allow for the student's development 
of strategic competence. 

Each of the aforementioned models has particulari­
ties that can better fit a particular teacher's teaching 
style. Choosing one of these three models to observe 
students' mathematical understanding may be helpful 
in supporting teachers in the challenging role of 
teaching mathematics for understanding. 

Final Considerations 
This paper intended to address mathematical (re­

lational) understanding as a critical issue that needs 
to underpin the teaching of mathematics. However, 
teaching mathematics for understanding is a difficult 
and complex task. This paper spoke to some of the 
challenges that are faced during this process. Because 
teaching for understanding is a beneficial and doable 
choice for mathematics teachers, three different mod­
els for observing and formatively assessing mathe­
matics understanding were described. The models 
described are tools for the teacher who is seeking 
ways to better understand learners and who hopes to 
teach for relational understanding. 
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