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A hum of activity ebbs and flows in the room. 
Seated at round tables, the participants are all en­
gaged, although not all in the same fashion. Some are 
noisily working in pairs, meticulously laying out rows 
of neatly organized dominos, row upon row. Some 
are working independently, slowly, thoughtfully, rear­
ranging the dominos in front of them. As progress is 
made, the ideas flow through the room, rushing by 
those who already know, and forcing others to pull 
their attention from their own thoughts and attend to 
the ideas in the room. This is the picture of a room 
learning-as Doll ( 1989) writes, a room that is doing 
"more dancing and less marching" (p 67). This pro­

ductive hive of activity is the outcome of a good 
mathematics problem. However the participants are 
not students-they are teachers. 

This is not a unique occurrence. Put any group of 
mathematics teachers together with a good problem 
and the hive will spontaneously erupt. The definition 
of a good problem lurks just out of reach, like an idea 
from a dream you cannot quite remember. Some 
mathematics teachers have a good intuition when it 
comes to judging a problem as good; a select few can 
even produce good problems effortlessly. All math­
ematics teachers know a problem is good by the re­
sponse of their class. It may not even be the problem 
alone. Instead it may be a perfect storm coming to­
gether, out of unidentifiable elements like day of the 
week, time of the day, the past of the participants, the 
safety of the learning atmosphere and more. However, 
like the good problem, the perfect storm is recogniz­
able when it rains down. 

As a participant in this particular hive, I discerned 
new ideas about mathematical thinking as I worked 
on the mathematics. The problem was a tiling activity 
with dominos that ended up generating the Fibonacci 
sequence. I started with the dominos but quickly 
moved to paper, developing a symbolic representation 
for the problem so that I could organize the arrange­
ments into types and count using combinatorics. 
Others in the group were using the language of trans­
formational geometry. This did not occur to me. Some 
had completely abandoned the dominos and were 
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working exclusively on paper. Still others were work­
ing solely with the dominos. 

After the emergence of the Fibonacci sequence 
was discovered and agreed upon, the group moved 
on to something else, but I stayed with this problem. 
I found myself listing the terms of the sequence and 
the symbolic pattern until the 11th iteration, then 
looking for a formula that would generate the se­
quence using sigma notation. There is something 
about this experience that is deeply connected to the 
kind of mathematical thinking l would like to support 
s1tudents in developing. 

Tall (2013) has two ideas related to mathematical 
thinking that are connected to this experience with a 
good problem. The first is the concept of the met­
before, which Tall initially describes as "a structure 
we have in our brains now as a result of experiences 
we have met before" (p 23). Later Tall writes that 
'"met-before' refers not to the actual experience itself, 
but to the trace that it leaves in the mind that affects 
our current thinking" (p 88). Both of these descrip­
tions create a picture of something left behind in the 
mind as a result of a mathematical experience that 
may or may not be a complete object. The decision 
to use combinatorics to approach the problem was 
not a conscious one. I did not have the thought "I will 
use combinatorics," nor did I decide to stop using the 
dominos and start using a symbolic representation. 
These approaches seemed to evolve organically, just 
as equally valid approaches evolved organically in 
other members of the group (this may point to one of 
the qualities of a good problem). This could be similar 
to the experience of a met-before, a residual experience 
with a mathematical idea that unconsciously appeared 
in my work and influenced my thinking. A met-be­
fore, like take it to the other side and change the sign, 
is supportive for a student in solving 2x - 6 = I 0. 
When the same student is faced with 2x + 5 = 6x- I 0, 
then the met-before can become problematic. What 
should I move and which side should I take it to? This 
residual left behind in the mind can lead students to 
productive approaches or stop them in their tracks, 
depending on the situation. 
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Tall's (2013) idea of "three mental worlds of math­
ematics" (p 133) forced me to reflect on teaching and 
doing mathematics differently. The three worlds of 
mathematics are cmzceptual embodiment, operational 
symbolism and axiomatic Jonna/ism. For Tall, con­
ceptual embodiment occurs when "human perception 
and action" (p 133) lead to the development of mental 
images that grow into "perfect mental entities in our 
imagination" (p 133). Tall uses conceptual embodi­
ment to refer to the initial formulation of thinkable 
concepts "through recognition and categorization'' 
(p I 33). Conceptual embodiment is a "compression 
from procedure to process that can be seen by shifting 
the focus of attention from the steps of a procedure 
to the effect of the procedure'' (Tall 2008, 12), where 
"compression is seen as a general cognitive process 
that compresses situations in time and space into 
events that can be comprehended in a single structure 
by the human brain" (Tall 2008, 13) that involves both 
conceptual embodiment and operational symbolism. 
Compression is not a linear progression through 
stages. In itself. compression is a process that moves 
backward and forward as new situations confront 
met-befores and inconsistencies are resolved. Con­
ceptual embodiment is a process that begins when 
repeated actions become embodied procedures. Then 
the procedures come to be understood by their effect 
and, finally, this effect becomes an embodied concept 
in the mind. 

Operational symbolism occurs when "embodied 
human actions" (Tall 2013, 133) develop into ''sym­
bolic procedures of calculation and manipulation that 
may be compressed into procepts to enable flexible 
thinking" (p 133). A procept is a mathematical idea 
that is both a process and a concept (object). A student 
learning mathematics typically learns one first, then 
becomes aware of the other and then, through the 
process of compression, gains understanding of and 
the ability to utilize both fl exibly, as required. A 
symbol can suggest "a process that produces a math­
ematical object" (Gray and Tall 1994, 121 ). Thus, the 
symbol for the minus sign has three components 
embedded into it: it represents the process of subtrac­
tion, it represents the concept of difference and it is 
a symbol with its own meaning. When a child learns 
to count.four is a process. Later when the child adds 
two to four by counting on from four.four has become 
a mathematical object. 

According to Tall (20 I 3 ), conceptual embodiment 
and operational symbolism are intertwined and occur 
together in overlapping layers through compression. 
However, there is a key distinction. Conceptual em­
bodiment focuses on objects (and actions on the ob­
jects) and operational symbolism focuses on symbols 
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(and the manipulation of symbols) (p 155). By 
focusing on objects, conceptual embodiment offers 
the possibility of sensing what happens as a conse­
quence of the operation. "It has an effect that can be 
seen" (p 155). For example, a student is asked to 
compare the graph of f(x) = 12

-'-, ~
1
; +:ii with the graph 

of g(x) = 2x - I , and decides to use the zoom feature 
on a graphic display calculator (GDC) in the neigh­
bourhood of x = -3. When the hole in the graph of 
f(x) at x = -3 appears. it allows the student to see the 
effect the (x - 3) factor has in the denominator. The 
procedure of using the zoom function on a GDC shows 
(perceived through sight) the effect of the (x - 3) factor. 
The conceptual embodiment of this effect repre­
sents the visual difference and similarities of the 
graphs of f(x) and g(x) Manipulating the symbolic 
representation of by dividing out the common factor 
(x - 3), is a symbolic procedure. This is part of the 
process of simplifying rational expressions to dem­
onstrate the concept thatf(x) is equal to g(x), every­
where except at x = 3. The compression of the 
process of simplifying rational expressions with 
the concept that the original and the simplified func­
tions name the same thing ( except at the restrictions) 
is a procept. 

Finally, when Tall (20 13) uses the term axiomatic 
formalism, he is referring to "bui lding formal 
knowledge in axiomatic systems specified by set­
theoretical definitions, whose properties are deduced 
by mathematical proof' (p 133). This world is a dif­
ferent world all together. Ax iomatic formalism 
turns the processes discussed thus far upside down. 
" Instead of studying objects or operations that have 
(natural) properties, the chosen properties (axioms) 
are specified first and the structure is shown to 
have other properties that can be deduced from the 
axioms" (p 149). Consider the axiom "If x and y are 
sets, then the set of pairs (x, y) or the set of pairs 
(y. x) exists" (Wells 2006, 2 137). This is the axiom 
that allows for the creation of new sets from existing 
sets and thus forms the basis for the definitions of a 
relation and a function. Note that this axiom does not 
require a list of the elements of a set to make the claim 
the set exists. Axiomatic fonnalism sits atop the in­
tertwined conceptual embodiment and operational 
symbolism. Tail 's discussion (20 13, 2008) of his 
model of these three worlds is summarized in 
Figure I . This model is at the root of my reflection 
on my teaching in light of the domino tiling. If axi­
omatic formalism comes after the intertwined con­
ceptual embodiment and operational symbolism, why 
do I consider it important to start with a formal proof? 
Is there a better way to help students develop math­
ematical thinking? 
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Figure 1 

Formal Axiomatic Formal 

Conceptual embodiment of Procept (as both process and 
Object 

this effect 

Effect (of procedure or 
action) 

Procedure (through 

perception or action) 

EMBODIED 

Returning to my experience with the domino activ­
ity, and considering this experience in the light of 
Tall's (2013) three mathematical worlds, there are 
some interesting observations. To explain the activity, 
Figure 2 illustrates the possible tilings for 2 x 1 space, 
2 x 2 space and 2 x 3 space respectively. 

I moved away from physically manipulating the 
dominos rather quickly ; however, I stayed in the 
conceptual embodiment world throughout the activity, 
continuing to draw possible tilings for eleven itera­
tions. The drawing of the three possible 2 x 3 tilings 
seen in Figure 2 looked similar to { III, I=, =I} . I 
continued to draw iterations of the tilings long after 
I had established the numerical sequence and sym­
bolic representations. I moved quickly into the opera­
tional symbolism world, creating symbolic represen­
tations for each specific group of tilings. However, I 
did not leave the conceptual embodied world behind . 
Beside each of the drawings depicting each iteration 
was a combination formula equivalent to the numeri­
cal values of the number of arrangements of each 
configuration. These formulas were symbolically 
manipulated to highlight the various components. 

thinkable concept) 

Process (seen as a whole) Process 

Procedure (expressed 
Action 

symbolically step by step) 

SYMBOLIC 

Figure 3 is a sample row from the table I con­
structed showing how I recorded the information for 
a 2 x 8 space. Changing the number of vertical and 
the number of horizontal dominos generated different 
arrangements. I did not physically create all of these 
arrangements. My conceptual embodiment continued 
as I continued to draw arrangements; however, I did 
not draw dominos. Thus, the symbolic representation 
took two different forms. For the first I used symbols 
to represent the dominos in each tiling. For example, 
one of the possible 2 x 8 tilings was depicted by 
HIIII=, which represented six vertical dominos and 
two horizontal dominos. The second symbolic repre­
sentation, combinatorics notation, was used to count 
the arrangements of each iteration. The six vertical 
and two horizontal tiling can be arranged in seven 
different ways, as seen in Figure 3. However, I 
counted these arrangements ways using combinator­
ics: of the seven possible places for the two horizontal 
dominos select one. All the possible tilings for this 
two-by-eight example are summarized in Figure 3 
using my conceptual embodiment (the drawings) and 
my operational symbolism (combinatorics). 

Figure 2 

One possible 2 x 1 tiling Two possible 2 x2 tilings Three possible 2 x3 tilings 
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Figure 3 

Iteration Size Conceptual Embodiment Operations Symbolism Term in the 
Sequence 
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In the end, I was able to generalize the decon­
structed pattern and derive a function that, given the 
size of the space to be tiled, returns the number of 
possible tilings, accounting for all possible arrange­
ments of horizontal and vertical arrangements. 

In truth, while I have read about tiling activities, 
this was my first experience actually working on a 
tiling problem and the first time in a long time I sat 
down to do mathematics with which I am unfamiliar. 
Reflecting on this work, it is clear to me that there 
were occasions I was working in the conceptual em­
bodiment world, which is in some cases distinct from 
and in others interrelated with occasions when I was 
creating an operational symbolism. It is equally clear 
how these two worlds are intertwined and how they 
worked together to create. in my mind, a procept that 
represents this problem. Now the physical model, the 
symbolic representation of this model. the processes 
used to generate the symbolic iterations and the gen­
eralized formula sit together in my mind and my at­
tention can float between them. What is most interest­
ing is that I never moved into the axiomatic formalized 
world. For years. I have taught students to use the 
method of proof by mathematical induction, yet I did 
not produce a formal proof of my generalized for­
mula, which normally I would have. I was satisfied 
that my formula was valid because my formula was 
able to generate the numerical values I was expecting 
for the first three iterations. This was all the pmofI 
needed. The compression process of the two worlds­
conceptual embodiment and operational symbol­
ism-creates the flexible procept. 

This is the point where I can now explain why Tail's 
three mathematical worlds absorbed my attention. I 
teach Grade I 0, 11 and 12 mathematics. Functions 
are a part of each of these courses, and I use functions 
as the theme for teaching each of these mathematics 
courses, introducing each topic as a new function. 
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Volume. surface area and perimeter become functions 
of their linear measure(s). Quadratics and lines are 
functions. Simplifying rational expressions becomes 
investigating rational functions. The logarithmic 
function is introduced as the inverse of the exponen­
tial function. Sequences and series are discrete func­
tions on the positive integers. Probability becomes 
functions on random variables. Trigonometry begins 
with trigonometric functions then moves into triangle 
trigonometry. Using the theme offu11cti011 has allowed 
me to circle back to topics to create deeper under­
standing. Yet I always begin with formal definitions 
like those of relation, function, domain and range. I 
always begin in the world of axiomatic formalism . 

My absorbing thought is why start the topic of func­
tions in the axiomatic formalism world? The answer 
may be that this approach is my own met-before that 
is problematic for students. These worlds of conceptual 
embodiment and operational symbolism lead me to 
rethink the way I introduce functions. Creating situa­
tions in which students can move between these two 
worlds and up and down the compression continuum 
may help students build flexible mathematical procepts 
as opposed to problematic met-befores. One such situ­
ation is the function machine. "A function may be 
represented in a more concrete manner as a function 
machine (or function box) that has the property that 
can be imagined both as a process (as a machine taking 
an input and producing an output) or as an object (a 
box that contains the machine preforming the opera­
tions)" (McGowen and Tall 2013, 531 ). The use of a 
function machine can allow students to work in the 
conceptual embodiment world at the same time as they 
work in the operational symbolism world, which in 
tum will help students build a flexible function procept. 
As seen in Figure 4, functions can have rules that vary 
depending on the input. have more than one input, work 
in multiple discrete stages or fo llow other rules in 
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addition to algebraic rules. All of this helps students 
build a more flexible procept for function at the same 
time as it intertwines the conceptual embodiment and 
operational symbolism worlds, which in tum will cre­
ate a solid platform for the movement into the axiom­
atic formalism world. 

Figure 4 

X 
For an even number output 2 
For an odd number output 3x + 1 

Another example that can help students build flex­
ible procepts is the wrapping function. Consider the 
image below, Figure 5, a square with sides of length 
two. Starting at any vertex or midpoint, a path can be 
traced around the perimeter of the square. This simple 
process can create many functions. 

D 

Figure 5 

C 

B 

A 

For example, starting at A and travelling in a 
counter-clockwise direction for a length of two units, 
the path ends at C. This instruction could be repre­
sented as the (A, 2), both of which are inputs. The 
output would be C. However, this is only one of the 
many functions that can be generated from the model 
in Figure 5. The input (A, 1) could be linked to an 
output of 2 ( vertical height), or O (horizontal distance 
from start) or both (2, 0). Cartesian graphs can be 
generated from a variety of mappings from one set 
onto another set. An input of (A, -2) would have an 
output of B , the path length of negative 2 being a path 
in a c lockwise direction. Figure 6 shows examples of 
different shapes that can be used as the wrapping 
function and the Cartesian graphs of different map­
pings that can be drawn. 

The periodic nature can be explored in both the 
conceptual embodied world and the operational sym­
bolism world. Not only does an activity like this lead 
into the generating idea for sine and cosine functions, 
it also provides a conceptual embodiment experience 
that relates to other mathematical concepts such as 
vectors. 

The concept of a function is central to a significant 
part of the high school mathematics program; there­
fore, devoting more time to encouraging students to 
create a flexible procept based on the worlds of con­
ceptual embodiment and operational symbolism may 
be more beneficial to them than spending time in the 
axiomatic formalism world. Creating problems linked 
to mathematics curriculum that allow students to 
move between the conceptual embodiment and op­
erational symbolism worlds as they feel comfortable 
will help students create flexible procepts. Addition­
ally, the potential to work in the two worlds may be 
another quality of a good problem. 

Figure 6 

◄ IIIIHHIIHIIH • 
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