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Solve the Following Equation: 
The Role of the Graphing Calculator in the 

Three Worlds of Mathematics 

Jayne Powell 

In 2013, David Tall published a book entitled How 
Humans Learn to Think Mathematicalfy: Exploring 
the Three Worlds of Mathe,natics, which tries to make 
sense of how mathematics is taught and learned in a 
world where the spectrum of positions on mathemat­
ics ranges from feelings of absolute beauty and power 
to anxiety and distress (p xiii). He proposes a frame­
work of three worlds of mathematics through which 
learners constrnct mathematical meaning. As graph­
ing calculators are now a near-ubiquitous tool in the 
mathematics classroom, this paper will explore how 
using a graphing calculator is both supportive and 
problematic within these three worlds of mathematics, 
by considering how students may come to solve 
quadratic functions. 

The presence of the graphing calculator in the 
mathematics classroom has become naturalized. One 
does not often step back and ask how it came to be 
here or what it is currently doing to mathematical 
thinking, pedagogy and cuniculum. Historically, the 
first device that could be considered a calculator, the 
abacus, began to extend mathematical thinking as 
early as 5,000 years ago. Then, in 1692, the French 
mathematician Pascal created the first mechanical 
calculator, which had the ability to add and subtract 
numbers. However, at the time Pascal concluded that 
it was too expensive for any practical use (Grinstein 
and Lipsey 2001, 87). Calculators would remain too 
expensive for common household use until the I 970s. 
Since that time, the increased use of calculators in 
society quickly forced educators to adapt, which gave 
rise to the prominent and lasting mathematics educa­
tion debate about whether and how calculators should 
be implemented in classrooms (Banks 2008, 1-2). 
Then, in the early l 990s, a more powerful type of 
calculator-the graphing calculator-emerged on the 
education scene, and it was soon commonly seen in 
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most high school mathematics classrooms. Graphing 
calculators allow students to graph, analyze, calculate 
and solve problems graphically, numerically and al­
gebraically. Since nongraphing calculators had be­
come common in schools, aside from some discus­
sions surrounding their monetary expense, the 
addition of graphing calculators to the classroom was 
less contentious. However, even if the addition of the 
graphing calculator was met with less resistance, it 
is still considered in the literature as the instigator of 
massive change in the high school mathematics class­
room in the last 25 years. In 1992, near the beginning 
of the integration of the graphing calculator into the 
classroom, Kaput described this new technology as 
"a newly active volcano of the mathematical mountain 
... changing before our eyes, with a myriad of forces 
operating on it and within it simultaneously" (p 515). 
Yet today, its presence goes nearly unquestioned. 
Leaming to use a graphing calculator is merely part 
of the progression of learning about mathematics. 
The presence of the graphing calculator in education 
has gone from being seen as an active volcano to be­
ing naturalized. Teaching high school mathematics 
now implicitly includes teaching how to use a graph­
ing calculator to aid in developing mathematical 
thinking and understanding. 

The Three Worlds of 

Mathematics 

Tall (2013) puts forth a framework in which to 
consider mathematical learning that he calls the 
"three worlds of mathematics": conceptual embodi­
ment, operational symbolism, and axiomatic formal­
ism (p 133). Through these worlds, language, catego­
rization and repetition produce thinkable concepts 
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that can be developed into crystalline concepts, 
which occur from the compression of understanding 
into a structure that has "inevitable properties in 
its given context" (p 27). The use of the word em­
bodiment, in conceptual embodiment, can be prob­
lematic. In everyday language the word embodiment 
can mean a concrete representation of an abstract 
idea, or the embodiment of an idea can be linked to 
knowing through the body. Yet, Tail's explanation of 
the first world of mathematics, conceptual embodi­
ment, is more open and points to any human percep­
tions and actions that develop mental images that 
give meaning to abstract concepts, be it through 
the body, concrete materials or other experiences 
such as using a graphing calculator. The second world 
of mathematics, operational symbolism, often devel­
ops from embodied understandings and includes 
"symbolic procedures of calculation and manip­
ulations that may be compressed into ... flexible 
operational thinking" (Tall 2013, 133 ). The third 
world of mathematics, axiomatic formalism, builds 
formal mathematical knowledge by developing 
definition and proof. Learners do not move through 
these three worlds linearly; instead they continually 
"fold back" (Pirie and Kieren 1994) to previous 
learning in order to move their understanding for­
ward. Learners never come back to the same place 
in the same way, and they are always taking some­
thing different away. To think of developing under­
standing in this way "reveals the non-unidirectional 
nature of coming to understand mathematics" (Pirie 
and Kieren 1994, 69). 

In many Alberta schools, students begin to learn 
to use and rely on their graphing calculators in 
Grade I 0. Leaming to use this tool develops through 
both formal instruction and other experiences of using 
the calculator, such as trial and error or play. Many 
students begin their formal experiences with the 
graphing feature by working with linear functions. 
When students move on to Grade 11 they will start 
to explicitly study nonlinear functions, often begin­
ning with quadratic functions. The calculator then 
becomes more than a tool used for routine calcula­
tions and displaying the odd graph, but instead de­
velops into an incredibly useful extension of their 
thinking. This extension will become as prized for its 
instant graphing capabilities as it is for its ability to 
convert rational numbers from decimal form into 
fractions. Yet, there are previous understandings, 
which Tall (2013) calls met-be/ores, that can be both 
supportive and problematic in developing an under­
standing of quadratic functions. Teachers need to be 
aware that "a sensible approach to learning requires 
not only the building towards powerful ideas that will 
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be encountered in the future but also addressing the 
problematic issues in the present that may have long 
tenn consequences" (p 116). Thus, in unpacking the 
graphing calculator's role in learning about solving 
quadratic functions through the three worlds of math­
ematics, it is important to remember that both prob­
lematic and supportive met-befores are being created. 

When beginning to study quadratic functions, a 
common starting place is to look at the features of 
quadratic functions and their corresponding graphs. 
Students place equations often given in standard, 
y = ax"+ bx+ c, vertex, _v == a(x - p}" + q, and fac­
tored, y == a(x-b)(x- c), fonns into the [Y=] function 
of their calculator. They observe the U-shaped curves. 
opening up and down, wider and skinnier, with the 
vertex in multiple locations. This may further perpetu­
ate a common met-before related to the meaning of 
the equals sign. For some students, an equals sign 
often does not represent equivalence between the two 
sides of an equation, but initiates a problematic "put 
the answer here" response. 

t1ot1 P1Qt.~ t1~t3 
,v 1 =I ,v2= 
,Y3 = 
,Y 11= 
,Ys= 
,Y6= 
,.'y'7= 

Figure I: Home screen of graphing feature of 
TI 83+ 

Figure I shows how, on the main input screen for 
a graphing calculator, they-variable is isolated on the 
left side of the screen and an equals sign indicating 
"put the expression here' ' on the right side. The y­
variable becomes separated from the rest of the equa­
tion, decreasing its appearance of importance within 
the function. Functions may begin to lose their two­
variable appearance, and importance, as the x-variable 
becomes the focus . It is possible that when given an 
equation that is not in one of the common forms, such 
as y - 6 = x 2 

- Sx, to see some students reach for their 
calculators and enter Y 

1 
= x7 

- Sx. This response to 
an equals sign builds on the previous misunderstand­
ing of the meaning of the Y

1 
in their calculator's 

graphing feature. This met-before is possibly perpetu­
ated because students are often given equations with 
the y-variable already isolated and will then repeti­
tively enter equations without having to enter a _v or 
equals sign into their graphing calculator. 
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This met-before can be built upon further for some 
students when they start to solve quadratic equations, 
such as x2 + 3x - IO = 0, with their graphing calcula­
tors. Suddenly, the y-variable is gone, replaced with 
a 0, and although teachers may explicitly discuss this 
change some students may not build these understand­
ings into their creation of meaning. They are now 
working with only a specific case of the function­
when it is equal to 0. This change is made easy by 
the previous met-before regarding the meaning of an 
equals sign, for some students can ignore the O in the 
same way that they were ignoring they-variable, the 
only difference being that the part being ignored is 
often located on the right side rather than the left. 
Thus, students who enter x2 + 3x - 10 into [Y

1
] are 

at times completely unconcerned with the meaning 
of the 0. There is a lack of awareness that on their 
calculator screen is a representation of the function 
y = x2 + 3x - 10, not the equation x=' + 3.x - IO = 0. 
Students can then use the [CALC] feature to find the 
zeros, perhaps unmindful that the zeros are interesting 
because the equation is currently equal to 0. lf instead 
x~ + 3x - 10 = 2, the interest would be in the x-values 
of the graph when the function is at 2. Using the 
graphing feature of a calculator to graph the related 
function as a way to learn to solve equations can lead 
to a possible misunderstanding of the definition and 
meaning of a function. 

When learning to solve quadratic equations by 
factoring, an algebraic method, the calculator can be 
used as a bridge between the worlds of operational 
symbolism and conceptual embodiment. Making the 
conceptual embodiment of the graph a method of 
developing a visual representation of the solutions 
arrived at algebraically in the world of operational 
symbolism. Students can look at the equations in fac­
tored form, such as (x - 2)(x + 5) = 0, and the corre­
sponding graph, Y

1 
= (x- 2)(x+ 5)orY

1 
=x 2 + 3x- 10 

to recognize relationships between the two. The con­
nection between the x-intercepts of (2, 0) and (-5, 0) 
and the numerical values of 2 and -5 in the factored 
form of the equation seem straightforward. This 
demonstrates how conceptual embodiment and op­
erational symbolism can blend together, allowing 
more powerful ways of thinking mathematically 
(Tall 2013, 145). However, thinking about the con­
nection between the values in factored form and the 
x-intercepts of the graph is not enough. In using 
factoring to solve a quadratic, it is difficult to develop 
meaningful understanding of the connection to zero. 
The graphing calculator reinforces the numerical 
values, for example the 2 and the 5, not the reason 
for their signs, +2 and -5. Students may inappropri­
ately generalize their own understanding to solve a 

delta-K, Volume 52, Number 2, June 2015 

quadratic equation as a rule articulated as "just factor 
and take the opposite signs of the numbers." This met­
before becomes troublesome in problems such as 
(2.x - 3)(x + 4) = 0, where using this "rule" often 
results in the incorrect solution x = 3 and x = -4. This 
met-before is created from experiencing many ex­
amples that have had integer solutions, which are 
reinforced further through seeing these integer solu­
tions on their calculators. Although the calculator 
may play a role in creating this met-before, it is also 
incredibly supportive in considering why this under­
standing is incorrect. In returning to the graphical 
representation, students can see that the graph does 
not cross the x-axis at 3, but seemingly half-way 
between I and 2. As students build more and more 
of these ex.periences with conceptual embodiment 
and start learning the associated algebraic approach 
to solutions, in the world of operational symbolism, 
they begin to rely less and less on the calculator. 

As students progress, the graphing feature of the 
calculator is used less to make meaning of equations 
or to check algebraic solutions. 'The use of algebra 
becomes more sophisticated, and operational symbol­
ism takes on a role of its own that no longer needs to 
be permanently linked to embodiment" (Tall 2013, 
145). Taking these thinkable concepts and compress­
ing their meaning, "in the symbolic world we begin 
to shift to a new way of making sense of the symbols 
themselves and the coherent ways in which they oper­
ate, without consciously referring back to their earlier 
meanings" (Tall 2013, 145). Yet, having created a 
conceptual embodiment of these concepts allows for 
folding back to these ideas if necessary, allowing for 
more flexible mathematical thinking and meaning 
making as teachers push their students into the world 
of operational symbolism. 

Many students will begin to get comfortable with 
factoring to find the solutions to an equation, until 
they come to a problem where the quadratic equation 
is not easily factorable. Often, the first response is 
that "not easily factorable" means that the problem does 
not have a solution. If students are mathematically 
flexible they can fold back to the conceptual embodi­
ment provided by the graphing calculator and are able 
to graph the equation to look for what they often 
understand to be the solutions to a quadratic equation, 
the x-incercepts. Some students, often through the 
guidance of their teacher, will come to understand 
polynomial solutions as being either real and unequal, 
real and equal, and unreal and unequal, for real solu­
tions only. However, some students might create 
different meaning. Perhaps some equations might 
show a graph crossing the x-axis, disproving students' 
previous conjecture that an equation that is not 
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factorable has no solutions. Students can work back 
and forth between the worlds of conceptual embodi­
ment and operational symbolism to create meaning 
and find resolutions to their questions. However, other 
equations will show no x-intercepts, and students 
would feel more confident in their initial response of 
there being no solution to equations that are not easily 
factorable. This line of thinking could lead to a rule 
that there can be none, one or two solutions to a 
quadratic equation. When students further their math­
ematical learning, having a conceptual embodied 
understanding of the solution(s) to equations as 
x-intercepts of a graph creates a challenging met­
before when students encounter complex roots for 
the first time. Students may have been told that no 
solutions exist when there are no x-intercepts, and 
yet complex roots do exist, just not in the same way. 
Thus, students must be flexible not only in their ability 
to fold back to other meanings but also to let go of 
constructed meanings, or "rules," as they continue 
their learning. 

The issue of how to find the solutions to quadratic 
equations when they are not factorable transitions 
students into the third world, axiomatic formalism. 
This is the world of formal mathematics that relies 
on definition and proof. Here the quadratic fommla 
can be derived symbolically, often using the method 
of completing the square. Once this formula is derived 
in the world of axiomatic formalism, students will 
return to operational symbolism to work with and test 
this formula, often checking it against the conceptual 
embodied world of the calculator's graphing feature. 
Again, the conceptual embodiment that the calculator 
creates allows for acceptance and understanding of 
very abstract concepts and meanings. 

Tall (20 13) hypothesizes "that mathematical think­
ing builds on . .. faculties set-before birth in our genes 
and develops through successive experiences where 
new situations are interpreted using knowledge struc­
tures based on experiences that the individual has met 
before" (p 11 7). As teachers. we need to be aware of 
the beneficial and problematic consequences of the 
mathematical experie nces that occur in our class­
rooms, especially since problematic understandings 
are often created accidentally and unconsciously. The 
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inclusion of the graphing calculator in learning to 
solve quadratk equations allows rapid access to the 
world of conceptual embodiment that just 25 years 
ago was not readily available for high school students. 
This inclusion brings deeper understanding as well 
as the reinforcing and creation of problematic met­
befores. By moving between the worlds of conceptual 
embodiment on the calculator and the algebra used 
in operational symbolism, deeper meanings can be 
created. Even the world of axiomatic formalism ben­
efits from the graphing calculator. as generalizations 
created here can be tested out in the world of concep­
tual embodiment. The graphing calculator as a tool has 
changed how mathematics is taken up in the class­
room, allowing access in the high school classroom to 
the conceptual embodiment of abstract concepts that 
were previously considered not practical to explore. 
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