
Secondary Algebra: 
A Quadratic Case Study 

Ed Barbeau 

Jennifer Hyndman (professor and chair of the Depart­
ment of Mathematics and Statistics, University of 
Northern British Columbia) recently had a very bright 
fourth-year student ask what doing research would 
mean for her. Even though ll'e spend our time teach­
ing students how to solve problems, which is one stage 
of doing research, 1ve often do no teaching about hoH' 
to create 11ew problems, nor do we let students un­
derstand H'hat research is. In this article, Ed Barbeau 
develops the idea that creativity in mathematics can 
be fosrered at the undergraduate level through pre­
sentation of material rlwt allows studellls rofonnulate 
questions. 

Too often, the mathematics curriculum is seen 
solely in terms of delivering to the student standard 
topics to be mastered. However, there is a creative 
side that can be accessed by students still at school; 
not all new results require years of study of difficult 
and sophisticated areas. Geometry and combinatorics 
are two areas where students can enter on the ground 
floor, but as I shall indicate by an example. it is possible 
for a student to obtain an original algebraic result. 

While the student in question is particularly strong, 
1 wonder to what extent it is open to students in regular 
classes to formulate and prove their own results (even 
if they may be widely known), and how problems 
might be composed to encourage this to happen. 

The Basic Problem 

Let me first reconstruct the situation that led to the 
problem that I posed to students in a correspondence 
program and an undergraduate competition, and that 
inspired the original research of one of them. An 
oblong number is any product of two consecutive 
positive integers. If we examine the sequence { 2, 6, 
12, 20, 30, 42, 56, 72, ... }, we might note that the 
product of two consecutive oblong numbers is also 
oblong. For example, 12 x 20 is equal to the oblong 
number 240 = 15 x 16. Adding l to each of the oblong 
numbers gives a sequence of positive integers of the 
form k2 + k + 1, namely (3, 7, 13, 21, 31. 43, 57, 73, 
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91, ... } , with the same property. These empirical 
observations might be made by an aware student 
sensitive to patterns. With a little effort, they can be 
established by deriving the identities: 

and 
[(x - l)x][x(x + 1)] = (x2 - l)x2 

[(x - 1)2 
+ (x - 1) + 1] [x2 

+ x + l] 
= (x2 

- X + l)(x2 
+ X + l) 

= [(x2 
+ 1) - x][(x2 

+ 1) + x]
= (x2 + 1)2 - x2 

= (x2)2 
+ x2 

+ l.

Noting that both the forms x(x + I) and x1 
+ x + 1 are 

manic quadratic polynomials, we might ask whether 
these observations can be generalized to numbers of 
the form.f(x) =x1 +bx+ c, where band care arbitrary 
integers and x takes consecutive integer values. For 
example, the product of two consecutive squares is 
again a square. 

One way to approach this problem is to experiment 
with various examples, and then make an inspired 
guess as to the value of ;:: generated by the equation 
f(x)j(x + 1) = .f(z). Then the proof amounts to just 
checking algebraically that you are correct. 

However, there is another way to approach the 
problem: transformationally. Suppose that.f(x) is an 
arbitrary monic quadratic polynomial in x. Then 
g(t) = Jtx + t) is a monic quadratic polynomial in 
t: g(t) = t1 

+ bt + c. Then, briefly, noting that 
g(y) =fix= y) for each y, 

f(x)f(x + 1) = g(O)g(l) = c(l + b + c) 

= c2 +be+ c = g(c) = f(c + x) = f(g(O) + x)
= f (f(x) + x). 

Since this sort of manipulation is foreign to most 
secondary students, let us consider the aspects of the 
situation that students ought to be made aware of. 

First of all. there is change of perspective. The 
problem is posed as establishing a fact for a particular 
quadratic and any value of the argument; the realiza­
tion needs to be made that, by means of a translation 
of the variable, one can rather prove it for any qua­
dratic and a particular value of the variable, namely 0. 
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Secondly, there is the technical problem of mediating 
between the two perspectives. Thirdly, it is necessary 
to make some interpretations: the constant coefficient 
as the value of a polynomial at 0, and the expression 
c( I + b + c) = c2 +be+ c as the value of g(c). Finally, 
the evolution of the solution changes the problem. 
Because one can actually display fix)fix + 1) as the 
composition of two quadratics with integer coeffi­
cients, the property that we are dealing with fvalues 
at integers is subsumed in the more general (and in­
teresting) representation of f(x)f(x + 1) as a 
composite. 

The General Quadratic 

What would the situation be for a quadratic with 
an arbitrary leading coefficient? Experimentation 
reveals that j(x)j{x + I) need not be a later value of 
the quadratic when it is evaluated at integers. How­
ever, the work we have done at the end of the last 
section suggests that we can refocus the problem, to 
see whether j(x)j{x + 1) = g(h(x)) for suitable quadrat­
ics g and h. This turns out to be true, and this result 
was given as a problem to students at both the second­
ary and tertiary levels. 
PROBLEM. Letj{x) be a quadratic polynomial. Prove 
that there exist quadratic polynomials g(x) and h(x)
for whichj{x)f(x +I)= g(h(x)). 

COMMENT. One attempt might be to reduce it to the 
manic case, an approach that would undoubtedly be 
difficult for a typical secondary student to consum­
mate but when understood should signify a pretty 
deep understanding of algebraic relationships. Writ­
ingj{x) = au(x), where u(x) is monic, we have that 

f(x)f(x + 1) = a2u(x)u(x + 1) = a2u(x + u(x))

so we can take g(x) = a1u(x) and h(x) = x + u(r). When
j{x) = ax2 +bx+ c, this leads to g(x) = a2x1 + abx + ac
and 

h(x) = x2 + ( 1 + �) x + �.

However, as the following solutions indicate, there 
are at least three other ways students might tackle this 
problem, depending on whether they conceive of the 
quadratic in factored form, in descending powers of 
x or in terms of completing the square. In the first 
solution, below, note how it contains the seeds of the 
generalization we will discuss later. The second solu­
tion uses the method of undetermined coefficients to 
obtain a set of five equations in six unknowns. While 
this may appear formidable, the situation is tractable 
when the solver realizes that only one solution is 
needed for an overdetermined system and makes a 
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simplifying assumption. The final solution is an adept 
completion of the square manipulation. Each of the 
solutions requires a level of sophistication that we 
should be encouraging in students planning to go on 
in science and mathematics. 
SOLUTION I. [A Remorov] Letj{x) = a(x - r)(x - s).
Then, 

j(x )j(x + I ) = a2(x - r)(x - s + I )(x - r + I )(x - s)
=a2(x2 + x - rx - sx + rs - r)
(x2 + x - rx - sx + rs - s) 
=a2[(x2 

- (r + s - l)x + rs) - r]
[(x1 

- (r + s - l)x + rs) - s]
=g(h(x)), 

where g(x) = a2(x - r)(x - s) = aj{x) and h(x)
= x1 

- (r + s - I )x + rs.

SOLUTION 2. Letj{x) =ax�+ bx+ c, g(x) =pr+ qx + r
and h(x) = ux2 + vx + w. Then, 

f(x)j(x + 1) = a2x4 + 2a(a + b)x3 

+ (a2 + b2 + 3ab + 2ac)x2 

+ (b + 2c)(a + b)x + c(a + b - c)
and 

g(h(x)) = p(ux2 + vx + w)2 + q(ux + vx + w) + r
=pu2x4 + 2puvx3 + (2puw + pv2 + qu)x2 

+ (2pvw + qv)x + (pw2 + qw + r). 
Equating coefficients, we find that pu2 = a", puv
= a(a + b), 2puw + pv2 + qu = a2 + b1 + 3ah + 2ac, 
(b + 2c)(a + b) = (2pw + q),· and c(a + h + c) = pw2 

+ qw + r. We need to find just one solution of this 
system. Let p = I and u = a. Then, v = a + b and 
b + 2c = 2pw + q from the second and fourth equa­
tions. This yields the third equation automatically. 
Let q = band w = c. Then, from the fifth equation, 
we find that r = ac. 

Thus, when j{x) = ax2 + bx + c, we can take 
g(x) = x2 +bx+ ac and h(x) =ax:+ (a+ b)x + c.

SOLUTION 3. [S Wang] Suppose thatj{x) = a(x + h)2 

+ k = a(t - (½))2 + k, where t = x + h + ½. Then, 
f(x + l) = a(x + I + h)2 + k = a(t + (½))2 + k, so that 

f(x)f(x + 1) = a2 (t2
- �f + Zak (t 2 + 1) + k2 

= a 2 t4 + (- a
2
2 + 2ak) tz + (;: + a2

k 
+ k2 )-

Thus, we can achieve the desired representation with 
1 

h(x) = t2 = x2 + (2h + l)x + 
4
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The Generalization 

One student, James Rickards of Greely, Ontario, 
raised the situation to a higher level when he realized 
that he needed to know only that .ftx)f(x + I) was a 
quartic polynomial for which the sum of two of its 
roots was equal to the sum of the other two. This im­
mediately suggested the generalization that if the 
quartic polynomial j(x) has roots r

1
, r

2
, r

1
, r� (not 

necessarily distinct), then/(x) can be expressed m the 
form g(h(x)) for quadratic polynomials g(x) and h(x) 
if and only if the sum of two of r

1
, r

2
, r_,. ,-

4 
is equal 

to the sum of the other two. 
Let us run through the proof of this statement. 

Without loss of generality, suppose that r
1 

+ r
1 = r1 + 

r
4

. Let the leading coefficient of f(x) be a. Define 
h(x) = (x - r1)(x - r2) 

and 
g(x) = ax(x - rf + r1r3 + TzT3 - r1r2), 

Then, 

g(h(x)) = n(x - n)(x - ri)[(x - n)(x - n) 
- n2 

+ nn + rzn - nrz] 

= a(x - n)(x - n)[x2 
- (n + rz)x 

- ri + nr3 + nn] 

= a(x - n)(x - rz)[x2 
- (n + Y4) x 

+ n( n + r2 - n)] 

= n(x - n)(x - rz)[x2 
- (n + r4)X 

+rm] 

= a (x - n)(x - n)(x - n)(x - r1) 
as required. 

Conversely. assume that we are given quadratic 
polynomials g(x) = b(x - r�)(x - r

6
) and h(x), and that 

c is the leading coefficient of h(x). Letf(x) = g(h(x)). 
Suppose that 

h(x) - r5 = c(x - r1)(x - rz) 

and that 

Then, 

f(x) = g(h(x)) = bc2(x - n) 

(x - rz)(x - n)(x - r.i). 

We have that 

h(x) = c(x - n)(x - rz) + rs 

= cx2 
- c(n + n)x + cnn + rs 

and 
h(x) = c(x - n)(x - Y4) + rG 

= cx2 - c(n + r-i)x + cnr� + r6, 

32 

whereupon it follows that r
1 + r

2 
= r

3 
+ r

4 
and the 

desired result follows. 
Let me allow Rickards to continue in his own 

words: 

I then wondered, how will this continue? What will 
the condition be for the composition of two third 
degree polynomials? I tried to construct a proof 
with only the assumption that the first symmetric 
polynomials agreed for some division into three 
groups of three roots of the whole ninth degree 
polynomial. While writing this out, it became ap­
parent that I lacked something. I then saw that 
assuming the second symmetric polynomials 
agreed would be all that I needed. Thus I now h�d 
a good idea; I wrote out a proof for a polynomial 
of degree n2

. The next day or so, I realized that the 
fact the two polynomials being composed had the 
same degree was irrelevant; just minor modifica­
tions to make this as general as could be, a com­
position of degrees m and n. 

Rickards figured out that the key property of the 
composite was that its roots could be partitioned into 
subsets for which all the symmetric polynomials 
agreed except for the product. This led him to a neces­
sary and sufficient condition for a polynomial of 
deoree 11111 to be the composite of polynomials of 

C 
. . 

degrees 111 and n. He then addressed the deterrnmat1on 
of the composition factors of these degrees when the 
composite was given. He noted that while one could 
not generally know the actual roots of the polynomial, 
the coefficients of the composite factors depended 
only on knowing the value of the (equal) symmetric 
functions of roots in each of the partitioning sets, and 
these values could be retrieved from the coefficients 
of the given polynomial. It is convenient to give the 
proof for a manic polynomial, and then derive the 
oeneral case· the details are found in Rickards (201 l ). 
e ' 

The relating of the manic to the general situation 
is a nice exercise for students. Suppose that fix) is a 
polynomial of degree nm and leading coefficient a, 
so thatj(x) = au(x) for some monic polynomial u(x). 
Then we show thatfi:X) is a composite of polynomials 
of degrees m and n if and only if u(x) is so. Suppose 
that .fi..x) = g(h(x)), where g(x) is of degree m with 
leading coefficient b and h(x) is of degree n with 
leading coefficient c. Then, by comparison of leading 
coefficients, we have that a = bc

111
• It can be checked 

that u(x) = 11(ll'(x)), where v(x) = (bcmt 1g(cx) and 
w(x) = c- 1 lz(x). 

On the other hand, suppose that u(x) = v(w(x)) for 
some manic polynomials v(x) and w(x) of respective 
degrees m and 11. Then fix)= g(h(x)) with g(x) = au(x) 
and h(x) = v(x). 
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Is Rickards's Result New? 

I was enchanted by the elegance of Rickards's 
result. While the detennination of a different criterion 
for a quartic to be the composite of two quadratics 
actually appears in my book (Barbeau 2003, problem 
1.9.8, 44, 266), it is from the more pedestrian stand­
point of a condition on the coefficients. Specifically, 
ax4 

+ bx-1 
+ cx2 

+ dx + e is a composite of two quadrat­
ics if and only if 4abc - 8a2d = b.1 . 1 was completely 
unaware of this new result, and a check of colleagues, 
the literature and the Internee did not reveal that it 
was previously known. 

Whether it is actually new is open to question. 
While the composition of polynomials does not ap­
pear to have received much attention, it is conceivable 
that over the past 300 years, someone might have 
addressed the issue. However, such a result, if pub­
lished, could have appeared in an obscure place and 
be impossible to track down. It seemed pretty enough 
to warrant appearing in a widely circulated current 
journal, regardless of its status. 

Conclusion 

It seems clear that if a curriculum is to be success­
ful in preparing mathematics students for later study, 
it has to go beyond a straight presentation of results. 
Students require material that engages them, so that 
they acquire facility with the conventions and distinc­
tions of mathematics and are able to make judgments 
about how a situation might be approached. There­
fore, we need to be on the lookout for investigations 
and problems that encourage different perspectives 
and the search for connections. 

I have presented one situation and mentioned is­
sues that might arise. I hope that teachers may be able 
to present other examples, and that eventually exer­
cises and problems that might lead to open-ended 
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investigations by students might be more prominent 
in textbooks. As educators, we need to develop other 
case studies and then encourage teachers to try them 
out in their own settings. I have not had the opportu­
nity to attempt this in a regular classroom situation. 
Its evolution is probably highly dependent on the 
context; it may happen that the discussion goes in a 
completely different direction and other questions 
emerge. 

There are important issues pertinent to the prepara­
tion of students bound for science, technology and 
mathematics. Should such students be able to negoti­
ate the subtleties of algebra usage illustrated by this 
example? If so, what are the implications for teacher 
training, the syllabus, the classroom experience and 
examinations? What preparation should be occurring 
all through the algebra sequence so that students attain 
both the perspective and the skills to manage it? What 
is the appropriate balance between presentation of 
such material by the teacher and investigation by 
individual students and groups? I invite teachers to 
try this example with their own classes and circles. 
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