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Similar triangles are included in the shape and space 
strand of Alberta's Grade 9 mathematics curriculum. 
This provides a good footing for introducing trigono
metric ratios in subsequent courses, because similar 
triangles familiarize students with the idea of using 
ratios of side lengths in a triangle. However, the prem
ise of this article is that similar triangles provide a rich 
vein of mathematics when revisited from other parts 
of the math curriculum (in particular, Mathematics 
20-1 and 30-1, and Pure Mathematics 20 and 30)-in
effect, when viewed through the rear-view mirror.

This article looks at two distinct issues: ( l) student 
approaches when using trigonometry to develop the 
equivalent ratios used in similar-triangle problems, 
and (2) the range of algebra questions that can be 
developed in similar-triangle questions. 

Similarity by Trigonometry 
The question of how similar-triangle ratios can be 

developed using trigonometry is fascinating-not 
because of the answer but, rather, because of the 
variety of ways the problem can be addressed. Thus, 
the focus here is not the answer; it is how students 
can explore and navigate this open-ended problem. 
(The answer will be provided simply to remove the 
focus from it. In a class, the answer would not be 
revealed, in the hopes that students would discover it 
themselves.) This topic is suited to the Mathematics 
20-1 course, where the sine law is taught and students
are familiar with trigonometric ratios.

A Simple Answer 

Students usually perceive the problem as difficult 
and, in an effort to simplify it, avoid the sine law. The 
tendency is to start with right-angle trigonometry; 
however, this strategy complicates the problem, because 
one then needs a right angle. In fact, using the sine law 
is the simplest approach (using Figure I for clarity). 
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Why do students avoid this approach? They have 
difficulty accepting that they can derive useful conclu
sions from working with angles that have unknown 
values. In effect, mathematics teaching has led many 
students to believe that only the explicit information 
given to them is relevant in solving any given problem. 

Use of the sine law could be encouraged by giving 
students a value for an angle. For instance, "I know 
that this problem could be done if angle A were equal 
to 10° ." Students could then write expressions that 
involve that angle, and that might lead them toward 
the sine law. Also, the teacher could then ask students 
to consider what they could calculate for each tri
angle, a different question that would help consolidate 
the utility of the sine and cosine laws. 

A Less Obvious Solution 

Students try to keep the problem simple by using 
right-angle trigonometry, but that can only be done by 
constrncting equivalent problems. The term equivalent 
here means that the given information is maintained 
and the information that is not specified can be changed 
in a manner that maintains the similarity. 

One idea is to rotate a side about a point until a 
right angle is created; however, to keep the two tri
angles similar, the same degree of rotation must be 
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performed on the equivalent side around the equiva
lent point in the similar triangle (see Figure 2). The 
original question uses b.BAC - b.EGH, but b.BAD -
b.EGF by rotating both AC and GH to AD and GF, 
respectively. This process preserves the lengths given 
in the original question but allows L:'.BAD to be 
changed to any angle. There is a catch: changing 
L:'.BAD to 90° changes both of the other angles, 
L:'.ADB and L:'.DBA, and that raises the question of 
how one can be sure that L:'.ADB is equal to L:'.GFE. 
For students, this highlights the need to provide some 
details. 

Figure 2 

Making an Equivalent Similar-Triangle Question 
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When the transformation is done, and L:'.BAD = 
L:'.EGF = 90°, students can use right-angle trigonom
etry to solve for GF, which has the same length as 
GH and x. 
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tan(LABD) = 12 = tan(LGEF) = 15 
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Transforming the question to an equivalent one 
that can be solved raises many doubts among students. 
This approach is not as straightforward as using the 
sine law, but it does arrive at a solution. Students have 
difficulty recognizing that changing the question is a 
legitimate approach, as long as the given information 
is preserved. 

Another Approach 

How can similar-triangle ratios be developed from 
trigonometry using the diagram in F igure 3? 

Figure 3 

Similar-Triangle Question 
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When I use this type of question, I present the 
problem without the circle. Discussion about how to 
solve this type of question leads to the addition of the 
circle, which promotes discussion about moving point 
C in a  manner that allows L:'.ABC to be changed. This 
is analogous to what was done in the previous section. 
However, this approach has an added benefit: keeping 
DE parallel to BC is a simple way of articulating the 
condition for equivalence of questions. 

Students sometimes do the unexpected, especially 
when they brainstorm in small groups. While several 
groups will follow up on the idea of changing L:'.ABC 
by moving point C, some groups will interpret this 
as rotating the line segment AE about point A. The 
latter approach leads to the idea that there is a maxi
mum possible angle for A. It is then opportune to 
mention the concept of the tangent line and to point 
out that a tangent line, because of symmetry, has to 
be perpendicular to the radius line. Students then real
ize that they can move point C to the tangent point, 
keeping DE parallel to BC, and create a right angle 
at L:'.ACB (and the corresponding angle, L:'.AED). 
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This approach works only if a tangent line can be 
created. In one class, my students realized that with 
C as a tangent point and LACB as 90°, they could 
use the sine law to determine the maximum value of 
angle A. They then argued that they could use the 
angle and sine ratio to determine the unknown length 
x. While I was impressed that they had come up with 
this solution, l felt obliged to point out that the model 
question (Figure 3) had BC shorter than AB, and that 
there could be a problem if BC were longer than AB 
(see Figure 4). Students then wrestled with the idea 
that moving point C would never make a tangent line 
and that there was no maximum value of angle A. In 
this case, their argument did not work. 

Does one actually need the right angle? I suggest 
to students that the process shows that they can make 
angle A any value they choose, up to the maximum 
found in the earlier version of the question. If they 
can make angle A any value, can they solve the prob
lem? For example, suppose angle A is 20°. Does this 
help solve the problem? Unfortunately, in my class, 
the students who were modifying LABC overheard 
this and argued that they could make LABC a specific 
value, allowing them to use the cosine law to find AC. 
This is an awkward, roundabout solution that can lead 
to x. but it has enough steps that the students did not 
get to the answer. 

I was intrigued by my students' efforts and con
cluded that this type of question is invaluable. I had 
not anticipated the variety of approaches, and I had 
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Modified Question with BC> AB 
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to think on my feet more than once. However, this 
article consolidates the major approaches students 
have used, helping teachers to better anticipate what 
may arise. It is particularly intriguing to observe what 
happens when the information given in the question 
is not sufficient. Few students recognize that they can 
impose new information, provided that it does not 
contradict the given information. 

A Different Type of Question 

The connection between trigonometry and similar 
triangles made me question if there are similar-trian
gle questions with pedagogical value that have been 
ignored because of the view that similar triangles are 
a stepping stone into trigonometry. This issue is ex
acerbated by a bias in teaching materials, where 
similar-triangle resources typically use numbers for 
side lengths (with three given and one unknown) and 
often include the same question formats. 

In a moment of inspiration, I formed a similar
triangle question in which the unknown, x, appeared 
twice. See Figure 5. 

The problem is resolvable for 20-1 students as 
follows: 

X + 3 X 
= 

3 2 

2(x + 3) = 3x 

2x + 6 = 3x 

x=6 

This demonstrates a novel context for practising 
algebra. 

Figure 5 

A Different Kind of Question? 
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Using other features of algebra is feasible. Con
sider the problem shown in Figure 6 and the following 
two methods of solving it. 

Figure 6 

Similar Triangle Requiring Algebra 
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The first method uses cancellation of the x values 
(since x > 0) on the left side of the equation: 

2x X + 5 

X X + l 

x+S 
2=-

x+l 

2x + 2 = X + 5
x=3 

Another solution uses common factoring: 

2x x+ S 

X X + 1 

2x(x + 1) = x(x + S) 

2x2 
+ 2x = x2 

+ Sx 

x2 
= 3x 

x(x - 3) = 0 

This could be used as a point of discussion for the 
domain; note that x cannot be O if this question is 
about a triangle. 

It is also possible to have questions where quadratic 
terms arise in a manner in which they cancel. This 
assumes that students know how to multiply two 
binomials. 
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Figure 7 

Example Requiring Algebra 
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Consider the example in Figure 7, which has the 
following solution. 

X + 2 2x + 2 
--- ---

3x + 3 6x + l 

6x2 
+ 13x + 2 = 6x2 

+ 12x + 6 

13x + 2 = 12x + 6 

x=4 

The general solution for this type of problem can 
be thought of geometrically as the intersection of two 
quadratic functions (as in the second line of the previ
ous solution, considering each side to represent an 
independent quadratic). However, the general solution 
is not particularly insightful for designing questions, 
because it is beset by conditions representing the 
following requirements: all triangle sides must have 
positive lengths, and the problem must have a unique 
solution. There are cases with multiple solutions. 
Consider two equilateral triangles-one with all sides 
of length x, and the other with all sides of length 2x. 
In this case, any positive value of x will suffice. 

Last, similar triangles like this could be used to 
develop further types of questions, such as those re
quiring quadratic factoring with two unique positive 
solutions (in Figure 8, set y = 0 and solve for x). While 
the earlier questions have merit because of the con
nections to algebra and equation solving, casting 
problems of this type for factoring would be contrived. 
However, this type of problem, with the y in place, 
could be useful in higher mathematics classes to ad
dress domain and range issues. Consider the scenario 
in Figure 8, where the task is to determine the condi
tions for x and y so that the problem can be solved. 

The relationship between x and y is quadratic 
(y = -x1 + Sx - 6), and the restriction that side lengths 
must be positive provides restrictions for the domain 
and range. The domain is O < x < 4, so that side lengths 
x and 4 - x are both positive. Over this domain the 
quadratic reaches a maximum at x = 2.5 and y = 0.25. 
The minimum value over the domain occurs as x ap
proaches O and y approaches -6. So the range is 
-6 < y < 0.25. Note that this type of domain and range
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Figure 8 

Domain and Range Question 
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question can also be formed with linear functions, for 
instance by changing 4 - x to 4. 

Concluding Remarks 

This article highlights opportunities to use the 
concept of similar triangles for more than simply 
introducing trigonometry. The questions are designed 
for making connections between mathematical con
cepts that are often viewed as distinct. These connec
tions lead to a deeper appreciation of the conceptual 
interconnections surrounding similar triangles. 
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