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A misconception, or incorrect conception, is 
generally a false idea. Students' misconceptions, a 
fundamental lack of understanding different from 
careless inaccuracy, are the natural result of efforts 
to construct new knowledge and can be viewed as 
an intellectual structure built on correct or incorrect 
previous knowledge. Although misconceptions are 
illogical, they make a lot of sense from students' 
perspectives. Students' mistakes are rational and 
meaningful efforts to learn mathematics (Ginsburg 
1977). 

Mathematics educators have observed and 
recognized students' misconceptions in practically 
every mathematics classroom from generation to 
generation. Students invent incorrect procedures 
to deal with new knowledge. To satisfy the need for 
calculating, simplifying or solving, students over­
generalize and distort a rule or procedure; for 
example, adding numerators and denominators to 
find the sum of two fractions, or assuming that 
division is distributive on addition because multi­
plication is. Such faulty mental models of mathe­
matical concepts may be deeply ingrained in stu­
dents' minds and are difficult to re-evaluate and 
remediate. They are quite persistent and may seri­
ously interfere with the students' ability to learn 
mathematics if not detected and treated timely and 
appropriately. However, because mathematical 
misconceptions are unavoidable, they should not 
be eradicated but regarded as part of the normal 
learning process and as opportunities to enhance 
learning. 

Commonly, correct new learning depends on 
previous correct learning, and incorrect new learning 
results from previous incorrect learning. However, 
incorrect new learning can also result from previous 
correct learning. This article provides examples and 
analyses of such cases. 
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Diagnosing Misconceptions 

Analysis of misconceptions is critical to teaching 
and learning. Misconceptions are a natural part of 
students' conceptual structures that interact with new 
concepts and influence new learning in a negative 
way because they usually generate errors. Teachers 
must recognize and account for the causes of miscon­
ceptions. Diagnosing the origin of misconceptions is 
probably the most complex tasks of teachers. It re­
quires in-depth knowledge about the structure of 
concepts, understanding of multiple representations 
and connections among subconcepts (Panasuk 2004). 
To identify the roots of misconceptions, teachers must 
look closely at students' prior experiences and current 
structures. and work at the level of specific details. 

Different sources of misconceptions, including 
teaching methods, cause students to over-ride and 
overinterpret the rule. Students' misconceptions are 
not random but rather rule-governed and derive either 
from incorrect representation of the concepts or from 
procedures that have been taught (Ginsburg 1977). 
The following examples of overgeneralization of 
number properties are the most common underlying 
causes of students' misconceptions. 

I. "Multiplication increases a number" ("division
decreases a number") is a popular fallacious idea from
elementary school. The origin of this misconception
comes from a misrepresentation of the concept of
multiplication or an incorrect generalization based
on a limited set of multiplication examples that pro­
duce the larger number. Because a concept is a gen­
eralization that brings different elements or subcon­
cepts into a basic relationship, it must be objectively
true for all elements or subconcepts integrated in this
idea. To convey the idea that multiplication increases
a number, elementary teachers present only a subset
of information because they are obviously dealing
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with whole numbers. Stressing that multiplication of 
(positive) whole numbers produces a larger number 
is a critical detail that is unfortunately often over­
looked. Although such overgeneralization of the 
multiplication concept at the elementary level might 
conveniently satisfy immediate needs, it is not only 
mathematically invalid but will negatively affect 
students' further learning. They will soon discover 
that the idea fails when a whole number is multiplied 
by a fraction, hence facing the problem of re-evalu­
ating prior knowledge and rejecting it as incorrect. 
Inattention to important details that affect the devel­
opment of correct understanding of mathematical 
concepts will cause confusion and generate new 
misconceptions. 

2. When subtracting 18 from 43, elementary students
usually produce the following:

43 

- l]
35

In this example, students apply an incorrect and dif­
ficult cognitive structure, "subtract smaller from 
larger," to satisfy the need for calculating subtraction. 
The idea was likely emphasized in the classroom and 
became an element of the subtraction concept. Ap­
plying (incorrect) prior knowledge (subtract smaller 
from larger) to a new task (subtract 18 from 43), 
students distort the rule and develop (incorrect) new 
knowledge. When identifying the roots of the mis­
conception, pointing out that students don't under­
stand how to subtract whole numbers doesn't help. 
One must examine how this new know ledge (subtract­
ing two-digit numbers when regrouping is required) 
connects to the previous cognitive structure (subtract­
ing two-digit numbers when regrouping is not re­
quired) and embedded in a larger cognitive structure 
(the meaning of subtraction) students have already 
developed. The macro concept-subtraction-must 
be broken down into micro or subconcepts, such as 
place value, grouping, regrouping, anchoring to 10 
and taking away, to better understand the structure of 
the macro concept and to consider all guiding prin­
ciples from students' prior learning that they try to 
incorporate into a new idea. 

Students often select information that they recog­
nize from the problem to activate a seemingly ap­
propriate existing cognitive structure, such as "sub­
tract the smaller number from the larger number." If 
elementary students learn that a smaller number must 
be subtracted from a larger number without reference 
to a whole quantity, they attend only to the digits in 
the columns and ignore the place values of the digits. 
Students treat columns as a string of unrelated single 
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digits. Treating subtraction with a set of rule-governed 
procedures violates the meaning of subtraction as 
deducting one whole quantity from another whole 
quantity. This approach is a typical example of over­
generalizing arithmetic operations and building 
incorrect new knowledge on previous incorrect 
knowledge. 

There might be one more layer of this misconcep­
tion. As previously stated, previous correct learning 
can influence incorrect new learning. For example, 
knowing that addition is commutative (correct con­
ception), elementary students conclude that subtrac­
tion is also commutative (incorrect conception). El­
ementary teachers likely never explain that subtraction 
is not commutative, because they would need to ex­
plain that (8-3) is not the same as (3-8). They would 
need to address the meaning of (3-8), which is dif­
ficult without referring to the negative number con­
cept. Only when negative numbers are introduced at the 
middle school level are students able to subtract 3 
from 8 knowingly and explain the answer correctly. 

To deal with this misconception teachers can pro­
vide students with remediation about the meaning of 
subtraction of one whole quantity from another whole 
quantity, the concept of regrouping and examples of 
real-life situations to demonstrate that taking three 
away from eight is not the same as taking eight away 
from three; that is, subtraction is not commutative. It 
might help to extend students' cognitive structure of 
subtraction with correct knowledge, conceptual un­
derstanding and, ideally, elimination of the conflicting 
rule. 

3. Algebra students often reveal gaps in understand­
ing and relationships between concepts studied
in elementary and middle school. The following
popular misconceptions are often seen in algebra
classrooms:

a+b=
b ;---=a+b _ 3_

x+I
=

3(x+I)
_ 

a a-'+b-1 ' x-1 3(x-l)

The analysis of such misconceptions is crucial and 
must not be limited to simply stating that students 
don't know how to deal with negative exponents, or 
they cannot cancel an addend in a sum, or they can 
cancel only a factor in a product, or by cancelling a 
they get the wrong answer. Such statements only 
scratch the surface and are not sufficient for correct 
identification of the roots of misconceptions. Rather, 
in-depth analysis of the structure of the problem, 
namely, "task analysis," is imperative and must be 
done to identify the sources of misconceptions (Pana­
suk 2004) to treat them properly and effectively. 

Interestingly, in each of these incorrect problems, 
the two prime suspects are (a) not knowing or paying 
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attention to the order of operations and (b) the concept 
of fractions and operations with fractions. It is some­
times mistakenly assumed that the order of operations 
is only used for calculations at elementary school. 
The order of operations is a powerful concept that has 
its place and significance in algebra to convince stu­
dents that the procedure is incorrect and to provide them 
with a solid tool to verify operations (Panasuk 2006). 

Let us consider the common misconception of 
cancelling 1 a in the famous algebraic expression 
a+b 

a 

When students cancel a, they likely lack knowl­
edge and comprehension (Bloom 1956) of one or all 
of the following concepts: 

i. Students might not have a solid foundation in the
concept of equivalency of fractions, which is a pre­
requisite knowledge for reducing fractions and finding 
a common denominator; for example, if k is a common 

a-k a k a a factor for both ak and bk then -- == - • - = - • I = - .

' b·k b k b b 

It is typically emphasized that to obtain an equivalent 
fraction, both the numerator and the denominator are 
multiplied or divided by the same number. However, 
the reason for this is not emphasized. Teachers must 
ask students what would happen if the same number 
were added to or subtracted from both the numerator 
and the denominator. It is important to show that 
adding (or subtracting) the same number to the nu­
merator and denominator does not produce an equiva­
lent fraction. Such a demonstration relies on the logi­
cal principle that falsification of any hypothesis 
requires only one counter example. Accordingly, 
given the fraction _!__, adding 4 to both the numerator

2 
and the denominator will result in 1 + 4 = �. Clearly,

2 +4 6 

the original fraction _!__ is not equivalent to � because 
2 6 

there is no unique number k that being multiplied by 
1 produces 5 and being multiplied by 2 produces 6. 
It might be necessary to support the conclusion with 
a diagram that may well be more convincing to visual 
learners. 

2 
5 
6 

Although it is necessary to demonstrate examples 
when the rule works, demonstrating examples 
(numerical or algebraic) when the rule doesn't work 

10 

is critical to prevent misconceptions and accentuate 
the rule. 

ii. Students might only have a superficial knowl­
edge (remembering the rule without connections to other 
concepts and details) of the addition of two fractions 
with the same denominator, which is not usually con­
sidered as a perplexing concept. It is likely that the 

d . d 1 h. 'd . a b a + b stu ents have practise on y t 1s I entity - + - == --
c C C 

a+b 
but have little or no experience to see that -- can 

C 

be viewed as :!._ + !!_. In other words, students must 
C C 

see that any fraction can be presented as a sum 
of several fractions with the same denominator. 
For example,}_ can be seen as 1 + 6 =_..!_+�

12 12 12 12 

or }_ = 3 + 4 = 2_ + � . Breaking down a fraction
12 12 12 12 

into two fractions with the same denominator is ben­
eficial not only to prevent the misconception of 
cancelling but also to enhance students' knowledge 
of the concept of addition of fractions and related 
rules and procedures. 

iii. Students might not have a firm definition of a
fraction as a form of representation of a ratio of two 
quantities. In our case, the ratio of the quantity (a+b)
and the quantity a can be presented either as 
( a + b) + a or using a fraction bar, a + b . The students

a 
likely have not had enough practice converting frac-
tions into division form and vice versa. 

iv. Finally, the students might not have been en­
couraged to pay attention to the concept of order of 

. Wh a + b . . ( h) . . operat10ns. en -- 1s wntten as a+ + a 1t 1s
a 

easy to recognize the operations in their correct suc­
cession: calculate inside parentheses first and then 
divide. It also must be emphasized that to divide a 
sum by a number each addend must be divided by 
the number; that is,(a+b)+a=a+a+b+a, which 

h leads to I + b + a = I + - . 
a 

Often classroom teachers suggest replacing letters 
with numbers and performing calculations to show 
that cancelling a is an incorrect action. Replacing a 
letter with a number can be effective only if it is ac­
companied with the analysis of the structure of the 
problem, use of multiple representations (for exam-
ple, representing the fraction 2 + 3 as the division

2 
(2 + 3) + 2, emphasizing correct order of operations
and calculating inside the parentheses first: 
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(2 + 3) + 2 = 5 + 2 ,  representing the division (5 + 2) as 

f . 5 d a ract1on - , an meanmgs of operations and their
2 

order. Such a technique is likely to convince students 
of the correctness of the solution method and facilitate 
their understanding of the underlying concepts that 
support accurate procedures. 

Assuming that I is equal to a+ b is another
a-1 +b-1 

example of fallacious reasoning and overgeneraliza­
tion. There might be several causes of this misconcep­
tion. First, it is a typical case of the incorrect applica­
t ion (distr ibuting divis ion over  addition: 
a+ (b + c) *a+ b +a+ c) of the correct prior knowl­
edge (distribution of multiplication over addition: 
a(b + c) =ab+ ac). There also can be insufficient 
knowledge of the very concept of a fraction and the 
operations with fractions. Let us consider the follow-

ing numerical fraction _!2_, which can be rewritten 
5+3 

as the division 15 + (5 + 3) . Following the correct 
order of operations, we first calculate inside the pa­
rentheses, (5+3) = 8 and then divide 1 5  by 8. The 
result of the division can be shown in a fractional form 

15 + 8 = .12. If we try to distribute division over addi-

tion: 15 -a- (5 + 3), then we get I 5 + 5 + 15 + 3 = 3 + 5 = 8,

which is not .!2.. One numerical example is sufficient 
8 

h h C • C C to s ow t at -- 1s not equal to -+ - . Based on 
a +b a b 

the above, the expression 1 
1 needs to be written

a- + b-1 

as I + (a -i + b-1) to better recognize the order of op­
erations. The first operation to be performed inside 
the parentheses is the application of the negative 
exponent and then addition of fractions with differ-
ent denominators: a-1 

+ b-1 = _.!_ + .!_ = b +a; then 

I+ a+b =_!!!?__
ab a+b 

a b ab 

Another possible source of misconception is the 
false idea that (a·1 + b·1) is equal to (a+ b)-1, based on 
the misconception that exponents can be distributed 
over addition, when in fact they can only be dis­
tributed over multiplication. A numerical example 
can be used to demonstrate the fallacy; that is, 

2-1 4-1 I I 3 h'I ) I I I + =-+ -=-, w I e (2+4 - =6- =- thus
2 4 4 6' 

r
1 +4-I -:/'(2+4r 1

• 
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The incorrect treatment of the multiplication 
of 3 by the algebraic fraction x + 1 in the example

x-1 
x + I 3(x + I) . . 3 · 
x _ 1 = 3(x - I) 1s likely to be a result of flawed

prior knowledge related to some combination of 
(a) the concept of equivalent fractions, (b) the concept
of multiplication of a whole number by a fraction and
(c) the assumption that multiplication is distributive
over division. Students might not recognize that the

. 3(x + I) 3 x + I fraction 3( -I) can be presented as - • -- , which
X 3 x-1 

can be simplified to x + 1 . Multiplication of a whole
x-1 

number by a fraction has the same meaning as 
multiplication of two whole numbers, namely, 

repeated addition. This implies that 3 - x + 1 is equal
x-1 

x+I x+l x+I to -- + -- + -- . S mce the denominators of the
x-1 x-1 x-1 

fractions are the same, we add the numerators only, 
3(x+I) x+I to get -----'---'-- . And finally, 3 · -- can be viewed as 

x-1 x-1 

3-[(x + 1) + (x -1)], which apparently is not the 
same as 3 · (x +I)+ 3 · (x - l) because multiplication 
is not distributive over division. If the symbolic 
representation looks complicated, a numerical ex­
ample with a good dose of details might clarify con­
fusion and reduce tension and anxiety; for example, 

12· (5+l) =12-i= 12x6 =.!3_·6=12+4x6=3·6=18.
(5 -I) 4 4 4 

However, 12(5+1) = 12·6 = 12·2·3 = 24 .i = I. It
12(5-1) 12·4 12·2·2 24 2 2 

is important to remember that this numerical example 
(as well as others) helps only to show that both ex-

. (5+1) 12·(5+1) press1ons 12 •--and _ _;__-'-- are not equal· 1t
(5-1) 12·(5-I) ' 

doesn't explain why they are not equal, and therefore 
other representations (such as repeated addition) of 
the concept are useful. 

Students often combine 2x and 3y in the expression 
(2x + 3y) into 5.xy. These students might have unde­
veloped understandings of the nature of like terms or 
coefficients, or they might misunderstand the idea of 
variables and the nature of arithmetic operations, 
particularly the order of operations. It is unlikely that 
algebra students wouldconfuse (x + y) and (.xy) and think 
that these expressions are equal, and it is improbable 
that in the numerical example 2 - 4 + 3 · 7 the students 
would attempt to add 2 and 3 and then multiply the sum 
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by 4 and by 7. However, when dealing with the alge­
braic expression 2x + 3y, they do sometimes consider 
it possible first to add the coefficients of unlike terms 
and then combine the variables in multiplication. 
Clearly, these students select some portions of infor­
mation from problems they recognize and generate 
new strategies that seem appropriate to cope with the 
problem. The misconception can be treated using the 
variable-segment idea where two positive quantities 
x and y are presented as line segments (Panasuk 2004). 

X 

I. ••---•

X + X 
2. ••---•-----•

2x 

y + y + y
. 

= 3y 
3. • • • 

4. (2) and (3) together form a new segment

2x +3y 
• • • • • • 

Meanwhile, the product of two positive quantities x 
and y can be illustrated as the area of the rectangle 
whose sides are x and y.

X 

□ y

Area of the rectangle = xy 

While 2x + 3y represents a length of a line segment 
(one dimensional figure), Sxy would represent the 
area of a rectangle (two-dimensional figure) whose 
side lengths are multiples of x and y; for example, a 
rectangle with side lengths lx and Sy. 

Conclusion 

It has been well documented that students' miscon­
ceptions are systematic and often result from over­
generalized or misapplied rules and algorithms 
(Ginsburg l 977; Resnick and Omanson 1987). ln many 
cases, a misconception is just a symptom of a math­
ematical disorder that requires serious consideration and 
treatment. Knowing about the likelihood or possible 
existence of a misconception, teachers try to find ways 
to help students repair their faulty mental models. In 
doing so, the teachers answer the following questions: 

• How do we know the misconception is present?
• How does it reveal itself?

12 

• What is the underlying conceptual difficulty?
• In what way is the students' mental model faulty?
• How can we help students repair this particular

faulty mental model?

Detailed diagnosing of misconceptions helps not
only to identify the key subconcepts that students lack 
but also allows students to engage in cognitive analy­
sis of the misconceptions. Students first need to be 
convinced (rather than just told) that the procedures 
they invented lead to incorrect answers and then 
encouraged to re-evaluate their prior knowledge and 
create correct conceptual understandings. Some mis­
conceptions are the result of sterile presentation of 
rules or procedures; that is, how they are supposed to 
be done and when they work. Demonstration of the 
cases when the rules or procedures don't work or are 
not true is a powerful teaching method. To prevent 
misconceptions, it is pedagogically solid and war­
ranted to show not only what works but also what 
doesn't. Providing counter examples and showing 
when the rule or procedure does not hold play es­
sential roles in facilitating conceptual understanding 
and must accompany presentation of mathematical 
ideas, notions, rules and laws to amplify the idea of 
true versus false. Knowledge that a particular mis­
conception is quite prevalent and likely to occur al­
lows teachers to provide students with learning re­
sources and activities that will assist them in 
remediation of the misconception and building a cor­
rect cognitive structure. Teachers may even consider 
changing the way they teach the topic to make it less 
likely that students will develop the misconception in 
the first place. 
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