
Diophantine Polynomials 

Duncan E McDougall 

What is a Diophantine Polynomial? It is a polyno
mial of degree 2, 3 or 4 which is factorable in the set 
of integers and whose derivative is factornble in the 
set of rational numbers. We want to discuss them to 
facilitate curve sketching. 

The polynomials that we are about to examine can 
be used for both Grade 11 and calculus students, be
cause the intercepts are easy to find and they-values 
for the maxima and minima are shared among the 
families of curves. For example, we can ask a 
Grade 11 student to sketch y = x3 + x2 

- I 6x -16 by 
finding both the x and y intercepts. We can use the 
very same polynomial for the Calculus 12 student 
who can find the intercepts easily and more readily 
find the x-values for both maxima and minima be
cause the derivative is easy to factor. 

My belief is that students should learn a compli
cated algorithm in simple progressive steps using 
straightforward numbers. Diophantus worked with 
integers and rational numbers only. Pedagogically, 
Diophantus was really onto something because he 
created methods that involved a lot of processing and 
sequencing while focusing on whole numbers. The 
distractions I refer to in curve sketching are complex 
and irrational numbers. It is difficu It enough to learn 
some five to eight steps gathering enough data to ac
curately sketch a cubic, quartic, or quintic polynomial 
and/or a rational expression that may involve a di
agonal asymptote without difficult-to-work-with 
numbers. If the student has the burden (when first 
learning the process) of working with irrational or 
complex numbers, along with concentrating on the 
behaviour of the curve and concavity, then he or she 
might simply declare "whatever" and drop the task. 
Tf the numbers are whole or integral (Diophantus), 
then the focus remains where it should be: on the al
gorithm. The task of the educator is to demonstrate 
algorithms in such a way that the student can master 
the process in sequence. The solution is to stick to 
the Diophantine process and to model examples that 
involve process and sequencing without getting tan
gled up with irrational numbers. To some readers this 
may be self-evident, but it is not as simple as it sounds 
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to find cubics, or quartics with single integral roots 
whose derivatives have single rational roots. Finding 
them involved testing hundreds of polynomials using 
DERIVE (an algebra software developed by Texas 
Instruments), as I was determined to find easy-to
calculate polynomials, which would facilitate graph
ing curves like y = x3 + 1 lx2 + 24x without worrying 
about irrational and complex numbers. There was 
another challenge, of course, and that was to keep the 
constant of the polynomial relatively small so that 
working without a calculator would not be arduous. 

Another aspect of this approach with whole num
bers is that when the student knows that the numbers 
are designed to work, learning of the method or al
gorithm remains the priority. The student also knows 
that there is something wrong if the numbers do not 
work. It is kind of a security blanket for the beginner, 
but it eliminates doubt, which so often takes away 
confidence in ability and performance. Later on, after 
mastering the technique, the student gains confidence 
through the ease of this, and therefore can tackle 
problems with both i rrat ional and complex 
numbers. 

It is my objective to propose families of cubics and 
quartics that are factorable in the integers and whose 
derivatives are factorable in the set of rational num
bers. I will also propose methods using DERIV E by 
which you can constmct your own polynomials. We' II 
start with the very basic table of linear and quadratic 
polynomials, then lead up to the cubics and quartics. 
1 will end the paper with a brief discussion of the 
quintic, which should have worked but did not. 

Table I contains all the various linear and quadratic 
forms along with the general set of cubics. 

Using Table I 

Take a cnbic of the form (x+ a')(x+2ab)(x+b') 
whose derivative has rational roots. Choosing any 
integers. a= l and b = 3 for example, our new poly
nomial is (x+1)(x+ 6)(x+9) with roots -1,-6, and 
-9. The differential form is 3x

2 + 32x + 69 , whose roots
are -3 and _ 23.
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Table I 

Conditions on 

coefficients 
Family Function Roots Derivative Roots and constants 

to have 

integral roots 

a none 0 none not applicable 

ax x=O a none not applicable 

ax + b  -b 
x=-

(I none not applicable 
a 

(x+aY x=-a 2(x+a) x=-a none 

x' +ax= x ( x +a) X = 0,-a 2x + a -a a must be even x=-

x'+x(a+b)+ab x = -a,-b 2x+a+ b -a-b 
a and bare 

= (x+a)(x+b) 
x=-- both odd or 

2 both even 

acx' + x ( ad +be)+ bd -b -d 2CJcx + ad + be -ad-be a ;t 0, C ;t 0 x=-,- x= 
= (ax+b )(cx+d) a C 2ac ad+bc 

must either 
equal ac or be 
an even 
multiple of it 

(x+a}3 

X=-a 3 (x+ a)' x=-a none 

(x+a)\x+b) x=-a. 2(x+a)(3x+2b+a) x=-a none 
x=-b -2b- a 2b + a is 3 or a 

x=--- multiple of 3 3 

x(x+a)(x+b) x=O 3x" +2x(a+b )+ab -(a+b )±✓a' - ab+b' a'- ab+b' 
x= equals zero or a x=-a 3 

x=-b perfect square 

(x + a: )(x+ 2ab )(x+b') X =-a- 3x' + x (2a: + 4ab + 2b:) x=-ab 2a' + ab +2b2 

x = -2ab,x = -b" +ab (2a2 +ab+ 2h2 ) -2a' - ab- 2b2 must be 3 or a 
x= multiple of 3 
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(x+ lXx-a)(x+a) x=-1 3x2 - 2x-a' X = 2 ± ✓ 4 + 12a' 4+ 12a' must 
x=a 6 be a perfect 

x=-a square 
(a=0,1,4,16 ... ) 

The polynomials in Table II consist of the particular numerical families with single roots. These are the ones 
that are ready to use in your classroom today. 

As we observe the families in Table II, it is hard not to notice the pattern 8, 15, 21, 30, 35 and 36. It is a qua
dratic arithmetic sequence whose elements (except for a couple) all work as families of curves. 
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Table II 

Family Function Roots Derivative Roots Transformation 

x(x+ 3 )(x+8) 0,-3,-8 (3x+4)(x+6) 4 (x±k )(x± 3a ± k )(x±8a±k) -- 6 
x3 +l lx� +24x 3x' +22x+24 3' 

x(x+5)(x+8) 0,-5,-8 (3x+20)(x+2) 20 (x±k )(x± Sa± k )(x ± 8a± k) -- -2 
x3 +13x' +40x 3x' + 26x+ 40 3 , 

x(x+7)(x+15) 0,-7,-15 (3x+35)(x+3) 35 (x± k )(x± 7a± k )(x± 15a ± k) -- -3 
x3 + 22x' + I 05x 3x' + 44x+ 105 3 , 

x(x+&)(x+ 15) 0,-8,-15 (3x+ l0)(x+ 12) 10 (x ± k )(x ± 8a ± k )(x ± 15a ± k) 

x3 + 23x' + l 20x 3x' +46x + 120 
-3,-12 

x(x+5)(x+21) 0,-5,-21 (3x+7)(x+l5) 7 (x±k )(x± 5a±k )(x± 21a±k) --.-15 
x3 +26x' +105x 3x' +52x+ 105 3 

x(x+16)(x+2l) 0,-16,-21 (3x+56)(x+6) 56 (x±k )(x± 16a±k )(x±21a±k) --.-6 
x3 +37.x' +336x 3x: + 74.x + 336 3 

x(x+26-a)(x+26) 0,a- 26,-26 3x' + 52x + 26a - a' not 

x3 +x' (52-a)+26(26-a)x 
rational 

x(x+ 14)(x+30) 0,-14,-30 (3x+70)(x+6) 70 (x±k )(x± 14a±k )(x±30a±k) -- -6 
x3 + 44x' + 420x 3x' + 88x + 420 3 . 

x(x+l6)(x+30) 0,-16,-30 (3x+20)(x+24) 20 (x ±k )(x ± 16a± k )(x± 30a± k) -- -24 
x3 + 46.x" + 480.x 3x' + 92x + 480 3 

. 

x(x+33- a)(x+33) 0, a-33,-33 3x' +::!x(66-a)+33(33-a) not 

x3 +x' (66-a)+33(33-a) 
rational 

x(x+ l l)(x+35) 0,-11,-35 (3x+72)(x+ 5) 72 (x± k )(x± I la±k )(x± 35a ± k) -- -5 
x3 + 46.x: + 385x 3x' + 92x + 385 3 • 

x(x+ 24)(x+35) 0,-24,-35 (3x+14)(x+15) 14 (x±k )(x± 24a ± k )(x±35a± k) -- -15 
x3 + 59x: + 840x 3x: + I 18.x + 840 3 • 

x(x+36-a)(x+36) 0,a-36,-36 3x' +2x(72-a)+36(36-11) not 

x3 +x' (72-a)+36(36-a)x 
rational 
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Methods Using DERIVE 

Regarding methods for single roots, let us begin 
by entering the form x(x+a)(x+b) into DERIVE. 
This guarantees a factorable form. Press C for Cal
culus and differentiate. The resulting form is put in 
function form as DECLARE. Now we can either 
guess values and hope that our quadratic is factorable, 
or fix a value for a, and then guess values for b until 
the quadratic is factorable. The question is, do we 
have anything to guide our guessing? In fact, we do. 
Visually, the values of x for maxima and minima will 
occur between the first and last x-intercepts. Hence, 
if we were to choose O and 8 as two of our first and 
last roots, we would know that the third one must 
come between them. lt is just a question of leaving 
enough room between the roots so that the critical 
points can occur as integers and/or rational numbers. 
Algebraically, we enter x(x-a )(x-:;-8) into DERJVE, 
and then differentiate giving 3x· +2x(a-8)+8a. 
Since we have a quadratic, the discriminant B" -4A C 
must equal a perfect square in order to be factorable. 
Usi n g  the  command D ECLAR E, we s e t  
f (a)= 4a2 -32a+ 256 = 4(02 -8a+ 64) and evalu
ate (or use the TI83 where second function gives 
TABLE and we search it for perfect squares). Both 3 
and 5 come up quickly, implying that both 
x(x-3)(x-8) and x(x-S)(x-8) have derivatives 
whose roots are rational. 

I do not pretend to have all the families. but ap
plying translations to any given family will yield 
many polynomials. The following is a small sample 
arrived at by adding a constant to all the terms. 

Given family x(x-3)(x-8
t Add 1 

!
x+l)(x-2) x-7) 

Add 2 x+2)(x-l) x-6) 
Add 3 x+3)(x)(x-S) 
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Add 4 
Add5 
Add 6 
Add 7 
Add 8 

X + 5 X + 2 )�x - 3) 
x + 411x + 1 )(x -4) 

x+6 x+3) x-2) 
x+7 x+4) x-1) 
x+8 x+5)(x),etc. 

Interestingly enough, the entire above shares 
a max height of :o

7
o = 

( ¾ X 1 )( 23°} and minimum 

low of -36, and the difference between their corre
sponding .\·-coordinates is exactly �. A linear rela-

3 

tionship exists between these values and those found 
in the quartics. We shall explore this after exploring 
the quartic family of curves. 

Having fully explored the cubic, the quartic family 
of curves presented quite a challenge because there 
would be three roots, other than zero, to find. Visually, 
I opted for a span of 7 ( one less than the 8 for cubics), 
entered x ( x -a)( x -b )(x - 7) into DERIVE, fixed 
a= 3 (only because it had worked with the cubic), 
took the derivative and evaluated h from I to 7 hoping 
that some value b would work. The derived form was 
4x3+x2 (-3b- 30)+x(20b+42)-2lb , and by de
claring fas the function I simply tested values for b 
and systematically factored (pressing F). To my great 
delight b = 4 worked. giving 2(x-6)(x-1)(2x-7). 
Observing 3 and 4 together, I acted on a hunch that 
Pythagorean Triples might work. So, following in the 
footsteps of Diophantus, I tried triplets beginning with 
odd numbers and even numbers, and they worked 
beautifully. An added bonus was those triplets with con
secutive legs such as 20-21-29 and 119-120-169, etc, 
which also worked wonderfully. The patterns appear 
in Table III. The numerical families of the form 
x(x + a ) (x+ b )(x +c) appeur inTable IV The numerical 
families for the form x2 (x+a)(x+b) appear in Table Y. 
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Family Function 

(x +a)' 

(x+ a )
3 

(x+b) 

(.-r+a)'(x+b)' 

(.-r+a)'(x+b)(.r+c) 

The prnducr or (x) and 
( x + "211 + I) and 
(x + 2n' + 211) and 
(x + 2n' + 411 +I) 

The. product 01· (.r) and 
(x + 211 + I) and 
(x + 2n' + 211) and 
(x+2n' +4n+1) 

Roots 

-a 

-a.-b 

-a.-b 

-a,-b.-c 

-2n-1, 

-211' - 211 
and 
-2n' -411-l 

-2n.1- n', 
and 
-n' - 2n+ I 

Table Ill 

Derivative Roots Conditions For 
Integral Roots 

4(x +a )
3 -a no restrictions 

(a+bl(4x+3b+a) -a and -3b-a must he a 
-3b- a multiple or 4 

- --

4 for h= I a= 1.5.9 ... 4k-3 
for h=2 a=2,6, 10 .. .4k-2 
for b=3 a=.3,7, 11 .. .4k-l 
for h=4 a=4.8. 12 .. .4k 

2 (x + a )(x + b )(2x +a+ b) -a,-b a and b must he hoth 
and odd or hoth even 
-b- a --

2 

(x+a)[4x' +x(3h+3c+2a) 4a'+9b+9c 
-3b- 3c-2a± ✓4a' +9b= - 4ab-4ac-14bc 

+ 2bc + ab + ac] -4ab - 4ac - l 4bc 
8 must be perfect square 

2(x+11)(.r+211' +311+1) -11, -2,/ - 311 -1 and -211' - 4n -1 no conditions 

(2x+211' +411+!) 

2(.r+n-l)(x+n' +n) 
I - n, -11' - n and -11' - 211 + I 

( 2x + 11' + 211 -1) no conditions 



Table IV 

Family Function Roots Derivative Roots Transformation 

Odd Pythagorean Triplets 

X 
(x+ 3)(.t+ 4 )(x + 7) o.-J.--4.-7 2(x+l)(x+6)(2x+7) -7 -1,-6,- (x±k )(., ±3a ±k )(x± 4a ± k )(x± 7a ±k) 

.r(x+5)(x+l2)(x+ 17) o.-s.-12.-11 :!(x + 2)(x + 15)(2.r + 17) -17 -2.-15.-,- (.r±k )(x ± Sa±k )(x ± 12a±k )(x± 17a ± k) 

x(x + 7)(x+ 24 )(x + 31) 0.-7.-24.-31 2(x +3)(.r + 28)(2x + 31) -31 
-3.-28,-:;- (x±k )(x± 7a ±k )(., ± 24a ±k )(x±3la ±k) 

etc 

Even Pythagorean Triplets 

x(x+4)(x+3)(x+7) 0.-3.--4.-7 2(:r+ 1)(x+6)(2x+ 7) -7 -1.-6.- (x±k )(.,· ± 4a±k )(x±3o ±k )(x ± 7a± k) 

.r(x+6)(x+8)(x+ 14) u.-6. -8.-14 4(x+2)(x+ 7)(.r+ 12) -�.-7.-l � (x± k )(x± 6a ± k )(x± 80 ± k )(x± 14a±k) 

x(x+8)(x+ 15)(x+23) 0.-8.-15,-23 2(., + 3 )(x+ 20)(.r + 23) -:?3 
-3.-20.- (x ±k )(x ±Sa± k )(x± 150 ± k )(x ± 23" ± k) 

etc 

Consecutive-Leg Triplets 

x(x +3)(x+4)(x+ 7) 0,-3,--4.-7 2 (x+ l)(., +6)(2x + 7) -7 -1.-6,- (x ± k )(x ±3<1 ± k )(x ±4a±k )(.r± 7a ±k) 

x(x + 20)(x+ 2l)(x+41) 0.-20.-21,--41 2(x + 6 )(x + 35 )Px + 41) --41 
-6,-35.--::;-

(x± k )(x±20a ±k )(x±21a ± k )(x ±4 la± k) 

x(x+l 19)(x+l20)(x+239) o.-119.-120. 2 ( ., + 35 )(., + 204 )(2x + 239) -'39 
-35, -204. -=--

(x:tk )(x± I 19a±k )(x± 120a:!: k )(.t± 2390± k) 

-239 

Table V 

Family Function Roots Derivative 

x:(x+5)(x-7) 0.-5, 7 2x(x-5)(2x+ 7) 

x:(x+5)(x+2) o.-s.-2 x(x+4)(4x+5) 

x:(x+S)(x+9) 0,-5,-9 x(x+ 3 )(2x+ 15) 

x" (x + 7)(x + 10) 0,-7.-10 x(x+4)(4x+35) 

x" (x+9)(x+ 14) 0
,
- 9,-14 x(x+12)(4x+21) 

delta-K, Volume 44, Number 2, June 2007 

Roots 

-7 
0

,
5
,2 

-5 
0-4-
' '4 

0 -3 -15 
, ' ') 

0.-4, -35 
4 

0 -12 -21 
, ' 4 

2 

etc 

Transformation 

(x: ±k )(x+Sa±k )(x-7a±k) 

(x= ±k )(x+5a±k)(x+2a±k) 

(x: ±k )(x+ Sa±k )(x+9a±k) 

(x: ±k )(x+7a±k)(x+l0a±k) 

(x" ± k )( x + 9a ± k )(x + 14a ± k) 
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Family Function 

(x +a)' 

( x +a)' (x + b) 

(x + a )
3 

(x + b )(x + c) 

(x+a)
3 

(x+bf 

(x + a Y (x + h )(x t c) 

x= (x + a )(x + h )(x + c) 

,\' (,\'+(I) ( .\' + h) ( ,\' + C) ( .\" + ") 

Table VI 

Roots Derivative 

-a 5 (x +a)' 

-a,-b (x+a)
3 (5x+a+4b) 

-a,-b, (x + a Y (sx= + 2x (a+ 2h + 2c) 
-c +ab+ac+3bc) 

-a,-b (x + a Y (x + b )(5x + 2a + 3b) 

-a,-h, (x+b)(x+a)[s./ +.,(3a+3b+4c) 

-c +ah+ 2ac + 2bc] 

0,-a, x(sx' +x' (4a+4b+4c)+x 
-b.-c ( 3ab + 3ac + 3bc) + 2abc) 

0,-a, 5x' +4x'(a+b+c+d)+3x' 

-b,-c, ( ab + ac + ad + be + /,d + cd) 
-d +2x ( abc + abd + acd +bed)+ abed 

Roots 

-a 

-a and 
-a-4b 
---

5 

-a and 

-(a+2b+ 2c)± ✓a' +4b' - ab- ac-7bc 

-a,-b and 

-a,-b, and 

5 

-2a-3b 
5 

-(3,, •Jh, ,k)t ✓9a' •9b' +16c'-cah-16hc-16-c 

10 

no rational roots 

no rational roots 

Conditions For 
Integral Roots 

none 

a+4b must be 5 
or a multiple of 5 

Conditions: 
a' +4b' +4c' 
- ab - ac - 7bc 
must be zero or 
a perfect square 

2a+ 3b must he 5 or 

a multiple of 5 

Conditions: 
' 

9a +9b +16c 

- 2ab - 16hc - 16ac 

must be a 
perfect square 

NIA 

N/A 



The Quintic 

In terms of multiple roots, the quintic lends itself 
nicely to easy-to-work-with numbers that are small 
in quantity. However, for quintics of the form 
x(x-a)(x-b)(x-c)(x-d), the derivative has 

no rational roots, primarily because of Fermat's 
Last Theorem whereby there are no integral values 

for which x4 + y4 = z4

• Having run the computer 
through thousands of number combinations (just to 
be sure), no derivative with rational roots could be 
found. Our Table VI contains multiple roots only. 
Table VII contains the numerical families for the 
forms 

Table VII 

Family Function Roots Derivative 

x'(x+3)(x+4) 0,-3,-4 x=(.x+2)(5x+l8) 
x; + 7x' + 12x3 Sx" + 28x3 + 36.x: 

x' (x+3)(x + 1 1) 0,-3,-1 I x:(x+9)(5x+18) 
x; + 14x4 + 33x3 5x" + 56x3 + 99x' 

x' (x+4)(x+ 7) 0,-4,-7 x: (x+6)(5x+ 14) 
x; + 1 lx4 + 28x3 3x4 + 44.x-' + 84x' 

x3 (x+S)(x+ 12) 0,-5,-12 x: (x+ I 0)(5x+ I 8) 
x; + I 7 x• + 60x3 5x4 + 68x' + l 80x' 

x"(x-3/(x-1) 0,3, I x(x-3)(x-2)(5x-3) 
x5 

- 7x4 + 15x3 -9x: sx· -28x' + 45x: -I 8x 

x" (x-3f (x-2) 0,3,2 x(x-3)(x-l)(5x-12) 
,/ -8x' + 2 lx3 -18x: 5x4 

- 32x-' 
+ 63x' -36x 

x'(x-3f (x-7) 0,3, 7 x(x-6)(x-3)(5x-7) 
x' - l 3x4 + S lx3 -63x" 5x4 

- S2x3 + 153x' -I 26x 

x' (x-3)2 (x +4) 0,3,-4 x(x-3 )(x + 3 )(Sx-8) 
x5 

- 2x' -15x3 + 36x' Sx' -8x' -45x' + 72x 
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x3 (x+a)(x+b) and x2 (x+a)
2 {x+b)· 

Roots 

0 _.., -18 ' �, 
5 

0.-
9,-18 

5 

0 -6 -14 ' ' 
5 

0,-10. -18 
5 

0,3,2} 
5 

12 0,3,1.-
s 

7 0,6,3.-
5 

8 0,3,-3.-
5 

Transformation 

(x± k )' (x± 3a ± k )(x±4a± k) 

(x±k}'(x±3a±k)(x±1 la±k) 

(x± k )' (x±4a± k )(x± 7a ± k) 

(x± k )' (x± Sa ±k )(x± 12a±k) 

�±kf�-3a±kf�-a±k) 

(x ± k f (x -3a ± k f ( x -2a ± k) 

(x±k )' (x-3a±k f (x-7a±k) 

(x±k f (x-3a±k f (x+4a±k) 
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With all the patterns that do work, it was too tempting not to try to make a linear link among the cubic, 
quartic, and quintic forms. Let us examine the following facts. 

I. Cubic Form Smallest Root 

x(x-S)(x-8) 0 

Derivative 

(3x-20)(x-2) 2 

II. Quartic Form Smallest Root 

x(x-3)(x-4)(x-7) 0 

Derivative 

2(x-1)(2x-7)(x-6) I 

Ill. Quintic Form Smallest Root 

x(x-2)(x-3)(x-6) 0 

Derivative 
5x' -60x' + 240x' - 360x + 144 . 616036 ... 

We realize very quickly that we can come close to 
rational roots, but cannot obtain them as our constant 
tenn would have to be a multiple of 5 in order to be 
factorable, which is impossible in this situation. 

Summary 

If nothing else. the reader now has a partial list of 
cubic and quartic polynomials with multiple or single 
integral roots whose derivatives have multiple or 
single rational roots. The quintic avails itself to mul
tiple but not to single roots. 

I would never have attempted all this work without 
the user-friendly program DERIVE, as 1 was able to 
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Largest Root Range Sum of Roots 
8 8 13 

20 14 26- - -
3 3 3 

Largest Root Range Sum of Roots 
7 7 14 

20 42 
5=- -

6 4 4 

Largest Root Range Sum of Roots 
6 6 15 

60 
5.383960 ... 4.767924 ... 

-
5 

test many polynomials in seconds and quickly find 
derivative and corresponding factored forms. The 
same Diophantine process can be applied to rational 
forms. making life a little easier for the curve 
sketcher. 
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