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1. Introduction

One of the most significant roles of mathematics
has been to address the so-called "inverse problem·' 
in science. This concerns providing information about 
a quantity y on the basis of having measured some 
experimental trace that has been left by y. In calcu­
lus. when y is a differentiable function, one such 

. I 1 1 . 1 d · · d" part1cu ar y re evant trace 1s t 1e envat1ve y '= --'--.
dx 

In solving an ordinary differential equation (ODE), 
one seeks to determine all the solutions y that satisfy 
the given ODE. The theory of ODEs (as in, for in­
stance, Nagle, Saff and Snider 2004) makes it useful 
to know the order of an ODE-namely, the highest 
integer n such that /">, the 11'" derivative of y, appears 
nontrivially in the given ODE. The cases n = I, 2 are of 
particular importance because of applications in science 
and engineering (with the second derivative often play­
ing the role of acceleration in applications of Newton's 
Second Law of Motion). The most complete theory 
in the subject has been developed for the class of 
linear ODEs; that is, ODEs dubbed ·'linear·• because 
their analysis is often facilitated with the aid of matrix 
theory, which is also known as linear algebra. Occa­
sionally, more elementary algebra becomes relevant, 
as in the classical solution of the second order ODE 
with constant coefficients, ay "+by' + cy = g(x),
where the roots of the associated quadratic polyno­
mial, aT2 + b T + c = 0, play a crucial role (see Nagle, 
Saff and Snider 2004. chapter 4 ). 

For several decades, the method of variation of 
parameters (also known as "variation of constants") 
has been a mainstay in the typical first course on 
ODEs. This method for solving n°' order linear OD Es 
is usually considered first for the case n = 2 (as in 
Nagle, Saff and Snider, 2004, section 4.6) and, in 
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some courses and texts, later for the case n � 3 (as in 
Nagle, Saff and Snider, 2004, section 6.4). The treat­
ment of variation of parameters is central to any first 
course on ODEs, as it is part of a (hopefully, gentle) 
introduction to the study of linear operators and the 
principle of superposition. Remarkably, this central 
role could be played earlier, when considering the 
case n = 1 , which is instead usually treated by various 
ad hoc methods. The main purpose of this note is to 
rectify matters by showing how the above-stated 
principles of variation of parameters can be intro­
duced very early in a course on ODEs to solve the 
general first order linear ODE. Moreover, our treat­
ment of the case n = 1 has the classroom advantage 
of being able to focus on the differential equation 
aspects, as we will need none of the algebraic ma­
chinery and background (such as determinants, 
Wronskians and Cramer's Rule) that are needed to 
implement variation of parameters in the case n > I . 

Section 2 contains a derivation of the method 
promised in the title of this note. We have found that 
this theoretical presentation is well received in the 
first unit of an ODE course. Examples 3.1 and 3.2 
illustrate the use of this method. Rather than depend­
ing on the abstract considerations in section 2, the 
presentation of examples 3.1 and 3.2 repeats some of 
those ideas in a concrete situation and is thus essen­
tially self-contained. In this way, examples 3.1 
and 3.2 can serve as models for a classroom presenta­
tion of our method in classes where the abstract 
considerations in section 2 may seem inappropriate. 
Remark 3.3 identifies what we see as the two most 
important pedagogical advantages of our method over 
the usual method that involves integrating factors. In 
closing, remark 3.4 suggests a new role for the topic 
of integrating factors in a first course on ODEs. 
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2. A Derivation Based on the 
Homogeneous Case 

The method of variation of parameters works in 
general as follows. To solve a nonhomogencous I in ear 
ODE, first obtain a formula for the general solution 
of the corresponding homogeneous linear ODE, and 
then determine how the arbitrary constanr.� appearing 
in that formula would have to be reinterpreted as 
functions in order for the reinterpreted formula to 
produce a solution of the given nonhomogeneous 
ODE. Let us now see how this method can be applied 
to solve the general first order linear ODE. y ' 
+P(x)y = Q(x) (where P(x) and Q(x) are continu­
ous functions defined on some open interval and, as 

Jr above, v ' means -----'----). • dx 
The corresponding homogeneous linear ODE is 

P - I 1 dr - -
y '+ (x)y = 0 or, equ1va ent y,-'- = -P(x)dx. This 1s 

\' 

a (variables) separahle ODE, which is often the only 
type of ODE whose solution is typically studied be­
fore the topic of first order linear ODEs is considered 
in an ODE course. As usual, one can solve this sepa­
rable ODE by integrating both sides, with the result 
that ln(IYl)=-f P(x)dx+c·, where c· is an arbitrary 
constant. Exponentiation leads to the formula 

-J r(xJtf.y c· -f /'p),b. y = Ke , where K = ±e . Let v := e 

ignoring the constant of integration in the exponent. 
(It is interesting. but not essential, to note that i; = µ -i , 

J /'(x)rfr 
where µ := e is the integrating factor that is used 
in the typical textbook solution of first order linear 
ODEs.) Thus, the general solution of the correspond­
ing homogeneous linear ODE is y = Kv. It follows 
that v is a particular solution of y '+P(x)y = O. We 
proceed to vary the parameter K -that is, to deter­
mine how to interpret K as a jimction-so that 
y = Kv is a solution of y '+P(x)y = Q(x). 

Since y = Kv, we can find y ' by using the product 
rule: y '=v 'K + K 'v . Substituting into the given 
ODE leads to v ' K + K ' v +P(x)Kv = Q(x) or, 
equivalently, K 'v + K(v ' + P(x)v) = Q(x). Since 
v '+ P(x)v) = 0. the above condition on K simplifies 
to K 'v = Q(x) or, equivalently, K '=v - 1Q(x). Then, 
by the very meaning of indefinite integration, we have 
K = f v- 1Q(x)dx + C, where C is an arbitrary constant. 
Therefore, the general solution of y '+P(x)y = Q(x) 
is y = Kv = cf v-'Q(x)dx+ C)v = <J v- 1 Q(x)dx)r + Cv .Since 
v = µ _, , this formula can be rewritten in the more 
familiar way as y = (J µQ(x)dx)µ _, + Cµ '. Of course. 
it is not necessary for users of our method to remem­
ber this formula (or the formula for µ),as they need 
only implement the above steps. 
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3. Some Examples and 
Pedagogical Remarks 

Examples 3.1 and 3.2 illustrate how to use the 
methodology in section 2 to find the general solution 
of a typical first order linear ODE. Remark 3.3 com­
pares the details of example 3.1 with the details in 
the usual solution via the integrating factor method 
(as in Nagle, Saff and Snider 2004, section 2.3). In 
this way, we have a concrete example illustrating the 
advantages that we ascribe to the method in section 2. 
Of course, as we observed at the end of section 2, the 
two methods give the same answer. For a variety of 
reasons, instructors who include the method of sec­
tion 2 in their curriculum for a first course on ODEs 
may also wish to include the integrating factor 
method. For such curricula, it may be advisable to 
identify an additional role that integrating factors can 
play in such a course, and remark 3.4 offers one sug­
gestion along these I ines. 
Example 3.1. Use the method of section 2 to solve 
the following ODE: 2x2y' +xy = 6x2 (for x > 0 ). 

Solution. The given ODE is not in the standard form 
of a first order linear ODE; namely, y '+P(x)y = Q(x). 
To find an equivalent ODE that is in this standard 
form, divide the given ODE by 2x2 (that is, by the 
coefficient of 11 '). The result is in standard form, 

- x· 1 6x2 

with P(x) = -;;---T = 7 
and Q(x) =-

2 
= 3 . Accord-

-X _x 2x 
ing to the method of variation of parameters, we 
must first find the general solution of the corre­
sponding homogeneous (first order) linear ODE, 
y '+P(x)y = 0 (namely, y '++-y = O ). This ODE 

... x 
b . dv dx ( . bl ) bl can e rewntten as ---= -- , a vana es separa e 

y 2x 
ODE whose general solution can be found in the 
usual way, as follows: J __!__dy =-J-1-dx+ c·, or 

I y 2x 
• 1/2 • 

lnlyl=--lnlxl+C =-ln(lxl )+C. By a law of 
2 

logarithms, this solution of the homogeneous 
ODE can be rewritten as ln(I y II x ! 1 12 ) = c· or, equiva­
lently, as ,. = K-.:- 11". where the arbitrary constant 
K = ±i· .

. 

We now proceed to vary the parameter K that 
appeared in the above solution of the homogeneous 
ODE. As in the usual textbook treatments for the case 
n � 2, this amounts to asking for necessary and suf­
ficient conditions on a function K so that v = Kx- 112 

is a solution of the gi�en (nonhomogeneous) ODE. 
Substituting this expression for y into the given 
ODE (and differentiating it using the product rule 
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from the prerequisite differential calculus), we obtain 

2 '( I -J12K K ' -112
) 

Kx-112 6 2 Th' . 
x· -- X + X + X = X . IS IS 

2 
algebraically equivalent to K ' = 3x 112 , whose 
solution (using the prerequisite integral calculus) 
is K = J. 3x1_'2dx = 2x312 + c_. Accordin�ly, the gen­
eral solut10n of the given ODE 1 s  v = 

Kx-112 

= (2x3
'2 + C)x- 1'2 

= 2x + cx-112• 

For classes with enough time for additional ap­
plications of the method being proposed here, ex­
ample 3.2 provides two more illustrations of that 
method. Example 3.2(a) is easier than example 3. I 
in that the differential equation that one must solve 
to find K in example 3.2(a) is easy (namely, K '= l ), 
while example 3.2(b) is more difficult than exam­
ple 3.1 because the differential equation that one must 
solve to find K in example 3.2(b) requires integration 
by parts. 
Example 3.2. Use the method of section 2 to solve 
the following ODEs: 
(a) )' '-2y = e2

,: and 
(b) y '-2y= x. 
Solution (Sketch). The given ODEs are both in the 
standard form of a first order linear ODE; namely, 
y '+P(x)y = Q(x) (with P(x) = -2 in both cases). 
The general solution of the corresponding homoge­
neous (first order) linear ODE, y '+P(x)y = O 
(namely, y '-2y = 0 ), is found to be y = Ke2

·' • View­
ing K as a function and requiring y = Ke2

' to sat­
isfy the ODE in (a) leads, after some algebraic 
simplification, to e2·'K '= e2

', whence K '= I and 
K= f1dx=x+C, where C is an arbitrary con­
stant. Thus, the general solution for (a)  i s  
v = (x + C)e2

' = xe 1x + Ceix. 
- A similar approach in (b) leads to K' = xe-2

', 

whence integration by parts  gives us  that 

K I -2.td ( I -2.,) 
I 

I -2., i T h = xe x = x -
2

e - -
2

e ex. u s ,  
-2x -2.r 

K=-!!._ __ e_+C and so the general solution 
2 4 ' 

-2.\' -2x 

f. (b) . xe e '. h. h . )'fj or 1s v=(------+C)e·' w 1c s1mp11es -
2 4 

' 

X I C 2, to y = ----+ e ·. 
2 4 

Remark 3.3. In Nagle, Saff and Snider (section 2.3), 
the general first order linear ODE, y '+ P(x)y = Q(x), 
is solved by using the rather unmotivated introduction 

Ji'(x)dx 
of the integrating factor µ = e (which leads to 
the equivalent ODE, �(µy) = µQ(x), which can be 

dx 
solved by separation of variables). Thus, the 
usual textbook solution of the ODE given rn 
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Example 3.1 would use the integrating factor 
Jl'(x)d, s�dx _l,ln(l.rll µ = e · 

= e 2
' = e2 =Ix i'2= x 112 .Thatsolutionis 

then y = cf µQ(x)dx)µ-' + Cµ -I= <f x112 3dx)x- 112 + Cx" 112 

= (2x311)x- 112 + cx- 112 
= 2x+ cx-112' which agrees with 

the answer found in example 3.1. 
A comparison of the above calculation with the 

details in example 3.1 shows that both involve the 
same mechanical skills. However, the solution in 
example 3.1 (and the same can be said for the solu­
tions in example 3.2) has what we view as the two 
most important advantages for the method introduced 
in this note: (I) it does not require one to memorize 
the integrating factor formula µ = eJ Pi ,)dx and (2) it 
introduces variation of parameters in a context ( n = 1 ) 
that can avoid the matrix algebra that complicates the 
treatment in case n � 2. 
Remark 3.4. In closing, we pursue the comment in 
the introduction that most cutTent textbooks deal with 
first order linear ODEs in an ad hoc manner. (After 
drafting this manuscript, we came across a couple of 
recent textbooks that do introduce variation of pa­
rameters in case n =I: see Diacu (2001, 32-33) and 
Logan (2006, 62-63).) Recall that the standard text­
book solution of the general first order linear ODE, 
y '+P(x)y = Q(x), is carried out with the aid of the 
integrating factor µ = ejl'tx Jdx (which leads to the 
equivalent ODE, �(µy) = µQ(x), which can be 

dx 
solved by separation of variables). Rather than ap­
pealing: to separation of variables, an earlier edition 
of Nagle. Saff and Snider justified the integrating 
factor method by using the theory of exact ODEs. 
(The topic of exact ODEs has been moved to sec­
tion 2.4 of Nagle, Saff and Snider.) This style of jus­
tification suffers the criticism of depending on Cal­
culus III, especially on concepts involving partial 
derivatives and simply connected regions. On the 
other hand, for students with this background from 
Calculus III, if an instructor wishes to emphasize the 
integrating factor method in conjunction with a dis­
cussion of exact ODEs, then the topic of integrating 
factors could be made more central to the course by 
including the following theorem. Any (not necessarily 
linear) first order ODE, M(x,y)dx+ N(x,y)dy = 0, 
has an integrating factor (that is, a function µ = µ (x,y) 
such that µM(x,y)dx+µN(x,y)dy=O is an exact 
ODE), provided that M and N have continuous first 
partial derivatives defined over some open rectangle. 
The proof of this theorem depends on the fundamental 
existence and uniqueness theorem for initial value prob­
lems and can be found in Ford (1955, Theorem, 54). 
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