
JOURNAL OF THE 

MATHEMATICS COUNCIL 

OF THE ALBERTA 

TEACHERS' ASSOCIATION 

56789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 1234567 

Volume 44, Number 1 December 2006 
56789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 1234567 



GUIDELINES FOR MANUSCRIPTS 
---------------

delta-K is a professional journal for mathematics teachers in Alberta. It is published twice a year to 

• promote the professional development of mathematics educators, and
• stimulate thinking, explore new ideas and offer various viewpoints.

Submissions are requested that have a classroom as well as a scholarly focus. They may include

• personal explorations of significant classroom experiences;
• descriptions of innovative classroom and school practices;
• reviews or evaluations of instructional and curricular methods, programs or materials;
• discussions of trends, issues or policies;
• a specific focus on technology in the classroom; or
• a focus on the curriculum, professional and assessment standards of the NCTM.

Suggestions for Writers 

1. delta-K is a refereed journal. Manuscripts submitted to delta-K should be original material. Articles cur­
rently under consideration by other journals will not be reviewed.

2. All manuscripts should be typewritten, double-spaced and properly referenced. All pages should be numbered.
3. The author's name and full address should be provided on a separate page. If an article has more than one

author, the contact author must be clearly identified. Authors should avoid all other references that may
reveal their identities to the reviewers.

4. All manuscripts should be submitted electronically, using Microsoft Word format.
5. Pictures or illustrations should be clearly labelled and placed where you want them to appear in the article.

Please also include all graphics as separate files (JPEG, GIF, TIF). A caption and photo credit should ac­
company each photograph.

6. References should be formatted using The Chicago Manual of Style's author-date system.
7. If any student work is included, please provide a release letter from the student's parent/guardian allowing

publication in the journal.
8. Limit your manuscript to no more than eight pages double-spaced.
9. Letters to the editor and reviews of curriculum materials are welcome.
I 0. Send manuscripts and inquiries to the editor: Gladys Sterenberg, 195 Sheep River Cove, Okotoks, AB TlS 2L4;

e-mail gladys.sterenberg@uleth.ca.

MCATA Mission Statement 

Providing leadership to encourage the continuing enhancement 
of teaching, learning and understanding mathematics. 
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EDITORIAL 
-----------------------------

Professional development continues to be an exciting endeavour in teaching mathematics. This is evident 
by the overwhelming number of teachers who participated in the annual conference of the Mathematics Council 
of the Alberta Teachers' Association (MCATA) in October (photographs and report to follow in our next pub­
lication). I suspect that the next few years will bring many opportunities to expand our understanding of how 
math is learned and taught with the introduction of the new provincial curriculum. I encourage you to be in­
volved in this process of curriculum revision (see Jennifer Dolecki's report in this issue). 

As always, it is important that teachers share their professional knowledge with the community. This issue 
contains articles that may help us think differently about our pedagogical approaches and the mathematics that 
we teach. The feature articles focus on unique ways of interacting with mathematical ideas from elementary 
to high school. The teaching ideas include several examples of lesson plans that have been taught and innova­
tive approaches to integrating technology, factoring trinomials and reducing fractions. I welcome your reactions 
and responses to any of the ideas you encounter in these articles. I am thankful to these authors for their con­
tributions. I hope their ideas provoke your thinking. 

I wish to thank the reviewers who work diligently to provide feedback to our authors. It is their commitment 
to our profession that makes this publication possible. The work that the MCATA executive does to facilitate 
professional development is sometimes an invisible activity; their support in the process of publishing this 
journal is significant and much appreciated. 

I wish you all the best as you return to school, renewed and inspired in anticipation of what 2007 will bring. 

Gladys Sterenberg 
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FROM YOUR COUNCIL 
----------------------

From the President's Pen 

Those who love math can relax, reduce stress and 
combat boredom through mathematical pursuits. I 
can remember sitting in a high school history class 
analyzing the pattern of holes in ceiling tiles, deter­
mining the ratio of small holes to large holes, counting 
the holes in one tile and calculating the number of 
holes in one classroom and so on. 

I estimate the number of people at meetings and 
calculate the cost per hour. I calculate the number of 
board feet in ceilings. I doodle patterns created with­
out retracing lines. I detcnnine how much paint would 
be needed to paint a room. I calculate probabilities. 
Ah, just listing a few possibilities relaxes me. 

My favourite mathematical pursuit of all is knit­
ting. Knitting is inherently mathematical. How do 
you calculate the area of a sweater? What is the ratio 
of body circumference to sleeve circumference? If a 
sweater has 22 stitches and 30 rows to IO centimetres, 
how many metres of yarn will the sweater take? 
Expert knitters regularly indulge in these activities. 
When asked how many balls of yam a certain sweater 
will take, apparently we gaze off into space and 
pull a number out of thin air. Actually, we perform 
a rapid memtal calculation based on several of the 
above factors. 

Knitting design is heavily based on the golden 
mean and Fibonacci numbers. ff you examine a 
striped sweater that is pleasing to the eye, inevitably 
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the number of rows in each stripe is a Fibonacci 
number. If you measure the width of the pattern units 
in a fisherman knit sweater, they also will be Fibo­
nacci numbers. Thread5 magazine published a very 
interesting article on knitwear design using the golden 
mean and Fibonacci numbers (Korach 1990). Kaffe 
Fassett, perhaps the most famous designer of creative 
knitted items, uses tessellations and Escher type 
drawings as the basis for many of his designs. 

Knitting is only one area of recreation that is highly 
mathematical. I could have talked about woodwork­
ing, art or many others. People who enjoy school 
mathematics often enjoy recreational activities that 
involve the use of math, yet the opposite is not equally 
true. I know many excellent knitters and woodwork­
ers who say that they were never good at math in 
school. What a shame that these people did not see 
themselves as part of a mathematical community. As 
we continue to focus on building a deep and broad 
understanding in our students through the connections 
we forge to life outside of school, I hope that we will 
continue to find fewer mathematical thinkers who are 
"not good at math." 

Reference 

Korach. A. 1990. "A Balancing Act." Thread� 30: 57-61. 

Janis Kristjansson 
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The Right Angle: 
Report from Alberta Education 

Jennifer Dolecki 

The Process of 

Curriculum Revision 

Alberta Education uses a six-phase cycle for cur­
riculum review, development and implementation. 
Although the details of this cycle vary between pro­
grams, all programs follow the general phases. The 
next installment ofThe Right Angle will examine the 
development and implementation of the mathematics 
program of studies. For now, we'll look at the general 
phases in the curriculum review, development and 
implementation cycle. 

Maintain 

Implement 

Review 

Consult, 

Collaborate 

and 

Communicate 

Develop 

Initiate 

Plan 

The key questions that must be addressed in each 
phase of the cycle are provided below. The answers 
to these questions detem1ine whether a program will 
move from one phase of the cycle to the next and 
when. 

1. Review: Gather and review information
What is working well?
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Are there issues or concerns to be addressed')
Should a needs assessment be conducted?
What research and background information are
needed?

2. Initiate: Develop initial proposal
What will the changes be?
What strategies should be used?
What are the implications for students, teachers
and school authorities?
How will the changes be communicated?

3. Plan: Develop project plan
Who will be our partners and provide support?
What are the timelincs?
What processes will be used for consultation?
What learning and teaching resources will support
the program change?

4. Develop: Prepare programs of study
What arc the philosophy and rationale for the
program?
What are the program outcomes?
How is feedback from consultations on the pro­
gram gathered and included in the revisions?

5. Implement: Authorize program and resources,
support implementation
Has there been a final quality check to ensure that
all components are in place for implementation?
Do clients, partners and stakeholders have the in­
formation needed for implementation?
Are teachers, administrators and school authorities
knowledgeable about the program and implemen­
tation requirements?
Have teachers received support for implementation?

6. Maintain: Support and sustain
Do teachers have access to ongoing guidance and
support?
Is feedback from the field regarding curriculum
implementation and maintenance being monitored
and collated?

Each Alberta Education program of study can be
placed somewhere in this cycle, and often parts of a 
program can be split between phases. This empha­
sizes the continuous nature of curriculum develop­
ment and implementation. 
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FEATURE ARTICLES ___________ _ 

Noticing as a Form of Professional 
Development in Teaching Mathematics 

Julie S Long 

As a teacher, I constantly change my practice. I 
make changes not to correct something but to respond 
to students and to answer my own questions about 
teaching mathematics. These changes are a form of 
professional development because they are often 
derived from readings or working with other teachers. 
This article focuses on how John Mason's book Re­

searching Your Own Practice: The Discipline of 
Noticing (2002) can enrich professional development. 
In particular, I will look at accounts-of and accounts­
for experience, professional development and con­
nections to mathematics. 

Accounts-of and Accounts-for 

Mason's (2002) work centres on developing sen­
sitivities for attending to, or noticing, aspects of un­
examined and habitual practice, so that choices in 
moments of teaching practice might be better in­
formed. Mason's research has shown the importance 
of reflection in developing professional practice by 
offering a "detailed, structured, systematic" (p 25) 
way to record and act on reflections. 

Mason differentiated between an account-of and 
an account-for an experience. An account-for an ex­
perience includes explanations, judgments and evalu­
ations surrounding an event; an account-of an experi­
ence minimizes these aspects. The idtia is to write up 
the account so that others recognize the experience. 
Mason (2002, 41) wrote that collecting these ac­
counts-of "is one step towards ... identifying a type 
of situation. tension, issue or interaction which is 
exemplified in several different incidents or experi­
ences." I decided to try it by writing an account-of a 
teaching moment. 

Account-of Fractions 

While James presented his ideas about dividing 
fractions, he drew circles on the whiteboard. He 
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explained his method for dividing one-half by one­
quarter, and his classmates asked him questions. 
James re-explained his method using different words 
and the same drawings. When he stopped talking, 
students turned their heads from James and looked 
at me. James sat down and I elaborated on his strategy. 
Students then discussed fractions in groups and made 
drawings of the fractions. 

In this account-of a teaching moment, I distilled 
the experience into a short paragraph. I avoided 
emotional words and explanations of my thinking, 
which was difficult because emotions were important 
in my decisions that day. I also had difficulty identify­
ing the essence of the experience. I had to work at 
stressing certain aspects, such as what I could remem­
ber about the physical situation, and ignoring others, 
such as my emotions. At first I thought that I was 
writing about listening to students, but I realized that 
the essence in this account-of was a moment of taking 
authority in the classroom. This is different from my 
original account-for. 

Account-for Fractions 

One day I talked about dividing fractions and how 
simply knowing the procedure is not helpful. It's easy 
to forget what to do to which fraction. I explained 
that if you understand it, the procedure is meaningful. 
I drew an example on the board. 

While students were working on a problem, I cir­
culated and chatted. James explained his thinking 
about the division of fractions to me a couple of times, 
and I had difficulty understanding him. The students 
at his table were also confused. We all asked many 
questions until some students began to lose interest. 
We were off task, but I thought that the exploration 
was important. 

I asked James to record his thinking for me so 
that I could consider it some more. I puzzled over his 
ideas and fraction circles until next class and then 
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asked him for more clarification. When James 
presented his ideas to the class, his classmates had 
lots of questions. Students were getting annoyed be­
cause the method made no sense to them. Although 
James was good at explanations and answering 
questions, I needed to intervene. I told him that I 
didn't understand his thinking. James sat down and 
I presented a similar strategy. The class was focused 
and silent as I spoke and wrote. I was nervous about 
adding to the confusion, but I could almost hear that 
audible aha from students. They began to excitedly 
talk in groups. I hoped that meant that they were 
sharing their understanding and not getting bored 
or confused. 

A few days later a student mentioned that she had 
never understood the division of fractions until that 
class. I wondered how those teaching moments came 
about. A lot had led up to that moment, including 
positive and negative feelings. I'm not sure that the 
moment would have been as meaningful if the stu­
dents hadn't struggled to understand a classmate's 
unfamiliar idea, if there hadn't been time to think and 
discuss, if they hadn't been emotionally involved or 
if they hadn't already spent time listening to each 
other's ideas. 

In this account-for, I skipped ahead of simply de­
scribing the incident to explaining my actions and 
trying to draw a lesson out of the experience. If I 
shared this account-for with others, it might be diffi­
cult for them to support me in my re-examination of 
the experience because I have already explained it 
and there are no alternatives to explore. Sharing ac­
counts-of ( not accounts-for, though, the line between 
the two is unclear) experiences might be "used ex­
plicitly to foster and sustain professional development 
in others'' (Mason 2002, 139). 

Professional Development 

Although Mason (2002) mainly focused on how 
to use noticing for one's own practice, he also wrote 
about how to use accounts-of to support professional 
development in others. 
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A good way to expose people to alternative prac­
tices without pressuring them to suddenly adopt 
one and to act differently is to arrange that one 
person gives a brief-but-vivid account of some 
problematic situation, and then others recount situ­
ations which they think have some similarities. In 
the process, different practices will be revealed, 
but in a non-threatening manner ... It is a matter 
of offering a brief-but-vivid account without the 
intention of"offering a solution." (p 146) 

Fallowing this suggestion, preservice and inservice 
teachers could write accounts-of their teaching and 
share them with others, but they must be open to this 
sort of inquiry and look to change their own practice. 
Developing trusting and collegial relationships would 
also be important, though, Mason did not write about 
this explicitly. Assuming that these conditions are 
met-which is no small feat-this could be a fruitful 
way of interacting with teachers. Blending teachers' 
practical concerns with professional development is 
possible. These concerns might also be used as a basis 
for research, whereby theory and practice overlaps. 
This research might be done by teachers from the 
inside of practice or by researchers in conjunction 
with teachers from the outside of practice. 

Connections to Mathematics 

The discipline of noticing and Mason's previous 
work Thinking Mathematically (Mason, Burton and 
Stacey 1985) are parallel. This helps me to better 
understand how professional development of teaching 
in general is connected to teaching and learning 
mathematics. 

The acts of stressing and ignoring are part of both 
mathematical thinking and professional development 
through the discipline of noticing. When thinking 
mathematically, I often stress one part of the question 
while ignoring other parts; for example, looking at a 
geometric shape and stressing the global character­
istics (it looks like a diamond), while ignoring the 
specific characteristics, such as the angle measures. 
What I stress and what I ignore can be described as 
habitual and depends on the situation's context. By 
stressing and ignoring, I can first specialize and then 
generalize; both arc essential features of mathematical 
thinking (Mason, Burton and Stacey 1985). The dis­
cipline of noticing calls me to attend to what is 
stressed and ignored in my own mathematical work 
as well as in my teaching practice. In addition, I am 
invited to stress the essence and ignore the emotions 
in writing accounts-of experience. Stressing and ig­
noring arc mathematical ways of examining teaching 
practice. 

Accounts-of experiences are described as "brief­
but-vivid" (Mason 2002, 47). A problem of teaching 
practice is distilled into a few sentences. In this dis­
cipline of noticing, a number of these accounts are 
examined for relationships and inconsistencies. This 
is similar to the work of mathematicians, which might 
be characterized as compressing information, and of 
teachers, which can be thought of as unpacking this 
condensed knowledge (Ball and Bass 2003). Through 
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noticing as a form of professional development, 
teachers condense experiences and then reconceptual­
ize their accounts to transfonn practice. 

Questions and Issues 

This article explains how to consciously notice. 
Practices can be transformed by attending to experi­
ences, recording them systematically, questioning 
the accounts and then acting deliberately. Though 
Mason's description of the discipline of noticing 
resonates with my own process of reflecting, [ also 
wonder about the power of accounts-for in this dis­
cipline. I have used accounts-for in my writing, talk­
ing and thinking with meaningful results. Though I 
resist the focus on the accounts-of (as opposed to the 
accounts-for), part of this resistance comes from the 
difficulty and work involved in writing a compelling 
account-of an experience. Writing and using both 
accounts-for and accounts-of have been fruitful ways 
to engage in professional development in my teaching 
of mathematics. 
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Making the Transition to Algebraic 
Thinking: Taking Students' Arithmetic 

Modes of Reasoning into Account 

Jerome Proulx 

The purpose of this article is to trigger reflection 
and discussion on the transition from arithmetic to 
algebraic problem solving and its teaching. When 
students are introduced to algebraic problem solving 
in their first years of secondary schooling, they have 
already acquired arithmetic procedures, experiences 
and tools. These arithmetic modes of reasoning sig­
nificantly differ from the ones we teachers are ex­
pected to teach in algebra. Students arrive with at 
least seven years ofarithmetic operations and problem 
solving. These procedures and ways of doing math­
ematics are rooted in operations on known quantities 
or givens, whereas algebra requires operations on 
unknown quantities. 

The conceptual step of accepting and understand­
ing what it means to operate on unknown values in 
the same way that we operate on known and given 
values was an important historical difficulty for 
mathematicians as well. It should not then be a sur­
prise to see students experiencing difficulties in that 
domain. Therefore, the transitional step to algebraic 
thinking is one of the most difficult steps experienced 
in a student's mathematical life 1

• 

To ease this transition, teachers must be sensitized 
to students' arithmetic procedures for solving prob­
lems and must consider these ways of thinking in 
teaching. To set aside all students' prior knowledge 
construed in the elementary years of mathematics 
schooling would be nonsense. 

My argument underlies this conceptual umbrella. 
I intend to raise sensibility toward prealgebraic stu­
dents' ways of solving problems to make better sense 
of (I) students' skills and knowledge with which they 
enter introduction-to-algebra classrooms, and (2) how 
these strategies can be accounted for in teaching to ease 
this important transition in school mathematics. 

With this in mind, I will offer some traditional al­
gebraic problems and how students with no back­
ground in algebraic problem solving make sense of 
and solve these problems. With these solutions in 
hand, one intent will be (I) to see similarities and 
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differences between arithmetic and algebraic ways 
of solving, (2) to see possible usage and avenues these 
similarities and differences give to ease the transition, 
and (3) to realize the strength and the limits of these 
arithmetic solutions to better understand how to pro­
mote the power and relevance ofalgebraic reasoning 
to solve problems. 

Teaching Algebra or Solving 
Problems with Algebra 

The traditional algebraic word problems that I will 
offer represent what is normally given in the introduc­
tion to algebraic problem solving in junior high. 
However, as will be shown later, these problems are 
not algebraic in themselves, because they can be and 
are solved without using algebra. 

This is no small point, because it flags the purpose 
of algebraic problem solving in school mathematics. 
Algebra represents a tool to solve problems as much 
as geometric or arithmetic skills do. Seeing algebra 
as a problem-solving tool brings us to question deeply 
our assumptions about algebra. Algebra, as powerful 
as it is for solving particular word problems, should 
not be seen as an end in itself; solving the word prob­
lems represents the end in itself. When we want stu­
dents to solve a problem, the fact that they use dif­
ferent or nonalgebraic methods and strategies should 
not be seen as problematic. The goal is to solve the 
word problem and not simply to use a specific pre­
determined strategy. In other words, imposing on and 
demanding that students only use algebra to solve 
word problems is nonsense, because algebra becomes 
the goal of instruction and solving word problems 
becomes secondary. This is important because algebra 
has become so prominent in the school curriculum at 
the secondary level that it is almost seen as a subject 
in itself, not as a mathematical tool invented to solve 
problems2

• I am not saying that algebra is not impor­
tant; however, the status and utility of algebra in 
school mathematics must be understood. 
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In fact, seeing algebra as a powerful problem-solving 
tool makes it more relevant in the school mathematics 
curriculum. This perception enables teachers to present 
and offer algebraic thinking and solving to students as 
a powerful problem-solving tool, which permits the 
solving of problems that other methods cannot solve. 

By showing the unparalleled and unmatched ca­
pacity of the algebraic tool to solve certain types of 
problems, algebra becomes relevant and makes sense 
as a tool. If algebra is imposed in places where other 
methods are as efficient, as fast and even more economi­
cal, algebra loses its significance and becomes an un­
necessary action or even a burden on the learner. 

The Problems and an 
Analysis of Their Solutions 

To introduce the ideas, I will first present some 
problems and their underlying structure3

• To some 
extent, these types of problems are offered when al­
gebra is introduced. For each problem, a possible al­
gebraic solution will be offered, followed by some 
students' possible arithmetic solutions. 

Problem 1 

The first problem contains a multiplicative structure: 
The school cafeteria offered two different meals at lunch. 

Three times more hamburgers than pizzas were served. If 

212 meals in total were served, how many hamburgers and 

how many pizzas were served? 

Structure of problem I 

1 212 I 
----- ............... 

1
.-------,::-

1 1
,......:::,,...

1 

x3 

A possible algebraic solution for this problem follows: 

Algebraic solution 

x = number of pizzas, 3x = number of hamburgers 
3x+ x = 212 
4x = 212

4x _ 212 
4- 4

x = 53
3x53=159 

+-53 pizzas and 159 hamburgers 
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This solution represents an expected algebraic 
solution in school mathematics. Interestingly, many 
students could answer that problem without 
knowing algebra. For example, three prominent 
adequate4 arithmetic solutions could be the guess­
and-check number trial, whereby students randomly 
try answers until they reach a possible result. Then 
they keep trying other answers until the problem 
is solved. 

Another type of arithmetic answer is the control
solution, whereby students methodically try numbers 
and constantly consider the relation between the data; 
for example, "one is three times more than the other 
one," and the total number of meals is 2 I 2. The fol­
lowing example of a table is often drawn by students 
using this strategy: 

Control solution 

� 
30 90 

40 120 

50 150 

55 165 

52 156 

53 159 

= 120 

= 160 

= 200 
= 220 
= 208 
= 212 

Finally, another possible answer is the structure
solution, whereby students work with the relations 
between the parts and the data of the problem. For 
example: 

Structure solution 

212 7 4 = 53 [ 7 4 because I count 3 times 
more hamburgers and l times 
the pizzas] 

53 x 3 = 159 [3 times the number of pizzas 
= the number of hamburgers] 

53+ 159=212 
-► 53 pizzas and 159 hamburgers

In this strategy, students sec a I ittle part, the pizza,
and see this same little part repeated three times for 
the hamburgers (three times the number of pizzas = 
the number of hamburgers). Students see four parts 
for the whole problem and for the number of meals 
served in total (three for the hamburgers and one for 
the pizzas). So, the students divide the total number 
of meals into four parts (212 .;- 4 = 53 ). The value 
obtained for this part represents the number of pizza 
meals, so they multiply it by three to obtain the num­
ber of hamburgers served (53 x 3 = 159). 
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Reflecting on These Arithmetic 
Strategies 

What stands out in each of these last two strategies5 

(control and structure) is the students' demonstration 
of control over the data. In fact, Bednarz and Janvier 's 
( 1996) research shows that this skill, controlling the 
relations between the data in the problem, is of major 
importance to solving problems in algebra. Each solu­
tion has its strength for two important parts of alge­
braic solving: (I) the creation of an algebraic equa­
tion, and (2) the algebraic operations to find (isolate) 
the value of x in the problem. The control solution 
shows how this student is comfortable with the rela­
tion between data (one for three) and the knowledge 
that the total must stay at 212. Even if this seems 
obvious or easy, this is exactly what is needed to cre­
ate the algebraic equation 3x + x = 212. This solution 
shows a double-control: the control over the relation 
between the givens (three times the other) and the 
fact that the addition of both gives 212. Thus, inherent 
understandings arc present in the control solution that 
could be worked on and used to help students create 
and understand the algebraic equation, which is often 
the hardest part of solving algebraic word 
problems. 

The similarities between the structure solution and 
the expected algebraic solution are important regard­
ing the operations to anive at a value for x. Each al­
gebraic step is mimicked by each arithmetic step (or 
should we say the opposite'?). In the algebraic solu­
tion, the student "adds its x" and obtains 4x. In the 
arithmetic solution, the student adds its parts: "4 be­
cause I count 3 times more hamburgers and I time 
the pizzas." Afterward, the algebraic student divides 
212 by 4 to obtain the value ofx, whereas the arith­
metic student divides its total by 4 to obtain the value 
of one part. After obtaining 53, both students find the 
quantity of hamburgers by reapplying the relation 
that links both data (three times more). The link be­
tween both solutions is strong and represents impor­
tant insights that show some possible links (even if 
there are obviously some differences) between the 
students' arithmetic solution and the algebraic solu­
tion expected. 

It must be emphasized that these solutions arc dif­
ferent. The major difference resides in the presence 
of the context. In the arithmetic solutions, the pres­
ence of the context is present at each step. The opera­
tions are made on hamburgers and pizzas and on the 
number of meals. In the algebraic solution. the opera­
tions conducted to arrive at a value of x are made in 
a decontextualized fashion; that is, at a mechanical 
level. Isolating the x does not require the solver to 

keep a grasp on the context (that is, on the meals). It 
is a set of procedures and steps to arrive at isolating 
x. This represents a major difference between an al­
gebraic and an arithmetic solution. Although the link
to the context is strong in an arithmetic solution, it is
unnecessary (and sometimes does not even make
sense) in the algebraic solution. There is a need to
step out of the context in an algebraic solution to
conduct the operations. In that sense, even though
arithmetic solutions seem similar to algebraic ones,
they are conceptually different. However, despite this
conceptual difference, the similarities highlighted
hint at some important insights into how to ease the
transition from one to the other.

With these differences and similarities in mind, I 
will present two more problems and possible solu­
tions: one with an additive structure and the other 
with a combination additive and multiplicative struc­
ture. After an analysis of the solutions, I will introduce 
an approach based on the insights drawn from the 
first three problems offered. 

Problem 2 

This problem contains an additive structure: 

Two children have a stamp collection. Alex has 37 more 

stamps than Josie. If they have 181 stamps altogether, how 

many stamps do they each have? 

Structure of problem 2 

+ 37

A possible algebraic solution for this problem 
could be: 

Algebraic solution 

x = number of stamps of Josie, x + 37 = number 
of stamps of Alex 

x+x+37= 181 

2.,,+37= 181 

2:r = 144 

x
= 72 

72 + 37 = 109 

->-72 for Jose and! 09 for Alex 

delta-K, Volume 44, Number 1, December 2006 



In the same line of thought as the previous prob­
lem, an example of a control solution could be: 

Control solution 

50 87 = 137 
60 97 = 157 
70 107 = 177 
71 108 = 179 
72 119 = 181 

Here, the student controls the relation between the 
givens by knowing simultaneously that they must 
always have a difference of3 7 between them ( or that 
the second one has 37 more) and that their addition 
gives 181. These two relations (3 7 more and 181 as 
a total) are regarded throughout the whole solving 
process. 

Here is what a possible structure solution would 
look like: 

Structure solution 

181 -37 = 144 [Alex has 37 more] 

144-:- 2 = 72 [they now have the same amount 
so I can divide in two] 

72+37= 109 

-► 72 for Jose and I 09 for Alex

In this structure solution, the student sees two 
quantities: Josie's and Alex's. Because the student 
knows that the two quantities are not equivalent (Alex 
has 37 more), the student reorganizes the problem by 
taking outthe quantity(the surplus)(l 81-37= 144). 
By subtracting the surplus, the student obtains two 
equivalent quantities. The student's new amount 
represents the total that Josie and Alex would have if 
they had the same amount. Then, the student divides 
the result into two parts ( I 44 -:- 2 = 72). This new 
quantity (72) represents the number of Josie's stamps. 
The student then adds 37 to 72 to obtain Alex's num­
ber of stamps (72 + 3 7 = I 09). 

Reflecting on These Arithmetic 
Strategies 

Again, the possible links and similarities between 
the control and structure solutions are worth mention­
ing. As I underlined before, the control solution, 
with its control over the relations between the data 
(the+ 37 and the total of 181 ), hints very well at an 
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understanding of the algebraic equation (x + x + 37 
= 181 ). As for the structure solution, its steps toward 
arriving at Josie's number of stamps (subtracting 3 7, 
dividing by 2) are representative of the operations 
needed to isolate the x. This arithmetic solution again 
hints directly at the processes of algebraic problem 
solving, because it enables us to create links and make 
sense of ( 1) the creation of the algebraic equation, 
and (2) the steps of algebraic operations. The last 
example is a multiplicative and additive structure. 

Problem 3 

Here is a third problem and its structure: 

380 students are registered in three sports activities offered 

during the semester. Basketball has 3 times more students 

than skating, and swimming has 114 more students than 

basketball. How many students are registered in each 

activity? 

Structure ofproblem 3 

A possible algebraic solution would be: 

Algebraic solution 

x = number of students registered in skating, 

3x = number of students registered in basketball, 

3x + 114 = number of students registered in 
swimming. 

x + 3x + 3x + 114 = 380 

7x+ 114=380 

7x = 266 

X = 38 

3 X 38 = 114 

3 X 38+ 1)4=228 

--► 38 students are registered in skating, 
114 in basketball and 228 in swimming 

Now, with three unknown quantities to consider, 
the strategies of control and structure become more 
complicated, but they still follow the same thinking 
as before. In the control solution, one difference is 
that because of the three unknowns, more control can 
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be exerted on the whole problem as the following 
solution shows: 

Control solution 

50 150 264 =464 
40 120 234 = 394 
35 105 219 = 359 
37 111 225 = 373 
38 114 228 = 380 

In effect, the student needs to consider that bas­
ketball has 3 times more students than skating, and 
swimming has 114 more students than basketball. 
After considering these relations, the student needs 
to control the fact that these three numbers added 
together total 380. In the previous problems, there 
are only two relations to consider, but here there are 
three (3 times more,+ 114 and a total of 380). 

Here is an example of a structure solution: 

Structure solution 

To make swimming and basketball equivalent: 
3 80 - 114 = 266 

For the skating: 266 + (3 + 3 + 1) = 38 
[ there are now seven parts] 

Basketball: 38 x 3 = 114 

Swimming: 114 + 114 = 228 

-► 3 8 students are registered in skating,
l 14 in basketball and 228 in swimming

In this case, the student attempts to get equal parts 
or the same number of students for each sport, but 
swimming has 114 more students than basketball. The 
student subtracts this surplus of 114 from 380 (which 
gives him 266) and ends up with a possibility of express­
ing the problem in equal parts. If skating is one part, 
then basketball is three parts, and because the differ­
ence between swimming and basketball was ''erased," 
swimming is also three parts. Altogether, it adds up 
to seven parts. Therefore. 266 is divided by 7, and 38 
represents the number of students in skating. Three 
times 38 is the number of students in basketball, which 
is 114, and swimming is 114 more than the number of 
students in basketball. Swimming has 228 students. 

Reflecting on These Arithmetic 
Strategies 

Again, similar links can be seen between the con­
trol solution and the establishment of the algebraic 
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equation (x + 3x + 3x + 114 = 3 80), as well as between 
the structure solution and all algebraic operations 
done to isolate the x (-114, dividing by 7 and so on). 
Even with three unknown quantities, the same links are 
present, which means that the links between arithme­
tic and algebraic solutions exist for simple two-data 
problems and for more complicated problems. 

However, in complicated arithmetic solutions in 
which many things have to be considered and remem­
bered, it is possible to see a limit to the arithmetic 
solutions for solving these types of problems. As for 
algebra, the solution is not affected by the amount of 
unknown quantities or data to work with (except that 
there are more operations to do), which highlights an 
important strength of algebraic thinking and solving. 
Building on this thought, the next section will outline 
a possible approach emerging from the analysis and 
reflections on these solutions. 

An Alternative for Teaching 
Based on an Analysis of 
These Solutions 

Paralleling Both Types of Solutions 

The many similarities between arithmetic and al­
gebraic solutions must be highlighted to help students 
clarify their understanding of algebraic solutions. 
Introducing algebraic solutions on the basis of these 
resemblances will create an explanatory bridge be­
tween the two. Creating this parallel can bring mean­
ing to algebraic solutions and ways of solving. 

The basis for my idea resides in the exposition of 
both types of solving to enable students to understand 
the algebraic solutions on the basis of arithmetic solu­
tions they already understand and use. Specifically, 
emphasis should be placed on the links between the 
control arithmetic solution and the algebraic equation, 
and on the structure arithmetic solution to give mean­
ing to the algebraic operations to isolate the x of the 
equation. The ide.a is to show the use of this new tool 
of algebra by creating links between it and the previ­
ous arithmetic solutions. 

Of course, the students wil I provide answers to the 
arithmetic solutions and problems, and the teacher 
will provide the algebraic solution. This allows stu­
dents to make sense of another "expert" solution for 
solving a problem, which is prominently used in high 
school mathematics. 

Although this contradicts the philosophies of hav­
ing the solutions emerge from the students' ways of 
solving, in the case of algebra this type of solution 
will rarely emerge from the students. And because 
there is a need for these algebraic solutions, students 
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must be introduced to these types of solutions. In that 
sense, because students will not think of these ap­
proaches and because the approaches are linked to 
what they already know, to explicitly initiate students 
into these expert ways of solving is not a problem in 
itself. 

Going Beyond Arithmetic to Show the 
Power of Algebra to Solve Problems 

As well as exposing the arithmetic and algebraic 
solutions in parallel, showing the clear advantage or 
power of algebra to solve problems is important. 
Paralleling these solutions familiarizes students with 
these high-level strategies of algebra and shows the 
limits of arithmetic thinking. 

The three problems above can be solved with 
arithmetic skills, and algebra is not even needed to 
solve them. This is quite important, because students 
do not see how powerful algebra is. We need to show 
them the relevance of algebra, so the challenge here 
is for teachers to offer more and more difficult 

4 

5 

6 

7 

Problem 

380 CDs are placed in three different rooms 
in the house. There are 76 more CDs in the 
living room than in the bedroom, and there 
are 114 more CDs in the kitchen than in 
the living room. How many CDs are there in 
each room? 

380 students are registered in 3 sports activities 
offered at school. Basketball has 3 times 
more students than skating, and swimming 
has twice as many students as basketball. 
How many students arc registered in each 
activity? 

Three kids are playing marbles. Altogether they 
have 20 I marbles. Claude has 23 more marbles 
than Andrew, and Luis has 112 more marbles 
than Andrew. How many marbles does each 
kid have? 

Electricians use black, red and white wires. On a 
construction site, they have used twice as much 
white wire than black wire and red wire alto­
gether. They have used 45 metres of wire in total. 
They have used twice less red wire than black 
wire. How much wire of each colour was used? 
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problems to show students the advantages of using 
algebra in comparison to arithmetic. In doing this, 
algebraic solutions gain more power and relevance 
because they help students succeed in solving more 
complicated problems. 

Marchand and Bednarz (1999, 40) argue: 
In effect, the choice of the situations is not hap­
hazard, since it is determining the way in which 
the students will see or not see the relevance of a 
passage to the algebraic reasoning, and will seize 
the eventual power of algebra to solve a class of 
problems for which the arithmetic reasoning be­
comes insufficient. (my translation) 

Showing the limits of arithmetic and the power of 
algebra is important because students begin to use 
algebra to solve problems and to opt for this algebraic 
reasoning. This is also important, because algebra can 
succeed in solving problems that other skills cannot. 

Following is a list of problems (and their structures) 
that could extend the previous problems. The level 
of difficulty becomes more and more important. 

Structure 

+ 76 + 114

+ 112
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8 

9 

11 

Two trains have to carry a total of 588 travellers. 
The first train has cars that contain 12 seats each, 
and the second train has cars that contain 16 seats 
each. If both trains have the same number of cars, 
how many travellers can ride in each train? 

Lynn and Mary have $154 altogether. Mary 
gets $20 more. Now they have the same amount 
of money. How much did they have in the 
beginning? 

207 members worldwide were present at the 
last sports drug-testing meeting held in Canada. 
There were 3 times more American representa­
tives than Asian, and 16 fewer European rep­
resentatives than Americans. There were 7 more 
African representatives than the double of the 
Asian representatives. How many representa­
tives were there for each group? 

Luc has $3.50 less than Michael. Luc doubles 
his amount, whereas Michael adds $1.10 to his. 
Now Luc has $0.40 less than Michael. How 
much did each have in the beginning? How 
much do they each have now? 

As shown above, using arithmetic skills to solve com­
plicated problems is difficult, although, it is not impos­
sible. For example, by the seventh problem, arithmetic 
thinking becomes quite difficult. This list is also limited 
in itselt; much more difficult problems could be high­
lighted, and the limit of arithmetic skills would become 
even more obvious. However. the fact that the difficulty 
level of the problems slowly and gradually increases 
is important because the idea is not to create a break 
but to facilitate the transition. So by gradually upgrad­
ing the difficulty level of the problems, algebra slowly 
obtains a greater status of relevance. In that sense, the 
transition from arithmetic to algebra is eased. 

However, the limit of arithmetic thinking may not 
be the same for all students. Although some students 
will experience it as early as the third problem, others 
well rooted in and comfortable with arithmetic thinking 
may need more problems to find a limit to their think­
ing and give relevance to the algebraic approach. 

14 

+ 20

x 2 and+ 7 

X 2 + 3.50

+ 0.40

Historical Account on 
Algebra Teaching 

+ 1.10

Historically, algebra teaching was strongly linked 
to what I offer here. In the beginning of the 20th 
century, algebra was introduced and taught in schools 
by creating parallels between arithmetic and algebraic 
solutions (Chevallard 1985). These steps were aimed 
at showing the power of algebra to solve a class of 
problems. Schmidt (1994, 71) highlights the same 
historical event: 

Arithmetic and algebraic ways of solving were 
offered, and an emphasis was placed on the power 
of algebra to solve other problems of the same 
type. In this approach, algebra was offered as 
a new tool that, while rooted in arithmetic tradi­
tions and knowledge, enabled the solving of prob­
lems that arithmetic was not able to solve locally. 
(my translation) 
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Conclusion 

This approach offered attempts to facilitate the 
transition from arithmetic to algebraic thinking by 
clarifying the links and differences of arithmetic 
thinking (where students are at) to algebraic thinking 
(where they are expected to be). As we have seen, 
although these solutions are different, they do have 
similarities. By paralleling and comparing them, a 
better sense of each can emerge. 

In brief, this approach is twofold: (I ) to connect 
the arithmetic and algebraic solutions and introduce 
students to algebra by establishing links with their 
already known strategies, and (2) to create a parallel 
between solutions to gradually show how the alge­
braic solutions are more advantageous, thus creating 
relevance for using algebra. The fact that solutions 
will be placed in parallel will highlight the power of 
algebra quite clearly. This paralleled exposure intro­
duces students to algebra as a new tool, and its rele­
vance is shown and put forward because it can solve 
problems that can't be solved with other methods. 

A key aspect here is the idea of gradually augment­
ing the difficulty level of the problems. This is central 
to easing the transition to algebraic thinking because 
it slowly demonstrates the limits or complexity of 
arithmetic solutions. Simultaneously, it shows how 
algebraic solutions can continue to solve more com­
plex problems. By explicitly showing the limits of 
arithmetic solving, algebraic solving will gain 
strength and relevance for the student. 

The same can be said about the introduction of 
solving algebraic problems using two variables. Un­
fortunately, in many textbooks, most of the problems 
offered for systems of equations are easily solved 
by using only one variable and even sometimes by 
using arithmetic procedures. In fact, the list of prob­
lems presented above often represents the type of 
problems offered in chapters on systems of equations. 
In that case, the relevance of now opting for two 
variables is definitely absent, and this becomes prob­
lematic and unfortunate because using two variables 
becomes an imposition and not a powerful strategy 
to opt for. 

Finally, it should not be surprising to see students 
struggle with the idea of operating on unknowns. In 
effect, as I have mentioned before, it represents an 
important step to accept and understand, and the his­
tmy of mathematics shows how it is difficult. How­
ever, it seems important to flag and explain that it is 
indeed possible to operate on unknowns (algebraic 
letters) in the same way that we operate on known 
quantities, precisely because the letters are not simply 
unknowns, but are unknown quantities. This is a 
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nuance, but an important one: the letter xis not a thing 
in itself but represents a number of; x is not an un­
known, it is an unknown quantity. 

Again, these subtleties can appear to be of small 
importance for the expert solver, but for teachers they 
are important because they relate to students' difficul­
ties with algebra. Being sensitive to these difficulties 
is key to facilitating and improving students' transi­
tion from an arithmetic mode of thought to an alge­
braic one. 

Notes 

I. As the anonymous reviewers have highlighted, students
do some algebraic thinking in the elementary grades when they 
explore patterns and generalizations. However, this is not the 
same domain as solving word problems, in which the letters arc 
used to represent unknown quantities and not to establish a rule 
or describe a pattern. Students will indeed come to postsecondary 
education with some experience using algebraic letters. but not 
for solving word problems. They also arrive with many previ­
ously acquired tools and concepts (for example. letters, equality 
sign and structured arithmetic strategies) that will possibly help 
them in solving algebraic word problems. This article mainly 
focuses on students' previously developed arithmetic strategies 
for solving word problems. 

2. Note here that I am referring lo school algebra, not abstract
algebra that pure mathematicians work on. Abstract algebra does 
represent a discrete topic in research in pure mathematics, but 
school algebra does not reside in that sphere. 

3. These problems. their structures and some student solutions
arc inspired from the work of Nadine Bednarz, from the Univcr­
site du Quebec a Montreal, and her colleagues (see Bednarz and 
Janvier 1996; Schmidt l 994; Marchand and Bednarz 1999, 2000). 
1 am grateful to her for having introduced me to her work. 

4. 1 italicize "adequate"' because there arc probably a lot of 
inadequate solutions that students would and could use. Here, I 
want to focus on efficient solutions (in the sense that the students 
a1Tive at adequately solving the problem) , look at them and try 
to analyze them in relation to algebraic solving. 

5. Here, 1 pay more attention to the control and structure
strategics. In fact, guess-and-check is closely linked to the con­
trol strategy, whereby the difference is situated in the systematic 
trials present in the control one. Therefore. because it is linked 
to the control strategy, no specific attention will be paid to the 
guess-and-check one. 
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A Geometrical Meaning for the 
Correlation Coefficient 

Murray L Lauber 

Having the privilege of teaching many mathemat­
ics strands has allowed me to make connections be­
tween concepts that on the surface seem unrelated. 
High school and undergraduate math students have 
this opportunity but may not have the time or the in­
timate knowledge of the subject matter to form such 
connections. A reward of repeatedly teaching the 
same math courses is that one's knowledge of the 
subject matter deepens to the point where, with some 
exploration, such connections can become apparent. 
Additional rewards are modelling such exploration 
for students and encouraging them to explore on 
their own. 

This article describes the fundamental connection 
between the concept of the correlation coefficient 
from statistics and that of the angle between two vec­
tors from linear algebra. That connection became 
apparent to me over a few years while teaching vec­
tors in linear algebra and, at the same time, some 
elementary statistics in a precalculus course. It 
initially sprouted from a concept that had incubated 
when I was a student in a statistics course many 
years earlier. In the chapter of the course textbook 
pertaining to the correlation coefficient, Ferguson 
( 1981, 132) describes how the correlation coefficient 
is related to the angular separation between two re­
gression lines. The ensuing discussion is general 
enough to leave room for questions and to invite ex­
ploration. In fact, Ferguson's observations seemed 
inaccurate because a full mathematical explanation 
was not given. At the least, they lodged in the 
back of my mind as a kind of healthy dissonance. 
They were not completely resolved until I taught a 
linear algebra course where the concept of the angle 
between two n-dimcnsional vectors was fully devel­
oped as the generalization of the geometrical angle 
between two 2- or 3-dimensional vectors. The angle 
between a pair of 2- or 3-dimensional vectors can 
be visualized intuitively and is easily calculated 
using simple trigonometry. The angle between two 
n-dimensional vectors is then defined as a general­
ization of the intuitive notions applying to 2- or
3-dimensional vectors.
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What follows is the full development of a geo­
metrical meaning for the correlation coefficient based 
on the notions of the previous paragraph. It is related 
to Ferguson's observations but, given an understand­
ing of some basic concepts of vectors, seems more 
elegant in its simplicity. 

The Correlation Coefficient­

A Brief Review 

The peripheral correlation coefficient is a precise 
comparison of two sets of scores that measures the 
degree to which corresponding scores deviate from 
their respective means. Do the sizes and directions 
of the deviations of corresponding data elements from 
their respective means tend to correspond? If so, the 
correlation coefficient will be high ( close to 1 ). Does 
there appear to be little relationship between how 
corresponding data elements deviate from their 
respective means in the two sets of scores9 If so, 
the correlation coefficient will be low (close to 0). 
Do the deviations from their respective means for 
corresponding clements tend to be in opposite direc­
tions (scores above the mean for the one data set 
correspond to scores below the mean for the other 
set, and vise versa)? If so, the correlation coefficient 
will be negative (perhaps as negative as- I). Consider 
the following simple example for two sets of scores, 
x andy. 

± X 

I 2 

2 4 

3 6 

4 8 [l] 

Intuitively, these two sets of data are as closely related 
as any two distinct sets of data can be; therefore, the 
correlation coefficient should be I. This will be dem­
onstrated shortly. 

The correlation coefficient may be defined as the 
ratio of the average of the sum of products of the 
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deviations of corresponding elements from their re­
spective means to the product of the standard devia­
tions of the two sets of scores. Consider the following 
two sets of scores 1

• 

x = (x1, x2, . . .  , x), y = (yl' Yy . . .  , Y) 
The correlation coefficient r between these two sets 
of scores is defined formulaically as follows: 

r = (x
1 
-x)(v 1 - y) + (x, -x)(v2 - y) + .. . (x,, -x)(vn -y) 

ns s 
or r = I(x -x)(y-y) 

ns s 
,\' y 

In this fonnulation: 

,\' y 

xis the mean for the set x
_v is the mean for the set y 
s is the standard deviation for the set x 

3 

s' is the standard deviation for the sety 
,;' is the number of scores in each data set 

[2] 

Definition [2] readily shows that the numerator 
will be large and positive if corresponding scores 
from x and y deviate proportionately in the same di­
rection from their respective means. On the other 
hand, it will be large and negative if corresponding 
scores from x and y deviate proportionately in oppo­
site directions from their respective means. And it 
will be small if there is little connection between how 
corresponding scores from x andy deviate from their 
respective means. The numerator alone, though, 
would not adequately define any measure of com­
parison between two sets of scores. We would be left 
with the questions, "How large is large?'' and "How 
small is small?" But definition [2] taken altogether is 
ingenious in that dividing by ns,s, ensures that the 
value of r is between -I and I for any two sets of 
scores with I representing the highest possible posi­
tive correlation and -I representing the lowest pos­
sible negative correlation. The proof is not included 
here but can be formed using the definitions of s, s 
and r.

·' ..

By way of illustration, Table A shows the 
calculations used in determining r for example [ l]. 

Recall that we had already anticipated that the 
value of r for this case should be l. Note here that 
x = 2.5, y = 5 and n = 4. From Table A, we have 

s = /2)x-xJ = ✓5 
s = /IG,-yy = ✓5

·' n 2 ' r n 

Then r 
= I.Cr - xX\' - y) = 10 = I

4( �f')
This is as we expected. 

Correlation Coefficients from 

Standard Scores 

When comparing two data sets, it often helps to 
first convert the raw scores into standard scores or 
z-scores. The .:-score of a particular score in a set of
raw scores is the measure of how many standard de­
viations the raw score is above or below the mean.
Suppose, for example, that for a set of scores x, the
mean and standard deviation are x = IO and s = 2,
respectively. Then a raw score of 12 would h�ve a
.:-score of I because it is exactly one standard devia­
tion above the mean. In general, the z-score, ::: , of
a particular raw score x from the set of scor�s x

where the mean is i and the standard deviation is s 

is defined as
.,

x-x

s ., 

The formulaic representation for the correlation 
coefficient r is simpler when standard scores are used. 
Recall that 

r = L(X -x)(v- _v)

x-x v-v Since.: =-- and z =·--· we have 
., s ... s ' 

X ,I
' 

13] 

(4] 

Table A 

X y x-x y-y (x-x)2 (v-_f)2 (x -x)Cv-y) 
I 2 -1.5 -3 2.25 9 4.5 
2 4 -0.5 -I .25 I .5 
3 6 0.5 I .25 l .5 
4 8 1.5 3 2.25 9 4.5 

Icx-W == 5 ICv-ff = 20 I(x-x)(v-y)= 10 
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This formula for r will be revisited after the con­
cept of the angle between two vectors has been fully 
developed. It is most useful as a theoretical tool for 
developing other relationships. However, by way of 
illustration, it is applied to example [ 1] in Table B 
below. Recall that in this example, x = 2.5, y = 5, 

sr = �,ands_.,= -Js. By way of illustration, the values 
of z_,, z,, and zxz, in the first row were computed as 
follows. 

-1.5 -3 -3 (-3r-3J 9 zx = .Js;; = 
✓

5 . z, = ✓5, and zl
., 

= 
✓

5 ✓5 = 5 

Table B 

X y x-x y-y z z � -'-
\' .r .r 

1 2 -1.5 -3 -3v'5 -3v'5 915 

2 4 -0.5 -1 -Iv's -Iv's 1/5 

3 6 0.5 I IVS Iv's 1/5 

4 8 1.5 3 3v'5 3v'5 9/5 

Izz =4 
.f y 

Using the results from the table, r = I,z,�, = � = 1. 
II 4 

One other concept pertaining to z-scores will be 
needed to show the relationship between the correla­
tion coefficient and the angle between two vectors. 
It is that of the magnitude of the vector formed by 
the z-scores of a data set. This notion will be easy to 
fonnulate but must await some basic concepts pertain­
ing to vectors. 

Vectors and Their Relevant 
Properties 

What Is a Vector? 

A vector is a directed line segment. A vector in 
the Cartesian plane is called a 2-dimensional geo­
metric vector; a vector in Cartesian 3-space is called 
a 3-dimensional geometric vector. ff the vector's 
initial point is at the origin of the Cartesian coordinate 
system, then the vector is in standard form. A vector 
not in standard form with initial point A and terminal 
point Bis denoted AB (in bold case). For convenience 
a vector may also be denoted as a single letter in bold 
case; for example, v. ff a 2- or 3-dimensional vector 
is in standard fonn, then it is determined by its ter­
minal point. This leads to the following algebraic 
definitions for these vectors: a 2-dimensional vector is 
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an ordered pair ofreal numbers (a, b); a 3-dimensional 
vector is an ordered triple of real numbers (a, b, c). 
Two- and 3-dimensional vectors can be represented 
geometrically. For example, the vector v = (4, 3) is 
illustrated in Figure 1. 

Figure l 

(4, 3) 

Although we cannot picture more than three di­
mensions, the notions pertaining to algebraic vectors 
can be extended to any number of dimensions. An 

n-dimensional vector is defined as an ordered n-tuple 
(x,. x

.:,
, ... , x) of real numbers. Ann-dimensional 

vector is said to have n components. The i'h compo­
nent is x;. 

The Length or Magnitude of a Vector 

The length of a 2- or 3-dimensional vector can be 
detennined easily using the fonnulas for the distance 
between a pair of points in 2- or 3-space, respectively. 
For example, the length of the vector v == (4, 3) in 
Figure 1 isllvll= ✓4'+31 =5· The magnitude ofan 
algebraic vector is defined as being equal to the length of 
its corresponding geometric vector. So the terms length 
and magnitude are interchangeable. If v = (a, b) a, b E R, 
where R is the set of real numbers, then the magnitude 
ofv, I/ vii, is defined by 11 vii=�; if v = (a. b, c), 
a. b, c E R, then 11 vii= .Ja1 +b1 +c'. These no­
tions can be extended to n-dimensional vectors: if 
v = (x,. x

_, 
. ... ,x,,), then 

11 V 11 = .Jx, � + x,' + ... + x,,' [5] 
Of course, one cannot picture ( at least in a sober state) 
the length of an n-dimensional vector if n > 3, but 
this definition is a reasonable abstraction consistent 
with our intuitive understanding of the lengths of 
2- and 3-dimensional vectors. 

The Inner (Dot Product) of Two Vectors 

A number of operations are defined on vectors. 
Among them are two important products that involve 
pairs of vectors: the inner product and the cross 
product. Both have important applications as well as 
theoretical value. The one of relevance here is the 
inner product because it is useful in defining the 
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angle between two vectors. If x = (x
1
,x

1
, ... ,x) and 

y = (Y 
1
,y 

1
, ... ,Y,,), then the inner product xy of x and 

y is 
xy = x, y

1
+ x

2 y2
+ ... + x,,)\ = Ixy (6] 

For example, if x= (4, 3) and y= (5, 6), then xy = 

4·5 + 3-6 = 38. 

The Angle Between Two Vectors 

Consider the vectorsx = (4, 3) andy = (5, 6) as il­
lustrated in Figure 2. One can use the law of cosines 
to determine the angle 0 between x and y: 

IIABjj 2 = llxll 2 + IIYll�-2llx ll 11Yll cos0
⇒ (5 - 4)2 + (6 - 3)2 = {42 + Y) + (52 + 62) -

2 ✓4�+Y ✓5�+6'cos0
⇒ 10 = 8 6- 2·5 ✓61 r.:us/:1

76 
⇒ cos 0= 1O✓6i
⇒ 0 � 13.3 2° 

Figure 2 
8(5. 6) 

A(4. 3) 

Consider the general case for the angle between a pair 
of 2-dimensional vectors x = (a,b) and y = (c,d) in 
standard position as illustrated in Figure 3. Then, as 
in the previous example, II AB 11 2 = II x II 2 + IIY II 2 -
2 11 x II 11 y I I cos 0 
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⇒cos0=(11x11 L r llyll 2 - IIABll 2)1(2llxll ll YII)
⇒ cos 0 = ( a2 + b2 + c2 + a--( ( c - a )2 + ( d - b )2)) I

(2 llxll llYII)
⇒ cos 0 = (a2 + li + c2 + a-- c2 + 2ac - a2 - a-+

2bd- b2) I (2 llx II IIY II)
⇒ cos 0 = (ac + bd) I ( II x II IIY II)
⇒cos0=(x-y)!(llx ll IIYII) (71 

Figure 3 

The result [7] provides a simple way of thinking 
about the angle 0 between a pair of 2-dimensional 
vectors: the cosine of 0 is just the inner product of 
the two vectors divided by the product of their mag­
nitudes. Consider again the two vectorsx = (4, 3) and 
y = (5, 6). Using [7] the angle 0 between the two 
vectors is given by 

cos0= (xy)/(I lxll llYII) =(4·5 + 3-6)/(✓4' + 3' ✓s' + 6') 
= 38 / ( 5J6j). 

This is the same value as that obtained earlier by more 
laborious methods. 

The result [7] applies to 3-dimensional vectors as 
well. This can be seen by applying the law of cosines 
to a pair of 3-dirnensional vectors x = (a, b, c) and 
y = (d, e, /). The steps are the same as those used 
above for 2-dimensional vectors. Verification of this 
result is left to the reader. 

Although one cannot visualize the angle between 
two n-dimensional vectors for n > 3, it is reasonable 
to think of the angle between such a pair of vectors 
as a generalization of the angle between 2- or 3-di­
mensional vectors. This leads to the following defini­
tion. Ifx = (x 1 ,xr .... x) andy = (vryT ... ,y) are any 
pair of n-dimensional vectors, then the angle 0 
between them is defined by 

cos0=(x-y)/( llx ll llYII) [8]
Consider a simple example of a pair of 5-dimen­

sional vectors x = (I, 2, 3, 4, 5) and y = (2, 4, 6, 8, 
I 0). The vectors x and y have an obvious intuitive 
relationship to each other. In the precise language of 
vector alg!!bra, y is said to be a scalar multiple of x. 
In general, a vector y is said to be a scalar multiple 
of vector x if each component of y is obtained from 
the corresponding component ofx by multiplying by 
the same constant or scalar. In this case the constant 
is 2 and we writey = 2l". It is easy to appreciate why 
two n-dimensional vectors that are positive scalar 
multiples of each other are defined to have the same 
direction. Thus, in the above example, the vectors x 
and y should have the same direction and the angle 
between them should be 0°. Using definition [8] as 
follows yields a result that is consistent with this. 

cos 0 = (xy) I ( II x II II Y I I ) 
⇒ cos 0 = (1 ·2 + 2·4 + 3·6 + 4·8 + 5·10) /

(✓I: + '2 1 + ... + S' ✓ 2' + 4 1 + ... + I 02 )
⇒ cos0= = I IO/(.jss.J220)= 1101(.JI!o:)= I
⇒ 0 = 0"

Data Sets as Vectors 

With this framework, it is easy to see that a set of 
data can be represented as a vector. Consider the two 
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data sets x = (x
1
,x

2
, • • •  ,x) and y = (y

1
,y

2' ... ,y) repre­
sented as vectors. Then it should be possible to formu­
late the correlation coefficient in terms of the vector 
concepts outlined in section 4 above. It turns out that 
the formulation is simpler if each set of scores is first 
converted to standard form; that is, each x. and y. is first 
converted to a z-score. We will refer to these {ectors 
as the standard score vectors of x and y and denote them 
Z

x 
= (zx 'z

x 
. .. 'z

x 
) and Zy, = (z,. 'Z). ..,, z,. ), respectively, 

I 2· n . I 2, · 11 Using [8] the angle 0 between z .. and z)' is given by 
cos0=(z,,, z,

l
+zx

z
z_,., + ... +z ... n z'n )/(llz.,.11 llzJ

II) 
::;. cos0 =zx ·z/(llzJ llz,.11) 
::;. cos 0 = I z,z,I ( II zj II z,.11) 191

We encountered the numerator of the right side of[9] 
earlier: it is also the numerator of the correlation co­
efficient in [ 4]. Let us examine the denominator 
II z.,.11 11 z,.11- It can be shown that for the standard score 
vector z.,. ·of any n-dimensional vector x, 11 z .. 11 = ✓n as 
follows. Note that 

llz .. 11 = .Jz,, 2 +z,, 2 + ... +::, .. 1 = .JI,;:, 1 

B t x _x d ✓I(�-xJu z . = -' - an s = 
·', 

s_, 
·' 

n 

So • _ x, -x _ (x, -x'},✓ri 
�,. 

-
✓I,(x

n
-xJ 

-
✓I.(x-xJ

�-----------
Then from [5], II zxll = (x, -x�", + 

(x, -x�''. + .+ i"(-., ��.,:''j'.l(r-.r'j l(x-x J L, , 

::;. I I zJI = L (r-xf ,n = ✓n
I,(r-xJ 

1101 

Since z and z are both standard score vectors, 
X )' 

llz)l=✓nand llz)I =..[;,.Thus [9] becomes cos0 

= 
L z,:.:_, [ 11 ) 

n 

The right side of[ I I] is the correlation coefficient 
between the set of scores x and y shown in formula 
[4]. Thus we have the result that has been the object 
of this article: the correlation coefficient between two 
sets of scores is just the cosine of the angle between 
their standard form vectors. 

Applying fonnula [ 11] to the special cases where 
0 = 0", 90° and 180" and noting that cos 0° 

= 1, 
cos 90° 

= 0 and cos 180" = -1 yields the following 
intriguing results about the value of the correlation 
coefficient r between the standard score vectors of 
two sets of scores: 

* r = 1 if and only if the standard score vectors 
have the same direction. 
* r = -1 if and only if the standard score vectors
are in opposite directions. 
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* r = 0 if and only if the standard score vectors are 
perpendicular. 
* r has a value between O and 1 if and only if the
standard score vectors are somewhere between
perpendicular and in the same direction.
* r has a value between O and -I if and only if the
standard score vectors are somewhere between
perpendicular and in opposite directions.

Conclusion 

This article demonstrates the relationship between 
correlation coefficient and the angle between two vec­
tors. The beauty of this relationship is that it provides 
a simple geometrical meaning for the correlation coef­
ficient that appeal to the intuition. There is also beauty 
and satisfaction in the processes underlying the dis­
covery and development of this relationship. The ex­
ploratory and deductive methods used illustrate how 
mathematical connections are discovered and verified. 
Mathematics teachers who look for connections are in 
a good position to uncover such connections by virtue 
of the intimate knowledge of the subject matter that 
accompanies teaching. Further, they can mode� both 
the excitement and the discipline that is involved in 
carrying the discovery process to its conclusion. Teach­
ers who are captivated by the exploration process will 
find ways to allow students to be captivated as well. 

Notes 

I. The two sets of data arc presented here in vector notation;
that is. as ordered 11-tuples. This is a convenient notation and 
appropriate for the purposes of this article. 

2. The fonnulations for standard deviation and the correlation
coefficient used in this article arc those pertaining to ,1 whole 
population rather than a sample. Using n rather than the usual 
11-l makes the demonstration of the relationship between the
correlation coefficient and the angle between two vectors more
transparent. But it is possible to demonstrate the relationship
using n-1 as well.

3. The reader will recall that the standard deviations for the
data sctx = (x,. x .. ... , x) is a measure of how the data is.•distrib­
uted about the mean x. It is defined as follows.

,, =JI�<- .,'j and can be described as the root of the mean of the
" 

squares of the deviations of the individual scores from the mean. 
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TEACHING IDEAS 

When Technology Integration 
Goes to Math Class 

Brenda Dyck 

This article previously appeared in Meridian, 
a Middle School Computer Technologies Journal, 
Vol 6, No 2, Summer 2003. Minor changes have 
been made to fit ATA style. 

The principal goal of education is to create men 
who are capable of doing new things, not simply 
of repeating what other generations have done­
men who are creative, inventive and discoverers. 
The second goal of education is to fonn minds that 
can be critical, can verify, and not accept every­
thing they are offered; we need pupils who are 
active, who learn early to find out by themselves, 
partly by their own spontaneous activity and partly 
through materials we set up for them; we learn 
early to tell what is verifiable and what is simply 
the first idea to come to them. 

-Jean Piaget

I think you should learn, of course, and some days 
you must learn a great deal. But you should also 
have days when you allow what is already in you 
to swell up inside of you until it touches every­
thing. If you never take time for that to happen, 
then you just accumulate facts, and they begin to 
rattle around inside you. You can make noise with 
them, but never really feel anything with them. It's 
hollow. 

-From The Mixed-Up Files of Mrs. Basil E.
Frankweiler by EL Konigsb11rg, 1967 

Math classes from my learning past had a definite 
cookie-cutter appearance: rows of desks, lined scrib­
blers, pencils, textbooks and the teacher at the front. 
These were housed within the most predictable of all, 
a quiet classroom. Math instruction is well suited to 
a traditional teaching fonnat. Because of the logical 
and sequential nature of math, it often attracts teachers 
whose thinking and learning styles match the subject. 
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Therefore while other teaching disciplines are branch­
ing out to encompass a constructivist style of instruc­
tion that is full of collaboration and technology inte­
gration, many middle and high school math teachers 
continue to use a more teacher-centred approach. 

As a math teacher, I believe change is on the ho­
rizon. Language arts and social studies colleagues are, 
embracing the power of the Web to push their stu­
dents' creative and critical thinking skills, and many 
math teachers are looking for ways to enhance the 
curriculum using digital media. Realizing that digital 
media can facilitate critical thinking and higher-order 
learning, teachers arc looking for math-related online 
projects and resources that will help students and 
challenge their thinking skills. 

Telecollaborative Projects 

Statistics: A Curiosity Factor (www.masters.ab.ca/ 
bdyck/Staff/Olson2) was my first attempt at integrat­
ing telecollaborative project work into math class. I 
had developed many language arts and social stud­
ies-based telecollaborative projects to connect learn­
ers in other countries. Shared learning projects could 
challenge students' critical thinking skills, engage 
their interest and expand their global perspective 
while covering curriculum requirements. The ques­
tion was, how could I use this style of instruction in 
math class? Using the unit on Collecting and Analyz­
ing Data as a jumping-off point, I began looking for 
Internet resources that would add pizzazz to a unit 
that had, in my class, been traditionally textbook 
driven. I uncovered an abundance of exciting statisti­
cal resources that would grab student interest: 
• Articles that shed light on how numbers can infonn

or misinfonn readers
• Online surveys that explored hot topics, such as

spam and property rights in cyberspace
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• The Gallup Poll's webpage containing information
on how the Gallup Organization uses polls to pre­
dict trends and inform the public. This site is
loaded with videos examining everything from
cloning to those sticky ethical questions that stu­
dents love to debate.

• An online site that turned student data into a variety
of colourful graphs with just a click of the
mouse

• An array of sites that provided up-to-date informa­
tion on topics that interest all kinds of learners

Using these resources, students developed a deeper
understanding of how numbers can lead or mislead 
the usefulness of unbiased data, the art of creating a 
good survey question and how to analyze data and 
present the results effectively. For examples, see 
the Student Work section of the website, Statistics: 

A Curiosity Factor. Without question, using technol­
ogy engaged them in a way that textbook graphs and 
data charts never did. Knowing that their learning 
would be on line encouraged the students to put more 
effort into their work and to increase their global 
perspective as schools from Ohio, Florida, Pennsyl­
vania, Texas and Canada joined in to share survey 
results with each other. 

Several years ago, Houghton Mifflin's Education 
Place website, which no longer exists, contained a 
resource called the Data Place. After registering, 
teachers had access to grade-appropriate collaborative 
projects whereby students collected and worked with 
real data by analyzing and drawing conclusions. Not 
only did students compare data from their own class­
rooms, they had access to a data bank containing 
project results from classrooms worldwide. The 
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activities were interactive, imaginative and thought 
provoking. 

We encountered the Data Place through a project 
called, We're Just Winging It! In this project students 
made paper airplanes, gathered data about how far 
the airplanes flew, compared results with the class 
and then, using the graphs created on the Data Place 
website, compared their results with their peers and 
other Data Place users from other countries, such as 
Thailand and Australia. 

According to the students, the best part of this 
project was throwing the paper airplanes down the 
hall. Surprisingly, these enthusiastic data collectors 
were totally on task and meticulous about measuring 
the distance the planes flew. Students took their results 
and, using an online metric converting tool, changed 
their metric measurements into the American Imperial 
Measurement system. From here they calculated the 
mean distances (individually and as a class) and en­
tered their data into the Data Place website. Everyone 
was delighted with the colourful graphs that appeared 
within seconds. 

During the following class, I hooked up an LCD 
projector. The students and I analyzed the graphs and 
discussed the variables that would have made some 
airplanes fly farther than others. Student thinking was 
evident as they suggested that flying distances could 
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have been affected by differences in size, how air­
planes were folded, weight of the paper, unexpected 
breezes in the hall, direction of breezes, styles of 
throwing or the humidity in the air. 

To extend the learning gleaned during the We're 
Just Winging It! activities, I created a telecollabora­
tive project called Come Fly With Me 1 (www.masters. 
ab.ca/bdyck/Fly). This hands-on, technology-sup­
ported project merged data collection and analysis 
skills with a science unit on flight. Throwing airplanes 
down the hall, using technology to analyze the learn­
ing, competing with students across the world and 
having their math class results on the Web made for 
one of the best math classes of the year! 

Brenda Dyck is a sessional instructor in the Faculty 
of Elementary Education at the University of A I berta. 
Her Hot Links column is a regularfeature in Middle 
Ground Magazine, a publication of the National 
Middle School Association (NMSA). Brenda :S book, 
The Rebooting of a Teacher's Mind, was recently 
published by NMSA. Brenda is also a teacher-editor 
for MidLink Magazine (www.cs.ucfedul~MidLink) 
and serves on the provincial executive for the Middle 
Years Council of the Alberta Teachers· Association 
(MYCATA). 
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Ready, Set, Decorate! 

Abbey Alexander 

Mathematical Concept 

Surface area and volume of prisms, cylinders and cones 

Grade 

Mathematics 9 

Purpose 

Culminating activity for the shape and space unit 

Objective 

Students will apply their knowledge and understand­
ing of the area of two-dimensional shapes and the 
surface area and volume of prisms, cylinders and 
cones to a room design or set-up activity. 

Concepts Addressed 

(From Alberta Education Program of Studies) 
Shape and Space (Measurement) 
Describe and compare everyday phenomena, using 
either direct or indirect measurement 

General Outcome 

Describe the effects of dimension changes in related 
two-dimensional shapes and three-dimensional ob­
jects in solving problems involving area, perimeter, 
surface area and volume 

Specific Outcomes 

• Relate expressions for volumes of pyramids to
volumes of prisms, and volumes of cones to vol­
tunes of cylinders

• Calculate and apply the rate of volume to surface area
to solve design problems in three dimensions

• Calculate and apply the rate of area to perimeter
to solve design problems in two dimensions

Materials 
• Copy of activity (see Description)
• Blank pieces of paper (two per student)
• Overhead transparency of activity
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• Pencil and eraser
• Calculator if needed
• Two worksheets of room to decorate and set up

(one for rough copy, one for good copy)

Vocabulary 

Surface area-the amount of material required to 
cover an object 
Volume-the amount of space that an object 
occupies 
Feature wall-a wall in a room that stands out from 
the rest 

Description 

Scenario: Your parents and/or guardians are renovat­
ing their home, and you must decide how to renovate 
your bedroom. Your bedroom is 4.2 m long, 3.6 m 
wide and 3 m high. The door (2.5 cm x 0.5 cm) and 
window ( 1 cm x 1.5 cm) are marked in the diagram 
below (scale: 1 cm = 1 m). 

I 4.2 cm I 
door 

I 3.6 cm I 

window 

Decorate and set up your bedroom by doing the 
following: 
I. Decide on the paint colour and quantity. Choose

any colour you want; paint all walls the same co­
lour, each a different colour or have a feature wall
if you like. You must justify the amount of paint
you need (surface area).

2. Hang a minimum of three pictures of any dimen­
sion or shape in your room. For each picture,justify
why you chose the particular dimensions and
shape, and why you hung it in a certain place (area
in 2-0).

3. ln your bedroom set-up, you must have a minimum
of one window, one bed, one dresser, one garbage
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can, one lamp and lamp shade, one hanging light 
fixture and four trinkets. 

4. First figure out how much space you have to work
with (volume). Then decide what the items in your
bedroom will look like and include dimensions.
Use at least one of each 3-D shape listed below:
• cube
• square pyramid
• triangular pyramid
• rectangular prism
• rectangular pyramid
• cone
• triangular prism
• cylinder
Note: For some students, building nets may be a
useful strategy to employ.

5. Indicate how much space each item in your bed­
room takes up.

6. When you arc done setting up your bedroom, in­
dicate the total space your set-up occupies.

7. When you have completed the activity, we will
showcase the bedrooms for all to see.

For the Student 

Complete a rough copy of your room. Then do a good 
copy to hand in, and write your name, date and class 
on the back. Accompanying your room design on a 
separate piece of paper, provide the following: 

Paint 

• The paint colour you chose (provide a sample if
possible) and, if more than one colour was used,
indicate the colour of each wall

• How much paint you needed and your justification
for the amount of paint needed; that is, surface
area

Pictures 

• The dimensions and shapes of pictures you hung
in your room and justification for your decisions;
that is, how much area the picture took up on the
wall versus how much area you had to work with

• Explain why pictures were hung in certain places
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Set-Up 

• The amount of space you had to work with in your
room; that is, volume

• The dimensions you used for each item and how
much total space each item occupied

• The total amount of space all your items used and
how much space was left over

Grading Rubric 

Level Descriptors 

A The work is exceptional and exceeds 
minimum expectations of the project. 
Justifications for choices are clear and 
logical. The student demonstrates ini-
tiative, creativity, insight and ability to 
solve problems. 

B The work is generally of high quality. 
It is accurate and meets minimal re-
quircments. Most justifications are 
clearly stated. However, the project is 
not creative or insightful in the judg-
ment of the teacher and problem-solv-
ing skills are not exceptional. 

C The work is adequate but unexcep-
tional. Significant errors in understand-
ing, ability to problem solve, superfi-
cial justification or poorly described 
ideas are evident. 

D The work is inadequate or nonexistent. 
No requirements are met. 

Abbey Alexander is in her.final practicum in the 
University of Lethbridge bachelor of education 
program. She is interested in how we can make 
mathematics fun and intriguing for students and 
teachers. She become interested in education because 
of her high school math teacher and her experience 
coaching a girls' rep soccer team. 
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Factoring Trinomials: 
A Student's Perspective 

Duncan E McDougall and Pega Alerasool 

lt is when we least expect it that a student will 
make an observation about a conventional method 
that we virtually take for granted. In this case, it was 
factoring the trinomial form ax� + bx + c, where the 
factors of 'ac' add up to 'b' by decomposition. In 
particular, I presented 3x2 

- 2x - 8 for consideration. 
The question posed was, "How can we factor this if 
the 3 is not a perfect square?" Pega Alerasool, an in­
dustrious student with a different view of this pro­
cedure, did not understand the conventional algo­
rithm as it had been presented to her. It was clear 
that my perception of this method and hers were 
very different. So after explaining that the 3 or any 
other coefficient of the x2 term didn't have to be a 
perfect square, she asked, "Why can't it be a perfect 
square?" That is, why couldn't the coefficient of x1 

always be a perfect square? Now I was curious and 
asked her to explain her approach. ln essence, let 
A = 3x2 

- 2x - 8 and then multiply both sides by 3 in 
order to make the coefficient of x2 a perfect square. 
The advantage here is that when we apply decomposi­
tion, we do not have to worry about the positioning 
of the constant terms. The illustrated format looks 
like this: 

Factor 3x2 
- 2x - 8

Let A = 3x2 
- 2x - 8

then 3A = 9x� - 2(3)x - 24 
3A = (3x)2 - 2(3x) - 24 
3A = (3x - 6)(3x + 4) 

Given 

Substitution 

Multiplication 

9x2 = 3x • 3x and 
the factors of - 24 
whose sum is -2 
arc - 6 and 4 

As with previous methods of factoring, the position 
of the variable and constant tenns is crucial. Here. 
however, we no longer have this problem. Since the 
numerical coefficient of the x te1m is the same in both 
sets of parentheses, it does not matter where we place 
the constant terms, factors, in this case -6 and 4. 
Continuing this process we have: 
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3A = (3x - 6)(3x + 4) from above 
3A = 3(x - 2)(3x + 4) factor out the GCF 
A = (x - 2)(3x + 4) division 

In general, the sequence looks like this: 

Factor ax"+ bx+ c 

Let A = ax2 + bx + c 

Then Aa = a2x2 + abx + ac 

Now Aa =(ax+ a)(ax + c) 

Aa = a(x + l)(ax + c) 
A = (x + I )(ax+ c) 

where the factors of 
ac add up to be 
factorable 

by substitution 

by multiplication 
to make the co­
efficient of x2 a 
perfect square 

factors of ac are a 
and c regardless of 
order 
factor out the GCF 
division by a 

The only real question remaining is what to do 
when the coefficient of x2 in a given question is al­
ready a perfect square. As tempting as it is to factor 
"as is," the procedure doesn't work as shown below 
(Example I). We must still multiply the coefficient 
of x" by itself so that we can get the constant factors 
to work properly, as in (Example 2). 

Example 1 

4x� -5x +I 
does not work as there arc no values a and b for 
which the fonn (2x-a)(2x-b) works. 

Example 2 

Let A = 4x� - 3x - 1 
4A = 16x1 

- 3(4)x - 4 
4A = ( 4x - 4 )( 4x + 1) 

4A = 4(x - I )( 4x + 1) 
A == (x - 1 )( 4x + 1 ) 

substitution 
multiplication by 4 
16x� = 4x • 4x 
and -4 =-4-1 
and -3 = -4+ 1

factor out the GCF 
division 

The above was Pcga 's take on factoring by de­
composition. This is how it made sense to her. If it 
appeals to other students like Pega, then it may be­
come an alternative method of factoring. Try it, you'll 
like it! 
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Duncan McDougall has been teaching for 2 7 years, 
including 13 years of teaching in the public school 
systems of Quebec, Alberta and British Columbia. 
During the past J 5 years, he has taught mathematics 
to high school and university students and to 
elementary school teachers. He owns and operates 
TutorFind Learning Centre in Victoria, British 
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Columbia. Pega Alerasool is in her third year as a 
coop student in mechanical engineering. The work 
presented in this article occurred when she was a 
member of a high-energy Grade 11 honours math 
class that savoured all the material Duncan 
McDougall presented to them. She was a keen student 
who liked to tinker with methods and techniques 
demonstrated in math and science classrooms. 
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Travelling to South Africa: 
An Application Task 

Kim Runnal/s 

Topic: Time zones 

Objectives 
• Identify different time zones.
• Determine the relationship between various time

zones.
• Research and plan how to travel between time

zones in an allotted period of time and budget.
• Convert values of time into different time zones.

Grade Level: 7

Materials
• World map with marked time zones
• Computers with Internet connections

( www.timeanddate.com)
• Problem sheet (one copy per student)

Task Description
1. Students will be given the problem sheet and must

decide without teacher instruction how to tackle
the problem.

2. Using the flight listings sheet and the Internet,
students must choose a satisfactory flight
itinerary.

3. Students write a rationale for why they chose their
itinerary by using descriptions and justifications
of the time zone changes, layover and in-flight
times, and price.

4. The rationale with a printout of the flight itinerary
must be submitted to the teacher for assessment.

Mathematical Concepts: time zones, time zone ad­
justments, time zone determination and unevenness 

Vocabulary: itinerary, time zone, layover/stops, EST, 
GMT, International Date Line 

Adaptations: If students arc struggling, they can 
practise converting between time zones by using a 
time zone converter online 
( www.timeanddate.com/worldc lock/converter.html). 
Having Erin fly from Calgary to Capetown rather 
than going across the International Date Linc can 
make the task easier. Prices can be altered so that 
exchange rates must be used to increase the difficulty 
of budgeting. Also, task details can be changed so 
that Erin's starting location matches wherever the 
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students completing the task live. This makes the task 
relevant to any student. 

Rationale: By applying the concept of time zones to 
a highly authentic alternative context, students sec 
the value and need for this mathematical knowledge. 
This task is highly significant in that it takes on the 
form of vicarious relevance. This full-class task re­
quires students to integrate and synthesize their 
knowledge of time zones, number sense and budget­
ing. Drill and practice text questions (which typically 
arc used for teaching these concepts) cannot attain 
this level of relevance or require this higher taxo­
nomic level of thinking; whereas a task like this can. 
Finally, a problem task such as this provides students 
with a feeling of success and achievement because 
their work is purposeful and their solution is actually 
useful for something other than just a mark in the 
grade book. 

Teacher Reflection: This task can be quite engaging 
as long as the students have a clear idea as to the re­
search/decision-making process and what is expected 
of their paragraph rationales. This requires the teacher 
to take time to fully review the new vocabulary terms, 
such as itinerary, and go through exactly how flights 
are booked and how to read flight itineraries (that is, 
what do stops mean, what times and time zones are 
usually given, boarding times and so on). If this is 
covered well, then students get the idea of how to 
understand flight plans, how to match them with their 
flight needs and then how to realistically sec how 
time zones apply to life. 

Problem Sheet 

Erin Runnalls is doing a law internship this sum­
mer in Cape Town, South Africa. She will be working 
in Cape Town starting July I 0, 2006, and living there 
until the end of August 2006. Before she starts work, 
she would like to fly from Calgary, Alberta, to Auck­
land, New Zealand, around June 15 so she can do 
some travelling before she heads to South Africa for 
the rest of the summer. She wants to fly from Auck­
land to Cape Town to be at her job for July I 0. 
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Important things to take note of: 
• Erin prefers to fly on well-known airlines with

good reputations.
• The maximum total budget for flight costs (includ­

ing the flight to Auckland plus the flight to South
Africa) is C$6,500.

• Although her job doesn't start until July 10, it
would be nice if she had some time to settle in her
new house before work starts.

• Erin would like to spend as much time in Auckland
as possible.

• Erin docsn 't like to be rushed to catch flights in
layover destinations.

• More direct flights with fewer layovers are better
for Erin.

Through your Internet researching, you must take 
note offlight times, destination time zones and budget to 
find an itinerary that satisfies Erin's travelling needs. 

After you have found and printed an itinerary, you 
must write a paragraph explaining why your combination 
of flights will mathematically work and be appropriate 
for Erin, while also answering the following questions: 

I. Erin's mother wants her to phone home whenever
she arrives in a destination. List each of Erin's
flight destinations (including layover destinations)
and what time it would be at home when she calls
her mom in each of these locations.

2. Once Erin is living in Cape Town, what would be
an appropriate time for Erin to call her mother so
that it's a convenient time for both of them?

Rubric 

� 

In-Province Traveller The Tourist Destination Far Reaches of the 
(1-3 marks) Traveller (4-6 marks) World Traveller 

a (7-9 marks) 

Time and Date Most time and date Most time and date All time and date 
Conversions conversions are conversions are correct. conversions are correct. 

incorrect. 

Itinerary The itinerary chosen The itinerary chosen The itinerary chosen 
satisfies few to none of satisfies most of the satisfies all of the 

the parameters. parameters. parameters. 

Rationale The rationale is not well The rationale is The rationale is 
thought out and fails to thoughtful and supports thoughtful and supports 

support most of the most of the decisions all of the decisions made. 
decisions made. made. 

The total score for the application task is out of a total 27 marks. 

Kim Runnalls is in her final year at the University of Leth bridge, completing a mathematics education combined 
degree. She is passionate about mathematics and tries to stimulate an interest in math in every child. She strives 
to grow and develop her understanding and skills by teaching mathematics in a relevant experiential manner 
rather than through traditional rote textbook work. 
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Reducing Fractions and Its Application to 
Rational Expressions 

Duncan E McDougall 

There are various reasons a given student doesn't 
learn or master a presented method or technique. 
Teachers are aware of diverse learning styles and 
conditions in the classroom. But sometimes despite 
hard work and willingness to learn on the part of the 
student, the objective is not met. What do we do? 
Alternative approaches to a problem are often sought, 
and this is where thinking outside the box may come 
in handy, especially when a novel idea works and 
appeals to others. 

Imagine the plight of high school math students 
whose factoring skills am less than adequate. They 
may find factoring a chore because of a lack of suc­
cess with a conventional method. Students might need 
another approach to help them succeed. 

Consider reducing the fraction 39/65 to lowest 
tenns. If we know that 13 is a factor of both 3 9 and 65, 
h . . 39 13x3 3 T t en we can wnte 1t as -= -- = - . he educator65 I 3x5 5 

knows that 13 is the greatest common factor, but the 
student may not. Similarly, how would it be apparent 
to a student in an expression like 

·
:
' -2x -3 

?
x--7x+l2 

Previously, I have demonstrated the premise that 
the only possible factors available to reduce a fraction 
to lowest terms come from the difference between 
the numerator and the denominator (McDougall 
1990). Numerically, it looks like this: 
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R d 39 e uce -65 Steps:
(I) 65 - 39 = 26 demonstrates

the difference 
between the 
numerator and 
the denominator 

(2) Factors of 26 I, 2, 13, 26
(3) Disregard I. Disregard 2 and

26 because they are even
(4) Try 13. If 13 doesn't work,

then nothing else will.
(5) 39 _,__Q=�

65 13 5 

When transferring this concept to rational expres­
sions, examine the following two examples: 

Example 1 

Reduce ,\:' -2x -3
.,-- 7 X + 12 

At this stage, we 
can factor more 
easily because we 
know that (x-3) is 
one of the desired 
factors; fai I ing that, 
use long division 

Example 2 

x·'-l Reduce -­
x-1 

Steps: 
(l)(x1-2x-3)-(x ) -7x+12) 

=x' -2x-3-x' +7x-12
-Sx-15

=5(x-3) 
(2) Disregard 5 and consider

(x-3) because 5 doesn't
divide evenly into the
numerator or the denomi­
nator but (x-3) might.

(3) x'-2x-3=(x-3)(x+l)and
x

2 
-7x+ 12 = (x-3)(x-4)

x' -2.x-3 x+ I (4) x'-7x+l2= 
x-4

Steps: 
(1) (x-1 -1)-(x-l)

=xJ-1-x+I 
=.i-x 

=x(x
2

-I) 

=x(x-l)(x+I) 
(2) Disregard x and (x+ 1)

but consider (x-1)
because neither x nor
(x+ I) divide evenly into
neither the numerator
nor the denominator; the
only remaining factor to
consider is (x-1 ).
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(3) x
3 

-1 = (x-l)(x
2 + x+ I)

(4) x3-l = (x-l)(x1 +x+I)
x-1 x-l 

= xi +x+I

What I also like about this method is that we can 
discover which factors will not work in a given 
situation: 

. x2 -x- 12 
Consider . Steps: 

x' -x-6 

(1) (x2 -x-12)-(x: -x-6)

= x2 -x-12-.x2 +x+6
=-6

Immediately we can sec that 
there cannot be a common 
factor of the form (x+a) (as­
suming that the algebra is 
done correctly of course). 

As we can see, there is no point in factoring and 
looking for a common term if indeed none exists to 
begin with. Now it's no secret that a method for find­
ing the GCF of two polynomials does exist, but it 
does involve long division, and therefore, it would 
look something like this: 

Find the GCF for x1 -2x-3 andx2 
- 7x+ 12, or GCF

(x2 -2x-3,x 2 -7x+ 12)-

Divide one into the other, and keep track of the re­
mainder. Now divide the remainder into the previous 
divisor, and again, keep track of the remainder. Con­
tinue this last step until the remainder is zero. The 
divisor, which gives zero as a remainder, is our GCF. 
This means we would have: 

I 

x
2 - 2x-3)x2 

- 7x+ 12

x1 -2x-3

-5x+l5 =-S(x-3) Take only (x-3)
because -5 is not a 
factor of the form 
(x+a) and because 
-5 doesn't divide
evenly into either
the numerator or
the denominator.

x+I 
x-3)x2 -2x-3

x2 -3x
x-3

x-3

0
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Actually, finding the GCF this way is part of the 
reason the above method of subtraction works. The 
teacher now has more than one way of presenting this 
material to various types ofleamers and can provide 
alternatives for the reluctant student. A welcome ap­
plication of this approach is the calculation of limits 
for the calculus student. In general, we have: 

]. x2 +x(a+b)+ab 
1m----'---

x-+-11 x+a 

Instead of evaluating directly, and giving the inde­
terminate form % , we can subtract the two polynomi­
als, factor this difference, and then try to reduce it to 
its lowest tenns. This would create the following: 

(.x
2 +x(a +b)+ab)-(x+a) = x2 +ax+bx+ab-.x-a

= x(x +a)+ b(x+ a)- l(x+ a) 
= (x+a)(x+b-1) 

This reveals that (I) the expression can be reduced, 
and (2) (x+a) is the common factor. A numerical ex­
ample would look like: 

I
. x2 +3x+2
tm---­

x--+-2 x+ 2

= 
1
. (x+l)(x+2) Im ..:..___..:._;______:..

-----2 x+ 2 

= lim x+l 
K-t-2 

= -2 + I 
=-] 

(x2 
+ 3x+ 2)-(x+ 2)

= x1 +3x+2-x-1 

= x2 +2x 
= x(x + 2)

Disregard x and 
consider (x+2) 
because x doesn't 
divide evenly into 
the numerator or the 
denominator. 

In summary, some students sec math as a necessary 
evil. However, now they can get into it a bit more 
because someone has found a method that makes 
sense to them. 

Reference 

McDougall, D E. 1991. "Reducing Fractions." /111enwrional 
Journal of Mathematics Education and Science Technology 22, 
no 4: 683-93. 

Duncan McDougall has been teaching for 27 years, 
including 13 years teaching in the public school 
systems of Quebec, Alberta and British Columbia. 
During the past 15 years, he has taught mathemarics 
to high school and university students and to elementary 
school teachers. He owns and operates TutorFind 
Learning Centre in Victoria, British Columbia. 
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A Craig Loewen 

Elementary 

Build the silhouettes below using 
one seven-piece set of tan grams for each. 

Launch Pad Tower and Space Shuttle 

Middle School 

Build the 

shape shown 

on t he left 

using exactly 

16 linking 

cubes. 

How many solutions can you find if you 
may use 16 or fewer cubes? What is the 
smallest number of cubes you could use 

to build this object? 

High School 

If the hole passes completely through 
the cylinder, and the tube extends 4 cm 
on each side of the rectangular centre, 

calculate both the surface area and 
volume for the object below. 

Outer Diameter = 4 cm 

Inner Diameter= 2 cm 

Elementary 

Several sugar cubes are stacked four wide, 
four high and five deep. The outside of 

the stack is then painted red. 

How many of the sugar cubes are red on 
one side? How many are red on two sides? 

Three sides? Four or more sides? How many 
receive no paint at all? 
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