
Congruence

Section 1. Basic Concepts.

When divided by a positive integer m, if both the integers a and b leave the same remainder,
then they are said to be congruent to each other modulo m. This is denoted by a ≡ b (mod m).
For example, since 20 = 7 × 2 = 6 and −8 = 7 × (−2) + 6, 20 and −8 both leave the remainder 6
when divided by 7. Hence they are congruent to each other modulo 7. We write 20 ≡ −8 (mod 7).

The concept of congruent numbers is called congruence. It is a binary relation, that is, a
relation between two numbers. Other examples of binary relations are <, ≥ and =. Congruence
has the following three properties. Let m be a given positive integer.

(1) Reflexive Property.
Every integer is congruent to itself modulo m. In other words, a ≡ a (mod m) for every
integer a.

(2) Symmetric Property.
If an integer a is congruent modulo m to another integer b, then b is congruent to a. In other
words, if a ≡ b (mod m), then b ≡ a (mod m).

(3) Transitive Property.
If an integer a is congruent modulo m to another integer b, and b is congruent modulo m to
a third integer c, then a is congruent modulo m to c. In other words, if a ≡ b (mod m) and
b ≡ c (mod m), then a ≡ c (mod m).

A binary relation with all these properties is called an equivalence relation. It partitions the
overall structure into disjoint classes so that elements in the same class are related to one another,
and two different elements in different classes are not related to each other. These classes are called
equivalence classes.

For a given positive integer m, congruence modulo m partitions the integers into m equivalence
classes, according to their remainders when divided by m. Thus congruence modulo 2 partitions
the integers into odd and even numbers. Congruence modulo 10 partitions the integers according
to their units digits.

Like equations, congruences can be added and multiplied. Suppose a ≡ b (mod m) and c ≡ d
(mod m). This means that when divided by m, both a and b leave the same reaminder r and both
c and d leave the same remainder s. Now 0 ≤ r < m and 0 ≤ s < m. Hence 0 ≤ r + s < 2m. If
r + s < m, then it is the remainder when both a+ c and b+d are divided by m. If m ≤ r + s < 2m,
then 0 ≤ r + s − m < m, and r + s − m is the remainder when both a + c and b + d are
divided by m. In either case, we have a + c ≡ b + d (mod m). Another way of saying this is
a + c ≡ r + s ≡ b + d (mod m). Now a = qm + r and c = pm + s for some positive integers q and
p. Hence ac = (qm + r)(pm + s) = m(pqm + pr + qs) + rs. Hence ac ≡ rs (mod m). Similarly,
bd ≡ rs (mod m). Hence ac ≡ bd (mod m).

For example, we have 20 ≡ −8 (mod 7) and 33 ≡ 5 (mod 7). Then 53 ≡ 20+33 ≡ −8+5 = −3
(mod 7) and 660 = 20 × 33 ≡ −8 × 5 = −40 (mod 7). Indeed 53 = 7 × 7 + 4, −3 = 7 × (−1) + 4,
660 = 74 × 7 + 2 and −40 = 7 × (−6) + 2.



Section 2. Some Simple Appications.

Congruence modulo 3 partitions the integers into the following three classes:

· · · −9 −6 −3 0 3 6 9 12 15 18 21 24 27 · · ·
· · · −8 −5 −2 1 4 7 10 13 16 19 22 25 28 · · ·
· · · −7 −4 −1 2 5 8 11 14 17 20 23 26 29 · · ·

The boldfaced entries are the squares. So far, that they all appear in the first two classes. This
is in fact always the case. Consider where the square of an integer a would appear. When a is
divided by 3, the remainders must be one of 0, 1 and 2, so that a ≡ 0 (mod 3), a ≡ 1 (mod 3) or
a ≡ 2 (mod 3). If a ≡ 0 (mod 3), then a2 ≡ 02 = 0 (mod 3). If a ≡ 1 (mod 3), then a2 ≡ 12 = 1
(mod 3). If a ≡ 2 (mod 3), then a2 ≡ 22 = 4 ≡ 1 (mod 3). It follows that a2 is never congruent to
2 modulo 3.

We can prove a similar result for congruence modulo 4. If a ≡ 0 (mod 4), then a2 ≡ 02 = 0
(mod 4). If a ≡ 1 (mod 4), then a2 ≡ 12 = 1 (mod 4). If a ≡ 2 (mod 4), then a2 ≡ 22 = 4 ≡ 0
(mod 4). If a ≡ 3 (mod 4), a2 ≡ 33 = 9 ≡ 1 (mod 4). It follows that a2 is never congruent to 2 or
3 modulo 4. This idea can be applied to ak and modulo m for other values of k and m.

Note that 10 ≡ 1 (mod 9). It follows that 10k ≡ 1 (mod 9) for any positive integer k. This
allows us to find the remainder in a division by 9 without performing the actual division itself.
Consider the following example.

7804132211 = 7 × 109 + 8 × 108 + 0 × 107 + 4 × 106 + 1 × 105 + 3 × 104

+2 × 103 + 2 × 102 + 1 × 10 + 1

= 7 + 8 + 0 + 4 + 1 + 3 + 2 + 2 + 1 + 1.

Since 7 + 8 + 0 + 4 + 1 + 3 + 2 + 2 + 1 + 1 = 29 ≡ 1 (mod 9), the remainder when 7804132211 is
divided by 9 is 1. In general, every positive integer is congruent modulo 9 to the sum of its digits.
This is the basis of the test of divisibility by 9, in that a positive integer is divisible by 9 if and only
if the sum of its digits is divisible by 9. We also get a true statement if we replace 9 by 3.

On the other hand, 10 ≡ −1 (mod 11). It follows that 10k ≡ 1 (mod 11) for any even positive
integer k and 10k ≡ −1 (mod 11) for any odd positive integer k.

7804132211 = 7 × 109 + 8 × 108 + 0 × 107 + 4 × 106 + 1 × 105 + 3 × 104

+2 × 103 + 2 × 102 + 1 × 10 + 1

= −7 + 8 − 0 + 4 − 1 + 3 − 2 + 2 − 1 + 1.

Since −7 + 8 − 0 + 4 − 1 + 3 − 2 + 2 − 1 + 1 = 7 (mod 11), the remainder when 7804132211 is
divided by 11 is 7. In general, every positive integer is congruent modulo 11 to the alternate sum
of its digits, with the units digit being positive. This is the basis of the test of divisibility by 11, in
that a positive integer is divisible by 11 if and only if the alternate sum of its digits is divisible by
11.



Section 3. Contest Problems.

Below are several related problems on the 2014-digit number n consisting of all 9s except for a
1 as its last digit.
Problem 1.
Prove that n is a composite number.
Problem 2.
Prove that n is not a square.

Problem 2 is needed to set up the next problem. A positive integer which is not a square has
an even number of positive divisors because they form pairs whose product is n. If n is a square,
which means that

√
n is a positive integer, then it is paired with itself. It counts as only one divisor,

making the total number of divisors odd. By Problem 2, n has 2k positive divisors for some positive
integer k, namely, 1 = d1 < d2 < · · · < dk < dk+1 < · · · < d2k−1 < d2k = n.

Problem 3.
Find the combined digit sum of dk and dk+1.
Problem 4.
Find the combined digit sum of d2 and d2k−1.

Problem 1 was proposed for a junior high school mathematics contest. Since numerical answers
were desired, it was intended to be modified as Problem 3. However, the problem was worded so
that Problem 4 became what was actually asked.

Solution to Problem 1.
Note that n = 102014 − 9 = (101007)2 − 32 = (101007 + 3)(101007 − 3). Since each factor is clearly
greater than 1, n is a composite number.

Solution to Problem 2.
Note that n = 999 . . . 991 = 999 . . . 9 × 100 + 91 ≡ 0 + 3 = 3 (mod 4) since 100 ≡ 0 (mod 4). Since
all squares are congruent to 0 or 1 (mod 4), n is not a square.

Solution to Problem 3.
Note that dk = 101007 − 3 = 999 . . . 997 so that its digit sum is 1006 × 9 + 7 = 9061. On the
other hand, dk+1 = 1000 . . . 003 so that its digit sum is 1+3=4. Hence the combined digit sum is
9061+4=9065.

The rest of the article is devoted to the solution to Problem 4.

Clearly, d2 6= 2 or 5. By the tests of divisibility, it is neither 3 nor 11. If d2 = 7, then we must
have 102014 ≡ 9 ≡ 2 (mod 7). Now 10 ≡ 3 (mod 7), 102 ≡ 3× 3 = 9 (mod 7), 103 ≡ 3 × 9 = 27 ≡ 6
(mod 7), 104 ≡ 3 × 6 = 18 ≡ 4 (mod 7), 105 ≡ 3 × 4 = 12 ≡ 5 (mod 7) and 106 ≡ 3 × 5 = 15 ≡ 1
(mod 7). It is not necessary to go on any further. This is because 2014 = 335 × 6 + 4, so that
102014 = (106)335 × 104 ≡ 1335 × 4 = 4 6= 2. It follows that d2 6= 7.

A key step in the above argument is that 10k ≡ 1 (mod 7) for some positive integer k, which
happens to be 6. How do we know that such a k always exists, if we replace 7 by another prime
number? Let us understand why k = 6 for the prime number 7. Suppose we wish to convert
the fraction 1

7
into a decimal. By long division, we find that 1

7
= 0.142857, a decimal expansion

consisting of repeating blocks of the six digits 142857.



The reason that there are six digits is that when we divide by 7, the only possible remainders
are 0, 1, 2, 3, 4, 5 and 6. Here 0 will not appear since no power of 10 is divisible by 7. By the time
we have seen each of the non-zero remainders once, repetition must start. Thus the repeating block
of decimal digits has length at most 6. In this case, it happends to be exactly 6. This means that
1
7

= 142857
999999

so that 999999 is divisible by 7. It follows that 106 ≡ 1.

In a similar manner, we can prove that d2 6= 13, 17, 19 or 23. We know that 1012 ≡ 1 (mod 13),
1016 ≡ 1 (mod 17), 1018 ≡ 1 (mod 19) and 1022 ≡ 1 (mod 23). As it turns out, 106 ≡ 1 (mod 13),
but the other powers, namely, 16, 18 and 22, cannot be reduced. Since 104 6≡ 9 (mod 13), d2 6= 13.
Now 2014 = 125 × 16 + 14 but 1014 6≡ 9 (mod 17), 2014 = 111 × 18 + 16 but 1016 6≡ 9 (mod 19),
and 2014 = 91 × 22 + 12 but 1012 6≡ 9 (mod 23). Hence d2 6= 17, 19 or 23.

The next candidate for d2 is 29. We know that 1028 ≡ 1, but perhaps one of 102, 104, 107

and 1014 may be too. In modulo 29, we have 102 = 100 ≡ 13, 103 ≡ 10 × 13 = 130 ≡ 14,
104 ≡ 10 × 14 = 140 ≡ 24, 107 ≡ 14 × 24 = 336 ≡ 17 and 1014 ≡ 172 = 289 ≡ 28. So this does
not happen. Since 2014 = 28 × 71 + 26, what we need is 1026 ≡ 9 Now 105 ≡ 24 × 10 = 240 ≡ 8,
1025 ≡ 85 = 32768 ≡ 27 and 1026 ≡ 10 × 27 = 270 ≡ 9. This is exactly what we want.

We are lucky that n = 102014 − 9 = (101007 + 3)(101007 − 3) has a prime factor as small as 29.
Each of 101007 + 3 and 101007 − 3 has more than 1000 digits. Even if they were not prime numbers,
they could have been products of prime numbers with over 500 digits. It would be very difficult to
find d2 then.

From d2 = 29, we have d2k−1 = n
29

. There remains only the trivial matter of determining their
combined digit sums, via the following long division.

344827 5862068 9655172 4137931
29 )9999999 9999999 9999999 9999999

9999983
16 9999999
16 9999972

27 9999999
27 9999988

11 9999999
11 9999999

The sum of the digits of the quotient is 126, and there are 71 such blocks. In the last incomplete
block, the quotient is without the last two digits 3 and 1. It follows that the digit sum of d2k−1 is
126 × 71 + 122 = 9068. Since the digit sum of d2 is 11, the combined digit sum is 9079.

The solution of the following two problems are left to the readers.
Problem 5.
Determine which of 101007 + 3 and 101007 − 3 is divisible by 29.
Problem 6.
For what year y > 2014 would the second smallest positive divisor of 10y − 9 be
(a) 7; (b) 13; (c) 17; (d) 19; (e) 23?


