Edmonton Junior High Mathematics Contest 2007

Multiple-Choice Problems

Problem 1

A sequence is simply a list of numbers in order. The sequence of odd integers is $1,3,5,7,9, \ldots$. If we add any number of consecutive odd numbers, always starting at 1 , then the result will always be
A. an even number
B. an odd number
C. a perfect square
D. a perfect cube

Solution C

Solution
The $\mathrm{n}^{\text {th }}$ odd number is given by $t_{n}=2 n-1, n \in N$.
Using $S_{n}=\frac{n}{2}\left(a+t_{n}\right)$, we have
$S_{n}=\frac{n}{2}(1+2 n-1)=n^{2}$

Problem 2

You have an unlimited number of nickels (5 cents) and dimes (10 cents) from which you can use only nickles, only dimes or a combination of both to make a sum of 55 cents. The number of different combinations of coins that can be used is
A. 11
B. 6
C. 5
D. 4

Solution B

n	d
11	0
9	1
7	2
5	3
3	4
1	5

Problem 3

In the real number system, if the sum of $a+3.464466444666 \ldots$ is to be an integer, then a could have a value of
A. 0.535533555 333...
B. $1.646644666444 \ldots$
C. $2.202200222000 \ldots$
D. $3.313311333111 \ldots$

Solution A
Solution:

$$
\begin{gathered}
3.464466444666 \ldots \\
0.535533555333 . . \\
\hline 3.999999999999 \ldots
\end{gathered}=3 . \overline{9}=4
$$

Problem 4

Consider any three consecutive integers a, b and c, where $a<b<c$ and $a>1$. The expression that gives a correct relationship among a, b and c is
A. $a c=b^{2}-1$
B. $a c=b^{2}$
C. $2 b=a c$
D. $c=a+b$

Solution A

Solution

If a, b and c are consecutive, then they can be expressed (respectively) as $n-1, n$ and $n+1$.

Since $(n-1)(n+1)=n^{2}-1$, we have $a c=b^{2}-1$

Problem 5

If $2 x^{2}+x+3+2 y=-4 x^{2}+4 x-6$, then $y=$
A. $-12 x^{2}+6 x-18$ (multiplication by 2)
B. $-4 x^{2}+x-6$ (divides incorrectly by 2)
C. $-x^{2}+2.5 x-1.5$ (errors in transposition)
D. $-3 x^{2}+1.5 x-4.5$

Solution D

Problem 6

An engineer designs a hollow reinforced concrete support structure in the shape of a semi-cylinder. If the inner radius is r, the outer radius is R and the length of the structure is L, then an expression for the volume of concrete in the structure is

A. $V=\frac{\pi}{2}\left(\frac{R}{r}-L\right)^{2}$
B. $V=\frac{\pi L}{2}(R-r)^{2}$
C. $V=\frac{\pi}{2}(L R-r)^{2}$
D. $V=\frac{\pi L}{2}(R-r)(R+r)$

Solution D

Problem 7

A rectangle can be made longer and narrower without changing its area. For example, if the lengths of one pair of its sides are increased by 60%, then the lengths of its other pair of sides must be decreased by
A. 62.5%
B. 60.0%
C. 40.0%
D. 37.5%

Solution D

$$
\begin{aligned}
A & =l w \\
\text { Solution: } A & =1.60 l\left(\frac{w}{1.60}\right) \\
A & =1.60 l(0.625 w)
\end{aligned}
$$

Since w must become $0.625 w$, we have a 37.5% decrease on w.

Problem 8

The value of $\sqrt{3+\sqrt{8}}+\sqrt{3-\sqrt{8}}$ is equal to
A. 3
B. $2 \sqrt{2}$
C. $2 \sqrt{3}$
D. $\sqrt{6}$

Solution B

Problem 9

Each student in a class of 25 students wrote 2 different tests. It is known that

- 18 students passed the first test.
- 22 students passed the second test.
- No students failed both tests.

The number of students who passed both tests is
A. 15 students
B. 10 students
C. 20 students
D. 40 students

Solution A

Solution: if n is the number who passed both tests, then 18-n passed test 1 only, and $22-n$ passed test 2 only, $18-n+n+22-n=25$ gives $n=15$

Problem 10

If n is a whole number then the number of different values of n where $7 n+1$ is a multiple of $3 n+5$ is
A. 0
B. 1
C. 2
D. infinite

Solution C

If $7 n+1=3 n+5$, we have $n=1$. If $7 n+1=2(3 n+5)$, we have $n=9$. We cannot have $7 n+1=k(3 n+5)$ for any $k \geq 3$, as the right side is clearly larger than the left side.

Answers-Only Problems

Problem 1

Numbers such as 1, 3 and 6 are sometimes referred to as triangular numbers, because the value of the number can be represented by a triangular shape as shown below.

The sum of the first 10 triangular numbers is $\mathbf{2 2 0}$.
(Solution: $1+3+6+(6+4)+(10+5)+(15+6)+(21+7)+(28+8)+(36+9)+(45+10)=220$

Problem 2

John and Sam both leave point A at the same time, heading in exactly opposite directions. If John walks at $4 \mathrm{~km} / \mathrm{h}$ and Sam walks at $3.5 \mathrm{~km} / \mathrm{h}$, then the number of minutes it takes for them to be 2.5 km apart is $\mathbf{2 0}$.

Solution: $\quad 4.0 \mathrm{t}+3.5 \mathrm{t}=2.5$ gives $\mathrm{t}=2.5 / 7.5=1 / 3$ hours or 20

Problem 3

A set of 5 numbers has an average of 13 . If a $6^{\text {th }}$ number is included, then the average is 23 . The value of the $6^{\text {th }}$ number is 73 .

Solution:

$$
\frac{65+x_{6}}{6}=23 \rightarrow x_{6}=73
$$

Problem 4

In the diagram to the right, quadrilateral ABCD is a square, and $\triangle \mathrm{ABE}$ is an equilateral triangle. The measure in degrees of $\angle \mathrm{ECD}$ is $\mathbf{1 5}^{\circ}$.

$$
\begin{aligned}
& A B=B C=A D \text { and } A B=A E=E B \\
& \angle B A E \text { and } \angle A B E=60^{\circ} \\
& \triangle E B C \text { is isosceles } \therefore B E=B C \\
& \angle E B C=30^{\circ} \\
& \angle B C E=75^{\circ} \\
& \angle E C D=90^{\circ}-75^{\circ} \\
& \angle E C D=15^{\circ}
\end{aligned}
$$

Problem 5

Each integer from 1 to 100 inclusive is written on an identical card, one number per card. The cards are placed into a box and mixed thoroughly. If a single card is drawn at random, then the probability that the number on the card is divisible by either 3 or 5, expressed as a decimal to the nearest hundreth, is $\mathbf{0 . 4 7}$.

Solution: The sequence $3,6,9, \ldots, 99$ contains 33 terms each of which is divisible by 3 The sequence $5,10,15, \ldots, 100$ contains 20 terms, each of which is divisible by 5 Note that the numbers $15,30,45,60,75$ and 90 are contained in both sequence.

$$
\therefore P(\text { divisible by } 3 \text { or } 5)=\frac{33+20-6}{100}=\frac{47}{100}=0.47
$$

Problem 6

A farmer fastens the end of his dog leash to the edge of his barn at a point that is 15 m from one corner and 25 m from another corner of the barn, as llustrated in the diagram below. The barn is 20 m wide and the leash is 27 m long. The area of the region where the dog is able to reach while leashed to the wall, to the nearest whole square metre, is $\mathbf{1 2 6 1}$.

$$
\begin{aligned}
A & =\frac{\pi}{2} 27^{2}+\frac{\pi}{4}(2)^{2}+\frac{\pi}{4}(12)^{2} \\
\text { Solution: } & =\frac{\pi}{4}\left[2(27)^{2}+(2)^{2}+(12)^{2}\right] \\
& =\frac{\pi}{4}(1606) \\
& =1261.34 \mathrm{~m}^{2}
\end{aligned}
$$

Problem 7

Consider the irrational number 0.454554555455 554.... The total number of 5s that occur in the number before the digit 4 appears for the $100^{\text {th }}$ time is 4950 .

Between $1^{\text {st }}$ and $2^{\text {nd }} 4-1$ occurrence
Between $2^{\text {nd }}$ and $3^{\text {rd }}-2$ occurrences
$3^{\text {rd }}$ and $4^{\text {th }}-3$ occurrences
$\mathrm{n}^{\text {th }}$ and $\mathrm{n}+1^{\text {th }}-\mathrm{n}$ occurrences
Therefore there are 995 s between the $99^{\text {th }}$ and the $100^{\text {th }} 4$

$$
\begin{aligned}
S_{n} & =\frac{99(1+99)}{2} \\
& =4950
\end{aligned}
$$

Problem 8

A point P, is inside a triangle $A B C$, where $A B=7, B C=24$ and $C A=25$.
If $P D=2$, and $P E=2$, then the length of $P F$ to the nearest whole number is $\mathbf{1 0}$.

Solution: Since $A B^{2}+B C^{2}=49+576=625=C A^{2}, A B$ is perpendicular to $B C$. Hence the area of triangle $A B C$ is equal to $1 / 2(7)(24)=84$. The respective areas of triangles $P C B$ and $P A C$ are $1 / 2(2)(24)$ $=24$ and $1 / 2(2)(25)=25$. Hence the area of triangle $P B A$ is equal to $84-24-25=35=1 / 2(7) P F$. Hence $P F=10$.

Tan angle $\mathrm{C}=7 / 24$, which gives angle $\mathrm{C}=16.26$ degrees.
Tringles PCD and PCE are congruent. Therefore, angle PCD is 8.13 degrees.
Then using tangent of angle PCD, side DC can be found to be 14.0007. Thus FP $=24-14=10$

Problem 9

When 80,97 and 158 are divided by a certain even positive integer, the sum of the three remainders is 39 . This even positive integer is 74 .

The sum of the given numbers is 335 . When 39 is subtracted from this sum, the difference 296 must be a multiple of the unknown even number. Now the prime factorization of 296 is $2^{3} \times 37$. Hence the even number is one of 74 , 148 or 296 , but the last two are too large. Thus the answer is 74 .

Problem 10

Let a, b, and c be non-zero numbers such that $a+b+c=0$. The value of $a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)$ is $\mathbf{- 3}$.

The given expression is equal to $\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}$. Now $b+c=-a, c+a=-b$ and $a+b=-c$. Hence the answer is $\mathbf{- 3}$.

