Edmonton Junior High Mathematics Contest 2007

Multiple-Choice Problems

Problem 1

A sequence is simply a list of numbers in order. The sequence of odd integers is $1,3,5,7,9, \ldots$. If we add any number of consecutive odd numbers, always starting at 1 , then the result will always be
A. an even number
B. an odd number
C. a perfect square
D. a perfect cube

Problem 2

You have an unlimited number of nickels (5 cents) and dimes (10 cents) from which you can use only nickels, only dimes or a combination of both to make a sum of 55 cents. The number of different combinations of coins that can be used is
A. 11
B. 6
C. 5
D. 4

Problem 3

In the real number system, if the sum of $a+3.464466444666 \ldots$ is to be an integer, then a could have a value of
A. 0.535533555 333...
B. $1.646644666444 \ldots$
C. $2.202200222000 \ldots$
D. $3.313311333111 \ldots$

Problem 4

Consider any three consecutive integers a, b and c, where $a<b<c$ and $a>1$. The expression that gives a correct relationship among a, b and c is
A. $a c=b^{2}-1$
B. $a c=b^{2}$
C. $2 b=a c$
D. $c=a+b$

Problem 5

If $2 x^{2}+x+3+2 y=-4 x^{2}+4 x-6$, then $y=$
A. $-12 x^{2}+6 x-18$
B. $-4 x^{2}+x-6$
C. $-x^{2}+2.5 x-1.5$
D. $-3 x^{2}+1.5 x-4.5$

Problem 6

An engineer designs a hollow reinforced concrete support structure in the shape of a semi-cylinder. If the inner radius is r, the outer radius is R and the length of the structure is L, then an expression for the volume of concrete in the structure is

A. $V=\frac{\pi}{2}\left(\frac{R}{r}-L\right)^{2}$
B. $V=\frac{\pi L}{2}(R-r)^{2}$
C. $V=\frac{\pi}{2}(L R-r)^{2}$
D. $V=\frac{\pi L}{2}(R-r)(R+r)$

Problem 7

A rectangle can be made longer and narrower without changing its area. For example, if the lengths of one pair of its sides are increased by 60%, then the lengths of its other pair of sides must be decreased by
A. 62.5%
B. 60.0%
C. 40.0%
D. 37.5%

Problem 8

The value of $\sqrt{3+\sqrt{8}}+\sqrt{3-\sqrt{8}}$ is equal to
A. 3
B. $2 \sqrt{2}$
C. $2 \sqrt{3}$
D. $\sqrt{6}$

Problem 9

Each student in a class of 25 students wrote 2 different tests. It is known that

- 18 students passed the first test.
- 22 students passed the second test.
- No students failed both tests.

The number of students who passed both tests is
A. 15 students
B. 10 students
C. 20 students
D. 40 students

Problem 10

If n is a whole number then the number of different values of n where $7 n+1$ is a multiple of $3 n+5$ is
A. 0
B. 1
C. 2
D. infinite

Answers-Only Problems

Problem 1

Numbers such as 1, 3 and 6 are sometimes referred to as triangular numbers, because the value of the number can be represented by a triangular shape as shown below.

The sum of the first 10 triangular numbers is \qquad .

Problem 2

John and Sam both leave point A at the same time, heading in exactly opposite directions. If John walks at $4 \mathrm{~km} / \mathrm{h}$ and Sam walks at $3.5 \mathrm{~km} / \mathrm{h}$, then the number of minutes it takes for them to be 2.5 km apart is \qquad .

Problem 3

A set of 5 numbers has an average of 13 . If a $6^{\text {th }}$ number is included, then the average is 23 . The value of the $6^{\text {th }}$ number is \qquad .

Problem 4

In the diagram to the right, quadrilateral ABCD is a square, and $\triangle \mathrm{ABE}$ is an equilateral triangle. The measure in degrees of $\angle E C D$ is \qquad .

Problem 5

Each integer from 1 to 100 inclusive is written on an identical card, one number per card. The cards are placed into a box and mixed thoroughly. If a single card is drawn at random, then the probability that the number on the card is divisible by either 3 or 5 , expressed as a decimal to the nearest hundredth, is \qquad .

Problem 6

A farmer fastens the end of his dog leash to the edge of his barn at a point that is 15 m from one corner and 25 m from another corner of the barn, as illustrated in the diagram below. The barn is 20 m wide and the leash is 27 m long. The area of the region where the dog is able to reach while leashed to the wall, to the nearest whole square metre, is \qquad .

Problem 7

Consider the irrational number 0.454554555455 554.... The total number of 5 s that occur in the number before the digit 4 appears for the $100^{\text {th }}$ time is \qquad .

Problem 8

A point P, is inside a triangle $A B C$, where $A B=7, B C=24$ and $C A=25$.
If $P D=2$, and $P E=2$, then the length of $P F$ to the nearest whole number is \qquad .

Problem 9

When 80, 97 and 158 are divided by a certain even positive integer, the sum of the three remainders is 39 . This even positive integer is \qquad .

Problem 10

Let a, b, and c be non-zero numbers such that $a+b+c=0$. The value of $a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)$ is \qquad .

