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Guidelines for Manuscripts

delta-K is a professional journal for mathematics teachers in Alberta. It is published twice a year to

promote the professional development of mathematics educators and
stimulate thinking, explore new ideas and offer various viewpoints.

Submissions are requested that have a classroom as well as a scholarly focus. They may include

personal explorations of significant classroom experiences;

descriptions of innovative classroom and school practices;

reviews or evaluations of instructional and curricular methods, programs or materials;
discussions of trends, issues or policies;

a specific focus on technology in the classroom; or

a focus on the curriculum, professional and assessment standards of the NCTM.

Suggestions for Writers

1.

delta-K is arefereed journal. Manuscripts submitted to delra-K should be original material. Articles currently
under consideration by other journals will not be reviewed.

If a manuscript is accepted for publication, its author(s} will agree to transfer copyright to the Mathematics
Council of the Alberta Teachers’ Association for the republication, representation and distribution of the
original and derivative material.

Peer-reviewed articles are normally 8-10 pages in length.

All manuscripts should be typewritten, double-spaced and properly referenced. All pages should be
numbered.

The author’s name and full address should be provided on a separate page. If an article has more than one
author, the contact author must be clearly identified. Authors should avoid all other references that may
reveal their identities to the reviewers.

All manuscripts should be submitted electronically, using Microsoft Word format.

Pictures or illustrations should be clearly labelled and placed where you want them to appear in the article.
A caption and photo credit should accompany each photograph.

References and citations should be formatted consistently using The Chicago Manual of Style' s author-date
system.

If any student sample work is included, please provide a consent form from the student’s parent/guardian
allowing publication in the journal. The editor will provide this form on request.

10. Letters to the editor, description of teaching practices or reviews of curriculum materials are welcome.

11. Send manuscripts and inquiries to the editor: Lorelei Boschman, c/o Medicine Hat College, Division of Arts

and Education, 299 College Drive SE, Medicine Hat, AB T1A 3Y6; e-mail lboschman@mhc.ab.ca.

MCATA Mission Statement

Providing leadership to encourage the continuing enhancement
of teaching, learning and understanding mathematics.
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From the Editor’s Desk

Lorelei Boschman

Yesterday 1 received a message from a preservice education student who recently completed a mathematics
course with me:

“Did you know that a 10 ounce cup of coffee has a splash radius of at least 12 feet? I'm pretty sure that
the gravitational force of falling exponentially increases the amount of coffee that was once INSIDE
that cup. 1've done my part of the research here and am passing it on as a public service to you!”

Of course I smiled in a humorous yet understanding way, visualizing the “research” she participated in. This
brought me to thinking about how students perceive the discipline of mathematics in their worlds, as students
of mathematics versus teachers who have studied and taught mathematics. Having a student relate, and actually
identify purposefully even without a prompt, to the mathematics occurring around her was rewarding for me,
the instructor, and I recognized that this may not be a person’s main thought as the coffee cup is coming down.
But it was. I realized that this symbolizes the effect that we want to have on students of mathematics. We want
them to see the value, the usefulness, the evidence and the importance of mathematics. We work daily to this
effect. Having students recognize and experience the real relationships of the mathematics within their daily
lives and beyond the classroom is notable. We purpose ourselves to creatively teach students and facilitate
learning opportunities for them to experience this exact situation and the mathematics that emerges first-hand
and actually recognize it! Looking at the world around us and “seeing” all the mathematics that exists and
comes into play daily all around us is an aptitude to be encouraged and admired. If and when we build this into
students, the math teacher in all of us breathes a contented sigh of accomplishment.

This journal includes many ideas about relating mathematics to our world with purposeful and complemen-
tary thoughts, ideas and activities for each level. As you read the journal, consider how to modify the article or
activity for students at your level. Mostly, consider how to relate the mathematics you are teaching, exploring
and facilitating for students to make those connections to their lives and create that deeper meaning, understand-
ing and usefulness.

I’m quite sure my student’s understanding of radius, especially one of 12 feet, was reinforced that day. Per-
haps it even brings up more questions and opportunities about the force required to even send coffee that far!
I will continue to actively think about this example and consider how to create more of these real mathematical
scenarios and absolutely recognize them. My goal is to have my students see the mathematics occurring con-
stantly all around them, and as being innately important and truly complementary to their lives.

Remember to send in any submission you would like to share with others—we value your contributions and
see tremendous value in our collective understandings, ideas and practice.
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Conversation Starters: Issues in the Field

Developing a Passion for Mathematics
Through History

Armand Doucet and Jata MacCabe

This article highlights an interdisciplinary collabo-
ration from secondary school that begins in a history
classroom. The teacher Armand Doucet invites stu-
dents to delve into areas that they are passionate
about. Jata MacCabe, a student, is passionate about
mathematics. Upon hearing of this initiative, an invi-
tation was extended to share their story with the

sman  rcadership. The coau-
thorship enriches the
value. Armand’s writ-
ing (in 1talics below)
will introduce the
context and the back-
ground with regards
to Passion Projects.

Jata will then share her experience with the project
and what it meant to discover that she wanted to
continue pursuing mathematics as a career path.

My goal as a teacher in the classroom is to develop
skills internwined with curriculum content. Social and
Emotional Learning (SEL) and 2 1st-century skills need
10 be developed not haphazardly, but purposefully. For
this to happen, the culture and design of my classroom
and how I approach curriculum outcomes and stan-
dards, as well as skills development, is with a combina-
tion growth mindset (Carol Dweck) and design thinking
process (IDEO-Tim Brown). I try to foster and develop
divergent thinking (Sir Ken Robinson) in students who
will embrace the problems of the world instead of fear-
ing them because in reality: “The world doesn’t care
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what you know. What the world cares about is what do
vou do with it” (Tony Wagner).

So, I believe that connecting the curriculum o what
the students are passionate about is a great way 10
develop my classroom. With Passion Projects students
realize the joys of learning again by following their
own path. As you can see in Jata’s statement below,
when allowed to pursue their own goals in education,
students struggle ar first. I try to let them explore
before giving them stricter guidelines for their cre-
ative piece. We conference in order for them to dis-
cover what it is they would really like to pursue. As
they embrace the core problem of their Passion
Projects, resiliency precedes enthusiasm and then
enthusiasm leads 1o pride as students create and
subsequently showcase their projects. History comes
alive as students gather information and collaborate
with the international community. The experience is
unique to each student. Tony Wagner (Creating In-
novators) states, “the most important thing is allow-
ing students to ask questions and then give them the
space to find the answers.”

With Passion Projects students realize the joys
of learning again by following their own path

With Jata, she wanted to pursue something in math
and women’s rights. Her project revolved around
proving that women played a key role in World War
IT with Bleichley Park and this was one of the main
reasons that the Allied forces had won the war. At
first, she researched a lot on Bletchley Park’s role
itself, realizing that Mavis Batty played a major part.
As her project progressed, she decided to create her
own Enigma scavenger hunt. This got her looking at
the way the code breakers were using math to break
codes and build the Enigma machine. She ended up
being able to utilize her precalculus class to help her
develop the scavenger hunt and Enigma machine
(which was made up of tinfoil and some boxes).
However, what she really developed was an under-
standing of how math, as well as history, are both
connected from a perspective of the skills that are
needed such as problem solving, critical thinking and
creativity. Those higher order skills were pushed to
the limit as she continuously tried, innovated and
ultimately created her supportive creative piece,
namely, the scavenger hunt.

Giving students like Jata a chance to pursue their
passion, math in this case, in combination with other
subjects like history, within a safe environment to take
achance on a project, analyze, improve and try again,
gives them the opportunity to realize if they truly want
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fo chase down those dreams in the future. Jata's proj-
ect garnered attention from CBC once we posted the
results on social media. They attended her presenta-
tion, interviewed her and it was shared over 200 times.
Also, she received praise from Sue Black, OBE and
computer scientist, who was one of the people who
helped to save Bletchley Park. Sue was able to share
with Jata her connection with Mavis Battv, having
known her before she passed away. All these things
combined to solidify for Jata that she wanted 1o con-
tinue pursuing math and that it was going to give her
numerous avenues for an interesting career.

That, I believe, is my job as a teacher, to help
students develop skills while finding who they are so
they can succeed in the future. You can visit my tem-
plate for this type of classroom and other Passion
Project examples ai www.lifelessonlearning.com.

The idea was to connect something we
were passionate about to a revoluiion
in modern history.

My approach to history has always been imper-
sonal. Dates and names have never stuck in my head
for longer than they took to go in one ear and out the
other. I was kind of into that Roman unit, but my
friends tell me watching Gladiator doesn’t actually
count as studying. I was obviously not looking forward
to an entire semester of memorization and regurgita-
tion of a subject I didn’t particularly care about.

Within the first week of Mr Doucet’s class we were
introduced to the Passion Project. The idea was to
connect something we were passionate about to a
revolution in modern history. I was terrified. That very
helpful premise narrowed the possible topics down to
relatively everything, and the only concrete thing I
understood was the deadline. When Mr Doucet sug-
gested researching code breaking during World War
II, I finally had some small lifeline to grasp on to. This
was a way to explore my passion for mathematics in




a course that I would have otherwise loathed. Besides,
what kid isn’t intrigued by spies and code breaking?

For almost the entire history of the world, battles
have been the epitome of concrete and physical. Obey
him, protect them, bash and whack the enemy. The
major action occurred directly on the battlefield; you
simply had to roll with the punches as they came—
literally. Espionage had always been field agents
infiltrating enemy divisions, overhearing important
information and accessing critical documents. How-
ever painstakingly won, this information hardly ever
majorly impacted the outcome of a battle.

Communication was slow and unreliable; a mes-
senger could be delayed or a letter could be inter-
cepted. Even if the information should have reached
someone who might have been able to act upon it,
the information was often as unreliable as the methods
to send it. In matters of life and death, confusion is
not always the preference. Our modern history course
taught us of major innovations that were catalysts for
revolution.

Very few modern innovations had such a profound
effect on military communication, and the world, as
radio transmission. During the Second World War,
communication was decidedly less tangible. Encrypted
messages could pass through brick walls, over enemy
camps and across borders. In a game of interceptions,
the best encryption won. As tensions and conflicts
mounted, it was clear that the Germans had it.

In a game of interceptions, the best encryption
won.

Originally, the Enigma machine was a commercial
product designed for businesses or firms to encrypt
their financial data. The creators were quick to see
the machine’s potential military use and began ap-
proaching federal governments with the product.
Ironically, the encryption machines were even

presented to the British government, who chose not
to invest. The German government was interested in
the product, however. After ramping up the security,
the German Enigma resembled the simple commer-
cial product solely on a superficial level. The machine
had a standard German keyboard, like a typewriter,
and an additional alphabet with illuminated keys. It
included a series of rotors that encoded letters and
rotated with each additional letter. It also had a
switchboard that added an extra layer of security by
switching the coded letters for other-—seemingly
random—Iletters. By changing the settings of the ro-
tors every night at midnight, the Germans had created
a nearly invincible fortress of security. In a total
blackout of information, the Allied forces would be
subject to almost certain defeat. Britain’s Government
Code and Cypher School’s base for Axis decryptions
was at Bletchley Park.

At Bletchley Park, mathematics and problem
solving meant lives saved.

Perhaps the most famous name to come out of
Bletchley Park is Alan Turing. Before the war, the
Polish had developed a method of deciphering
Enigma codes with the use of “Bomba” machines.
These functioned by checking all possibilities using
a series of sheets. The machine was slow, inconsistent
and fickle, but it was progress. After being introduced
to the Bomba, the concept that a machine could do
the guantitative work of a human mind would stay
with Turing for the rest of his life. Turing was a theo-
rist, but he couldn’t achieve his objective of creating
a more efficient version of the Bomba alone. He and
Gordon Welchman combined with an Oxford engi-
neering team and created the first Bombe machine.
It was not precisely a computer as one still needed to
feed the machine a section of code guessed at manu-
ally, but Bomba machines could check thousands of
possibilities in minutes.

In high school, math seems almost completely
unrelated to the world at large. You can barely step
into a precalculus classroom without hearing “How
will this help me in the real world?” We all want our
hard work to mean something more than a number
on a test. It was amazingly coincidental that while I
was researching how probability was used at Bletch-
ley Park, we had just begun our Combinatorics and
Probability unit in precalculus. At Bletchley Park,
mathematics and problem solving meant lives saved.
Churchill believed that the work conducted at Bletch-
ley shortened the war by two years. Many others
believe that the war could not have been won without
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the park. It is often said that Bletchley was present at
every famous battle in the Second World War, stealth-
ily swaying the balance.

The most confusing part of this project was the
creative part. For mine, groups of five had to use a
tinfoil and pool noodle Enigma machine to decipher
the location of their next checkpoint. It was exactly
The Amazing Race and it certainly wasn't life at
Bletchley Park, but teams had to work together to
solve problems under pressure, which was my goal.

The world is composed of dichotomies. You're a
naive child or a sophisticated adult. You're a dreamer
or a realist. You're a mathematician or an artist.
Bletchley Park unabashedly disregarded these con-
straining labels. Academics, translators, debutantes,
actors, novelists, athletes and even chess enthusiasts
were recruited to aid their country. Major operations
included but weren’t limited to university students or
graduates. Some of the greatest breakthroughs during
World War IT were interdisciplinary collaborations of
many kinds of thinkers.

This project taught me that I already was a
mathematician.

I knew before this project that I wanted to be a
mathematician. I knew that I loved numbers and 1
knew that solving a difficult problem made me irra-
tionally happy. This project taught me that I already
was a mathematician. Math never was about numbers
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or formulas on a page. Math has always been about
humans solving problems. All of those countless
symbols, complex equations and abstract theories
have been about the human race learning to under-
stand and manipulate the world around them. So
maybe it was weird that I found my passion for
mathematics studying people and civilizations and
revolutions, but maybe it wasn't that weird at all.

Armand Doucet is a passionate and award winning
educator, leader and business professional with a
unique combination of entrepreneurial, teaching and
motivational speaking experience. He recently re-
ceived the Prime Minister’s Award for Teaching
Excellence as well as a Meritorious Service Medal
Sfrom the Governor General. He is the creator of www
Jifelessonlearning.com which leads the way in plac-
ing skills development on equal footing to curriculum
content in the classroom.

Jata MacCabe is a self-proclaimed math dork who is
eqgually talented in the classroom as on the improv
stage or rughy field. As a Grade 12 student this year,
she is looking to pursue a career in math while still
being passionate about many other subjects.

Reprinted with permission from Education Notes,
Volume 48, Number 5 (October/November 2016), a
publication of the Canadian Mathematical Society.
Minor changes have been made in accordance with
ATA shle.




Problem-Solving Moment

Open-Ended Questions

Lorelei Boschman

Open-ended questions encourage students to think
about different methods, representations and possible
solutions, all the while promoting mathematics un-
derstanding and processing. Sharing these possible
solutions with peers is also a powerful strategy for
teachers.

Some open-ended questions are listed below: Can
you use one or adapt one for your math students to see
how powerful the conversations/number talks and
mathematical thought processes can be through this?
Is this something that you could build into your weekly
lessons? Think about having students represent their
possible solution on a personal whiteboard, vertical
nonpermanent surface or through a placemat activity.

Grade 1: You went to the store and bought red and
blue candies. There were more red candies than blue
candies. How many of each could you have bought?
How many candies did you buy altogether? How many
more red candies than blue candies did you buy?

Grade 3: You write a number with tens and ones.
When you switch the numbers around, your new

number increases by more than 20 but less than 30.
What could your original and new number be? Can
you think of another solution?

Grade 4: Write a four-digit number whose digits total
23. Let your partner check this. What is the greatest/
least four-digit number you can make whose digits
total 23? 187 Create another one for a partner to try.
Can you pick any number for the digits to total or are
there only certain numbers that would work?

Grade 5: You buy an item with a $100 bill. You get
back four bills and six coins. How much did your
item cost?

Grade 7: Add in order of operations to make the
following true: 5 __ 3 __ 2 __ 2 =9. Now create one
of your own for a partner to solve.

Grade 9: Choose any number that is 10 less than or
10 more than a certain perfect square number. De-
scribe how you could estimate the square root of the
number you picked and actually share what your
estimate would be.
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Research Article

Intersections in Reasoning Within Science
and Mathematics

Ashley Pisesky, Janelle McFeetors and Mijung Kim

Elementary school classrooms are rich sites of
children’s mathematical and scientific thinking. As a
preservice teacher (Ashley Pisesky) and researchers
who have taught in schools (Janelle McFeetors and
Mijung Kim), we are privileged to watch and listen to
children’s excitement as they make sense of a new
mathematical idea or figure out a scientific way of
problem solving. Observing colleagues in classrooms,
teachers often plan in interdisciplinary ways knowing
that children’s
learning is more
meaningful when
they connect ideas.
With curricula
packed with con-
tent, integrating
content areas also
helps to ensure that
all outcomes are
addressed in a
school year. Teach-
ers and students do
not necessarily live
out artificial dis-
tinctions between
content areas in
their classrooms.

With the advent
of a STEM (science, technology, engineering and
mathematics) approach, more resources are available
for integrating science and mathematics. These re-
sources contain activities students find engaging.
However, a critical viewing reveals that much of the
early implementation of STEM results in activities that
prioritize one subject area over another where either
mathematics serves the scientific ideas with technical
skills or a mathematics idea is dressed up in a scientific
context. This results in a coordinate approach (Babb
et al 2016) being supported, rather than integration.
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Additionally, interdisciplinary teaching of science and
mathematics is not assumed in curricular documents
written for separate subject areas.

On one hand, teachers are balancing the expecta-
tions and realities of children’s learning. While on the
other hand, resources and curricula provide nominal
support for integration of science and mathematics.
We see an area with great potential for growth, given
thoughtful design of opportunities for children to ex-
perience synchronicity
1n thinking across mul-
tiple subject areas to
support integration. As
there are no boundar-
ies among disciplines
in everyday problems,
children as problem
solvers do not experi-
ence separation or dif-
ferences in mathemati-
cal and scientific
reasoning; that is, chil-
dren’s reasoning pro-
cesses intersect and
integrate across disci-
plines, seeking an-
swers and solutions to
problems.

‘We hoped research-based literature would help us
find intersections between mathematics and science
learning. Our main intention was to move beyond
tasks where mathematics and science coexist and to
examine in finer detail how children think within the
subject areas. As we reflected and discussed possible
intersections, reasoning arose as an interesting site to
explore. We framed our inquiry around the question:
To what extent is the process of reasoning a possible
intersection between mathematical thinking and
scientific thinking in elementary school classrooms?




Because of the vast quantity of studies depicting
children’s reasoning both in mathematical and in
scientific contexts in elementary school, we chose to
first pursue this inquiry by understanding current
research literature. The literature review would inform
our understanding of how reasoning is referred to in
mathematics and science in order to identify possible
intersections.

Reasoning as Characterized in
Curricula

To understand any intersections that may exist
between science and mathematics, we needed to know
how researchers were discussing reasoning in both
subjects independently. The Alberta program of stud-
ies is a good place to look for working definitions
regarding reasoning.

According to the mathematics program of studies,
“mathematical reasoning helps students think logi-
cally and make sense of mathematics’ (Alberta Edu-
cation 2016, 6). While the benefits of students using
reasoning are explicit, what defines reasoning is
ambiguous. Reasoning, rather, is characterized by the
actions students carry out in the process of reasoning
and problem solving. For example, “analyze observa-
tions, make and test generalizations from patterns . .
.. use a Jogical process to analyze a problem, reach
a conclusion and justify or defend that conclusion™
(2016, 6). Broad in nature, these actions could be
woven throughout all of the content strands as chil-
dren describe and support their mathematical
thinking.

A commonality between both
characterizations and emphases is that of
problem solving.

Similarly, the science program of studies has no
direct definition of reasoning, yet comparable lan-
guage describes the qualities of reasoning. For ex-
ample, the science “program provides a rich source
of topics for developing questions, problems, and
issues, that provide starting points for inquiry and
problem solving” (Alberta Education 1996, A.2). As
developing critical thinking skills is a main goal of
science education, the science program of studies
clearly emphasizes critical thinking with “evidence.”
The importance of evidence is shown in General
Learner Expectations as follows: “critical-minded-
ness in examining evidence and determining what the
evidence means” and “a willingness to use evidence

10

as the basis for their conclusions and actions”
(p B.24). The program of studies clearly emphasizes
critical thinking and evidence-based reasoning as part
of scientific thinking.

A commonality between both characterizations and
emphases is that of problem solving. In the problem-
solving process, children observe, collect data and
information, analyze, and generalize with and for pat-
terns. Interestingly, even though the science program
of studies provides a similar characterization as to the
definition of reasoning in the mathematics program of
studies, the term reasoning is never formally defined.
This might speak to some of the issues that arise when
disciplines use different subsets of languages that have
similar definitions.

Reflecting on the characterizations of reasoning
from the respective programs of studies only gave us
a general starting place. To continue in our inquiry on
reasoning as a possible intersection between scientific
thinking and mathematical thinking in children, we
needed to locate more finely nuanced descriptions of
reasoning. Framed by the curricular understandings of
reasoning, we undertook the following inquiry.

Inquiry Process

Much has been written about reasoning in both
mathematics education and science education. To
begin, we scanned a few seminal readings in both
mathematical thinking and reasoning (for example,
English 1997; Mason, Burton and Stacey 2010; Polya
1954) and scientific reasoning and argumentation (for
example, Erduran and Jimenez-Aleixandre 2007, Kuhn
2010; McNeill 2011; Osborne, Erduran and Simon
2004) to contextualize current research.

We then searched for current journal articles in
databases, such as JSTOR, EBSCOHost, ProQuest,
ERIC and the University of Alberta library catalogue.
The search terms, in combination with either mathe-
matics or science, included elementary, reasoning,
argumentation and proof. The list of articles was
substantial, and eventually searching with various
keywords did not produce any new articles beyond
what was already collected.

To collect a manageable group of readings in each
discipline, we delineated the bounds for searching
through the following selection criteria. Our selection
focused on journal articles and excluded conference
proceedings and books, as articles are usually the venue
through which researchers share their most current
findings. We looked for peer-reviewed reports of em-
pirical studies published in academic and professional
journals. To use the most recent research available, we
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used a date range of 2,000 to the present. In the end,
we used about 40 papers for this literature review.

We did the initial analysis by reading all the papers
to see how reasoning was defined and discussed
within each discipline to ascertain the range of ideas.
We found that researchers explained their understand-
ing of reasoning through various examples that pro-
vided insight into characterizations initially outlined
by them. We kept detailed notes on what type of
reasoning the researchers explored, how they defined
it, how they observed children developing reasoning
and noteworthy findings. Throughout the reading and
summary writing, prominent words began to emerge
and were used to categorize articles. For each cate-
gory, an overall analysis was written.

Major Themes of Mathematical
Reasoning

After reading about 20 articles focused on math-
ematical reasoning, we identified 10 general themes
regarding how researchers discuss reasoning in math-
ematics. These general themes can be sorted into two
broader categories: processes of reasoning and forms
of reasoning, depicted in Table 1.

Processe.s o Forms of Reasoning
Reasoning
Conjecturing Deductive
Justifying Inductive
Specializing _ Plausible
Problem solving By analogy and
metaphor
Creating proofs By contradiction

Table 1. Ten themes within two categories for
mathematical reasoning.

Processes of reasoning encompass the ways in
which children engage in acts of reasoning, also
described as the verbs of mathematical reasoning
(McFeetors and Palfy 2017). Conjecturing and justi-
fying are integral processes often explored in litera-
ture. Forms of reasoning refers to logical chains of
staternents and their structural aspects that are conven-
tions within mathematics leading to proofs. Interest-
ingly, Polya’s early work on deductive (demonstra-
tive) and plausible reasoning has maintained high
importance in recent literature. Rather than exploring
all of the themes below, we describe two themes from
each category that represent the best possibilities for
intersection between mathematical reasoning and
scientific reasoning in elementary school classrooms.
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Processes of Reasoning

Conjecturing can be defined as offering “a state-
ment which appears reasonable, but whose truth has
not been established” (Mason, Burton and Stacey
2010, 58). Often children will express a conjecture
based on a pattern that is emerging in their mathemati-
cal thinking, some initial sense they are making of a
mathematical problem akin to a guess or hunch. Shar-
ing a conjecture with others allows for investigation
that could lead to justification or modification, where
mathematical reasoning “ofien begins with explora-
tions, conjectures” (NCTM 2009, 4). As a specific
example for classrooms, Houssart and Sams (2008)
had upper elementary school children play Lines, a
game similar to Connect Four. One student pointed
out a good starting place and conjectured about the
value of the move, “because it’s right in the middle
and we could go up across, diagonal, loads of different
ways” (p 62). Even though many students were not
convinced initially, by the end of the sessions they
had tested the conjecture sufficiently to show that
they had a better chance of winning with a central
start. Interestingly, Lane and Harkness (2012) noted
that when students skip the process developing con-
jectures through exploring the problem context, they
are unable to justify solutions convincingly. These
examples demonstrate that it is important for children
to form initial conjectures, evaluate the conjectures
and continue to modify or offer new conjectures to
lead toward convincing solutions to mathematical
problems.

Justification is another key process in children’s
use of mathematical reasoning. In fact, many re-
searchers refer to reasoning interchangeably with
justification. They state, “mathematical reasoning . .
. involves justifying” (Thom 2011, 234} or define
reasoning as “the ability to justify choices and conclu-
sion” (Johnsson et al 2014, 20). Staples, Bartlo and
Thanheiser (2012, 448) see justification as “an argu-
ment that . . . uses . . . mathematical forms of reason-
ing,” while Mason, Burton and Stacey (2010) see it
as convineing yourself and others of why a conjecture
or soluticn works all the time. As a specific example
for in Grade 6 classrooms, Mueller and Maher (2009)
used tasks with Cuisenaire rods, which focused on
fractional relationships among the differing lengths.
The researchers elicited justifications from students
by asking, “How can you convince the whole class?”
(p 112). In cne instance, students defended their
answers of why a rod of length 9 did not have any
corresponding half lengths by lower and upper
bounds: “The yellow is a little bit more than a half,
and the purple is shorter than a half” (p 113). By
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contraction, “Here is not a rod that is half of the blue
rod because there are nine little white rods; you can’t
really divide that into a half, so you can’t really divide
by two because you get a decimal or remainder”
(p 113). This example demonstrates that elementary
school children are capable of justifying their thinking
and need their teachers’ support through questioning
to regularly express their reasoning in many ways.
Additionally, the way justifications are constructed
and expressed warrants more discussion in the fol-
lowing section.

Forms of Reasoning

Deductive reasoning is one of the defining forms
of mathematical reasoning, typically described as
being able to draw a conclusion from pre-established
facts (Reid 2002a). The prominence deductive reason-
ing plays in mathematics as a discipline is not surpris-
ing as it is the primary form of constructing proofs
(Flegas and Charalampos 2013; Reid and Zack 2009).
Moving beyond a broad categorization, Reid (2002b)
describes different types of deductive reasoning, such
as “simple one-step deductive reasoning . . . multistep
deductive reasoning . . . [and] hypothetical deductive
reasoning” (pp 235-36). While the first two types
refer to the complexity of chains of reasoning, the
last type signals making inferences from the hypoth-
eses generated during problem solving (Stylianides
and Stylianides 2008). Furthermore, Komatsu (2016)
emphasizes the importance of deductive thinking in
students by explaining, “deductive guessing can be
regarded as an authentic mathematical action because
... 1t [can] overcome counter-examples” (p 159).

...elementary school children are capable of
justifving their thinking and need their teachers’
support through questioning to regularly express

their reasoning in many ways.

Reasoning by counter-examples is not an exhaus-
tive approach to proving, so the shift in students’ use
of deductive guessing in the reported research showed
a shift in students’ invocation of reasoning within
problem solving. In other words, children show more
sophistication in their reasoning as they move beyond
using counter-examples to justify a conjecture toward
creating chains of reasoning using established facts.
The observable improvement in reasoning helps to
further the idea that deductive reasoning is an essen-
tial skill that students should be developing. As a
specific example for classrooms, Wanko (2009)
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introduced a variety of Japanese puzzles into his
classroom to help foster deductive reasoning. He
explains the value of using these puzzles in that “when
students learn to provide deductive arguments for
their puzzle-solving strategies, they are laying the
foundation for good mathematical practices™ (p 271).
This statement emphasizes the essential nature of
deductive reasoning in the mathematics classroom.
Puzzles, like Sudoku, require students to use given
information with completed cells and rules for place-
ments to fill in the missing cell values.

...children show more sophistication in their
reasoning as they move beyond using counter-
examples to justify a conjecture toward creating
chains of reasoning using established facts.

Plausible reasoning, as complementary to deduc-
tive reasoning, is important to solving mathematical
problems and is a component of reasoning in daily
life. Plausible reasoning (Polya 1954) is based on
explorations that do not follow a prescribed pathway,
is bound up with conjecturing through use of infer-
ences, acknowledges personal knowing, coincides
with mathematical thinking, and does not demand the
same rigour and aim of absolute certainty as in deduc-
tive reasoning. Leading to developing mathematical
ideas, plausible reasoning incorporates generalizing
through pattern-noticing within inductive reasoning
while relying on connections made to similar struc-
tures within analogic reasoning. Put in another way,
Polya (1954) states that “it is reasonable to try the
simplest case first” and how “even if we return even-
tually to a closer examination of more complex pos-
sibilities, the previous examination of the simplest
case may serve as a useful preparation” (p 194). The
following example further demonstrates this, wherein
Sumpter and Hedefalk (2015) analyzed preschool
children’s reasoning through play. When a young
child suggested measuring the height of a rock, the
children collectively offer reasoning based on infer-
ences. Forexample, “Yes, but the house is bigger than
the rock” (p 5). Or where a conclusion is offered based
on measuring as evidence, “It is bigger than me any-
way [walks and stands next to the rock and looks up,
using her own body as a measure]” (p 5). The informal
reasoning implied by plausible reasoning is a wonder-
ful starting place in the early years of elementary
school, where children can be asked to provide de-
fenses that are connected to their experiences and
reasonable to the problem-solving context.
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Major Themes of Science
Reasoning

Forms and Skills of Scientific Reasoning

Several prominent themes emerged from the lit-
erature on science reasoning, and we have selected
the most comprehensive descriptions and definitions.
One major theme is deductive reasoning, which is
also described as a means of reasoning in mathemat-
ics. Deduction, as a key skill for scientific reasoning
{Van der Graaf, Segers and Verhoeven 2015), 1s often
discussed with a hypothesis-based approach in sci-
ence. For instance, researchers emphasized hypothetico-
deductive reasoning whereby deduction is combined
in an overall process of reasoning alongside hypoth-
esizing (Chen and She 2015; Lawson 2008).

When students made a hypothesis, they were also
challenged fo give their reasoning and, where
appropriate, to provide evidence fo support their
statements, that is, deductive reasoning.

The process of hypothetico-deductive reasoning
in classrooms occurs when students make a hypoth-
esis based on their experiences and knowledge to an
unknown situation, deduce what would happen if their
hypothesis was correct, design a test based on the
deduced ideas and finally test it to verify or falsify it.
If it is false, they will make another hypothesis. Lei
et al (2009} explicitly states that “scientific reasoning
ability . . . focuses on . . . reasoning skills such as the
abilities to . . . formulate and test hypotheses™ (p 586).
The skills of scientific reasoning, such as hypothesiz-
ing and fair testing, are essential components of un-
derstanding scientific reasoning as an entirety, be-
cause they aid in describing the big picture of
scientific problem solving and knowledge develop-
ment. As a classroom example, Tytler and Peterson
(2003) asked students to hypothesize which whirly-
bird would fall and spin faster. The whirlybirds had
three different wingspans: short, medium and long.
When students made a hypothesis, they were also
challenged to give their reasoning and, where ap-
propriate, to provide evidence to support their state-
ments, that is, deductive reasoning. Deductive reason-
ing is also described as a reasoning skill that scientists
often engage in (Wasserman and Rossi 2015).

Inductive reasoning is used to describe and discuss
scientific reasoning and is often mentioned with refer-
ence to observed patterns. Lawson (2005) viewed it
as a primary component of scientific reasoning.

delta-K, Volume 55, Number 1, June 2018

Wasserman and Rossi (2015) explain the significance
of induction in scientific reasoning by describing how
“one of the primary modes of reasoning in science is
induction” (p 23). Wasserman and Rosi (2015) also
found that “science teachers . . . were more prone to
usfing] inductive methods of reasoning” (p 32).
Duschl (2003) further supports this by stating that
“scientific inquiry . . . [is] an inductive process.” A
classroom example is an electric conductor and indi-
cator activity. Students test various materials, such as
a wood stick, metal spoon, nail, plastic pen, paper,
rubber band and so on, in an electric circuit to deter-
mine that metal materials are conductors (induction).
This approach is common in hands-on science in-
quiry. This science concept through inductive reason-
ing often continues to develop with deductive reason-
ing when teachers provide everyday materials, such
as a key, a coin or a metal glass frame, and ask if the
items would pass an electric current or if wearing
rubber gloves would be safe during electricity repair.
These further questions will help develop students’
deductive reasoning (for example, the key is metal,
metal is a conductor, conductors pass electricity,
therefore, key passes electricity).

The collaboration of claims, evidence and
justification in argumentation empowers
students’ scientific reasoning.

Another key theme to explain science reasoning is
argumentation, which is a means through which
scientific reasoning is developed. For example, it is
seen as an essential aspect of “prompting scientific
reasoning” (Driver, Newton and Osborne 2,000;
Duschl and Osborne 2002; Roberts and Gott 2010).
Argumentation is used to develop and evaluate claims
based on data and evidence. When students encounter
conflicting claims, they need to search for evidence
to justify which claim is more convincing to reach an
agreement or conclusion. For instance, when students
propose two conflicting claims: (1) platypus is a
mammal, and (2) platypus is an amphibian, they need
to find sufficient evidence to justify their conclusion.
The collaboration of claims, evidence and justification
in argumentation empowers students” scientific rea-
soning (Osborne, Erduran and Simon 2004).

The Essence of Scientific Reasoning:
Evidence

In the process of scientific reasoning, linking
theory and evidence, that is, understanding the co-
variation between theory and evidence is critical
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(Kuhn and Pearsall 2,000). For instance, in hypothesis
testing, students use scientific data or information as
evidence to support or refute their hypothesis. In an
inductive approach of scientific experiments, a con-
clusion must be drawn from data collected, that is,
evidence-based data analysis. In the processes of
argumentation, a claim must be justified with evi-
dence to be persuasive and convincing. Thus,
“argument[ation] in the science classroom . . . can
help students develop science skills . . . [such as] us-
ing evidence to defend a point of view” (Thier 2010,
70). In any type of scientific reasoning and problem-
solving process, students are challenged to connect
their claims, explanations and conclusions to evidence
to make their ideas scientific, justifiable and, thus,
persuasive. So important is evidence in scientific
reasoning that Tytler and Peterson (2004, 98) state,
“A key aspect of scientific reasoning is the ability to
suggest and make judgments about evidence.” Mc-
Neill and Krajcik (2008) also explained the important
role of evidence in science: “When scientists explain
phenomena and construct new claims, they provide
evidence and reasons to justify them or to convince
other scientists of the validity of the claims” (p 121).
This description of the importance of evidence and
its role in science facilitates the concept that evidence-
based thinking in science is critical.

Scientific reasoning can be broadly defined as
intentional coordination of theory and evidence
(Mayer et al 2014, italics added). As science reason-
ing requires one’s intention, practice and skills to
coordinate theory (claim) and evidence (data) in
scientific explanation, for students to think and pro-
cess material from a truly scientific perspective, we
must provide the tools for this to become a reality.
Helping students to learn evidence-based means of
thinking will help to facilitate this into a reality. Hardy
et al (2010) discuss the concept of evidence-based
reasoning (EBR) and how it potentially “contribute[s]
to the development of individual students’ abilities
in scientific reasoning” (p 198). They categorized
evidence-based reasoning into three levels: (1) data-
based reasoning—students’ ideas (claims and state-
ments) are supported by a single property or observa-
tion, (2) evidence-based reasoning—students’ ideas
are supported by a contextualized relationship be-
tween two or more data or evidence, and (3) rule-
based reasoning—students’ ideas are supported by a
generalized relationship or principle (Hardy et al
2010). Evidence- and rule-based reasoning are higher
and more sophisticated levels of reasoning than data-
based reasoning in terms of evidence-claim evaluation
and knowledge generalization and application. An-
other notion discussed in the literature is that of
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scientific literacy, viewed in relation to evidence. For
example, Brown et al (2010, 124) state how “students
who are scientifically literate should be able to make
Judgments based on the evidence supporting or refut-
ing [an] assertion.” This only further assists in dem-
onstrating the critical nature of evidence-based think-
ing as it is viewed through this definition of scientific
literacy as an essential component of it. The concept
of scientific literacy is further backed by McNeill and
Krajcik (2008), who claim that “students need to be
able to critically read . . . by evaluating the evidence
and reasoning presented . . . [this] allows students to
make informed decisions” (p 121). That critical and
evidence-based thinking are integral components to
thinking scientifically is clearly a common theme
throughout the literature.

..for students to think and process material
Jrom a truly scientific perspective, we must
provide the tools for this to become a reality.

Discussion and Reflection

In elementary mathematics and science classrooms,
reasoning is an important foundation for students to
form a significant and thoughtful understanding of the
processes that underlie these subjects and to apply and
develop disciplinary content knowledge. For instance,
claims and hypotheses are made, and data and evidence
are evaluated as plausible or implausible based on
children’s current knowledge (Sadler and Zeidler
2005). When children’s current knowledge does not
support observed phenomena, such as discrepant events
or cognitively conflicting situations, they need more
plausible and fruitful knowledge to explain the phe-
nomena in the justification process where teachers can
expect conceptual change and development. Because
of this significance, it is essential to understand how
reasoning is understood within each discipline, as with
that knowledge we can begin to develop stronger Jinks
between the two subjects that can facilitate increasing
student understanding both in the individual subjects
and between both subjects.

Reasoning as it was discussed in the mathematics
literature primarily focused on the keywords that one
typically may conjure up when thinking about rea-
soning from a more standard perspective—terms,
definitions and examples of deductive, inductive and
plausible reasoning were common themes in the
realm of mathematics reasoning. Some of these key
words and definitions were also demonstrated within
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the literature on scientific reasoning, in particular,
deductive and inductive reasoning. In the discussion
of deductive reasoning in science, hypothesis is a
key idea whereby students’ hypothesis testing often
includes deductive reasoning. As a distinction within
the commonality of deductive reasoning is that in
mathematics constructing a proof is seen as the pur-
pose of deductive reasoning. From the literature, we
found conjecture in mathematics and hypothesis in
science seem to share some degree of commonality
where students make a claim based on their prior
experiences, observation and knowledge to explain
what is going to happen in an unknown situation.

...we can begin to develop stronger links
between the two subjects that can facilitate
increasing student understanding.

Interestingly, the prevalent theme of the topic of evi-
dence and the essential role that a variety of authors
viewed it to have in scientific reasoning, and how the
understanding of reasoning with an emphasis on
evidence was not prevalent in the literature on math-
ematics reasoning. However, although evidence was
not necessarily a common theme that arose in the
mathematics literature, other keywords were often
referenced, which have similar meaning to evidence,
such as justification through specific examples and
specializing to convince with a smaller problem. We
believe that even though the literature refers implic-
itly to the concept of evidence in the mathematics
literature, the idea of evidence may be a commonality
these two disciplines share about reasoning, and one
that deserves further exploration to benefit future
teachers and students.

Overall, commonalities of mathematical and scien-
tific reasoning lie in the area of observing, analyzing
and justifying in a problem-solving process. To under-
stand and solve the problem, children observe, collect
data (evidence) and analyze the observed data to come
up with answers. In mathematics classrooms, teachers
commonly use conjecturing and justification to explain
this problem-solving process, and in science class-
rooms, teachers use the terms making claims, seeking
evidence and justification. In this problem-solving
process, inductive, deductive, hypothetico-deductive
and plausible reasoning are complexly intertwined, yet
whichever reasoning students call on, their solutions
must be justified with evidence. Even though students’
mathematics and science reasoning share many com-
monalities, in literature review, they are explained with
different terms and language; thus, it seemed they were
separate cognitive skills in children’s thinking.
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Reflection

In this section, we share our reflections on children’s
reasoning in elementary classrooms based on our own
perspectives and experiences as a preservice teacher
(Pisesky) and teacher educators (McFeetors and Kim).

Ashley Pisesky

These findings have been very helpful to me as a
preservice teacher, and they would aid other elementary
school preservice and current teachers. For example,
the time-intensive lesson planning was a challenge
while completing my practicums. Since elementary
school generalist teachers are responsible for instruct-
ing about five subjects daily, lesson planning becomes
overwhelming; few explicit cross-curricular connec-
tions between the subjects are taught in postsecondary
preparation. Having more explicit connections specific
to the school subjects demonstrated that this kind of
preparation may have made lesson planning easier.
Some of the mathematics and science lessons may have
been linked together, using one lesson and one time
block to instruct both sets of content.

The focus should be on the processing that
Students are engaging in.

Alongside this, students would benefit from having
more of the subjects linked across the curriculum. I
was a strong believer of this throughout my practi-
cums, and I often looked for ways to link students’
learning. However, many of the links that I found
were more superficial in nature, such as how doing
writing in science class links both language arts and
science. Alternatively, linking content in subjects,
such as a learning outcome in mathematics and in
science, may also be viewed by some as more of an
artificial connection. Although it is good to point out
the two similarities and to reinforce one subject
through another, a fundamental missing link between
subjects at a deeper level in order to better understand
and facilitate student processing is currently a deficit
that should be included in preservice teacher training.
A prime example of how this could be better inte-
grated into preservice preparation is the research
gathered through this literature review. With STEM
being an increased focus in schools, both in the class-
room and in extracurricular activities, it is essential
that teachers know and understand the deeper mean-
ing as to why and how these subjects are related to
one another in order to better implement learning in
the classroom. From my experiences, a better under-
standing of how students engage in the process of
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reasoning in both subjects will help to foster greater
understanding in both. [ therefore believe that linking
the subjects of mathematics and science with students
in the elementary classroom is something that not
only could be but should be reasonably practised by
preservice and practising teachers.

One revelation from this process was when I dis-
cussed the intersections between science and mathe-
matics reasoning with my supervisors. Janelle and
Mijung mentioned that in science reasoning we discuss
the hypothesis-verification process to develop reason-
ing, but mathematics reasoning is developed through
the use of conjectures. They proceeded to explain that
conjectures and hypotheses essentially point to the
same phenomenon; however, they are each used in
their respective field. I think that this is something that
should change in the future, as we look toward creating
more cohesive and comprehensive learning opportuni-
ties for students. We should use both words inter-
changeably in both fields so that students do not get
left behind in the language of the topic. The focus
should be on the processing that students are engaging
in. If we allow this to be the focus of teaching and
learning, we will see increased student understanding
in both domains. We will reduce the disparity that exists
between students who excel in each domain but
struggle in the other. All of these are important effects
that students would benefit from.

Janelle McFeetors and Mijung Kim

Reasoning in general involves logic thinking.
When children encounter a puzzling question, they
try to find solutions by retrieving and reorganizing
their thoughts, experiences and knowledge. We educa-
tors want to support students in constructing reason-
able solutions developed through logical thinking
processes. Through various pedagogical strategies,
educators strive to enhance children’s thinking and
reasoning processes, which help them construct solu-
tions, which also develops knowledge application.
For instance, in mathematical problem solving, chil-
dren learn to conjecture, specialize, justify and create
proof, and in scientific problem solving, they learn
to evaluate and justify claims with evidence to draw
conclusions. In this process, children’s knowledge is
reflected, examined and developed to solve the current
problem. However, often the particular terminologies
for these cognitive actions are used in a way that teach
children to see reasoning as if they were different and
isolated within content areas. We seldom question
what children do differently during conjecturing in
mathematics class and Ayporhesizing in science class-
rooms. Children try to make sense of the current situ-
ation at hand (for example, a puzzle, question,
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discrepant event and so on) using their knowledge,
experiences and creativity to come up with a possible
explanation, which is conjecture in mathematics and
hypothesis in science. We acknowledge these termi-
nologies are unique in each disciplinary tradition,
thus need to be acknowledged and respected. Yet
when separately taught to preservice teachers and
further to children in classrooms, they could become
confusing and seemingly isolated cognitive processes.

Reasoning in general involves logic thinking.

In this study, we teacher educators looked at math-
ematics and science reasoning not from a subject
disciplinary lens but from the perspectives of a child
and a teacher who might not distinguish reasoning
processes in two different subject areas. We believe
there is a need for understanding how reasoning in
mathematics and science could be integrated and
taught, such as in STEM-oriented classrooms. In a
STEM approach, students are engaged in problem
solving, which requires integration of knowledge and
skills among different disciplines and the boundaries
of disciplines often disappear. Once the problems are
identified and goals are shared in the problem-solving
community, disciplinary traditions and knowledge
and reasoning skills are all complexly intertwined
and integrated in collective levels. Students create,
justify, evaluate and negotiate their ideas to reach the
best solutions to problems. Which mathematical
reasoning and scientific thinking do students use in
a STEM problem-solving process? One might find
this question difficult and not necessary as children’s
reasoning and problem-solving process are inter-
twined and integrated without the boundaries of
subjects, which motivated our interest in this study.

To illustrate, we offer a specific example of a
STEM approach, where students are challenged to
solve a problem, such as building a boat with material
and time constraints. The boat needs to meet with
certain criteria, such as (1) holding a certain weight,
and (2) reaching a certain point as fast as possible
when a fan is blowing. In this problem-solving situ-
ation, students must understand the relationship of
density, buoyancy, geometrical shapes, friction of
materials, measurement of distance and loading
strategy. To prove their design, they would test their
boat with a certain load and a fan blowing on water.
When the load gets heavier, they would conjecture
the maximum load before it sinks. In this problem
process, children’s reasoning is complexly inter-
twined with various types of reasoning. Thus, it is
neither possible nor meaningful to indicate
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mathematical and science reasoning separately. An
implication for classroom practice is that mathematics
and science content be addressed simultaneously
through intriguing problems for students, where
reasoning is elicited in their actions and discourse.
Rather than labelling these actions with discipline-
specific terminology, teachers can celebrate the un-
derstandings students develop as they offer tentative
explanations, explore the context and ultimately
justify their ideas. This is where we feel the gap exists
between theory of cognition and everyday practice.

During our reading and conversations, we ques-
tioned how we could develop more integrated ways of
teaching. We reflected on our own classrooms in our
teacher education program in subject-specific carricu-
lum courses and our own teaching at the university.
We recognized that it is also very isolated as we per-
petuate distinctions using different terms for similar
reasoning processes. This led us to examine the termi-
nologies of reasoning that we use in each discipline
and how we introduce them to preservice teachers. As
we realize that students in schools and citizens in ev-
eryday life integrate knowledge and skills without
disciplinary boundaries similar to a STEM approach,
it was worthwhile questioning how reasoning is dis-
cussed in research, curriculum and in our own classes
as an initiative of developing an integrated approach
for mathematics and science teaching.

As a result of this inquiry, we have more questions
and challenges as we start to reflect on our own class-
rooms at the university. The current teacher education
program has perpetuated the separation between sci-
ence and mathematics through its subject-based pro-
gram design. Also, as the specific terms of reasoning,
such as conjecture and hyporhesis, are the means of
communicating among educators and researchers
within the subject disciplines, they will be continuously
used in the communities of mathematics and science
education. As we realize the need for an integrated
approach in today’s classrooms, how we introduce
these terms without creating confusion and resistance
becomes a challenge. Creative and collective efforts
will be required in further conversations.
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Teaching ldeas

Leibniz’s Heuristic Derivation of the
Product Rule and Quotient Rule

Indy Lagu

The standard derivations of product rule and
quotient rule are algebraic and involve adding zero
in a clever way. These proofs are mathematically
correct, but not pedagogically illuminating. We
present Leibniz's heuristic derivation of product
rule. A heuristic derivation of quotient rule, based
on Leibniz’s idea, is also given. While not math-
ematically rigourous, we believe an approach based
on these ideas to be pedagogically superior.

Introduction

Letx =100 and y = 100,000. Then xy = 10 million.
Now let x; = 97 (3 per cent less than x) and y, =
101,000 (1 per cent more than y), and think about
the following question:

Is xy greater than xy,?

It turns out that x,y, = 9,797,000, so xy is greater.
In fact, xy is greater than x,y, by 2.03 per cent.

That relative difference, 2.03 per cent, is a bit
suspicious, and looks a lot like the sum of the rela-
tive difference in x (=3 per cent) and the relative
difference in y (1 per cent).

As it turns out, that coincidence has an explana-
tion, and that explanation gives us a heuristic proof
of the product rule and of the quotient rule. The
following is essentially Leibniz’s derivation of
product rule.
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Product Rule

Given two numbers, x and y, change x by Ax and
¥ by Ay. Now, the difference between the product of
the new x and y and the old x and y is

Alxy) = (x + Ax) (y + Ay) — xy,
and a routine calculation shows

Alxy) = yAx + xAy + (Ax)(Ay),

and hence
Axy) Ax Ay Ax Ay
i PN (v 8 R '
Xy X ¥ X ¥

Now if the relative changes in x and y are small,
the third term in equation (1) is negligible and we
have

M & By
Xy x y

In other words, the relative change in a product is
the sum of the relative changes in the factors.

Using this heuristic, the product rule is almost
immediate. For functions, the analogue of equation
(2) is

(2)

Ve _ 1L
fe) f g’
and multiplication by fg yields
(fg)'=rg+sg,

which is the product rule.
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Quotient Rule

Since the relative change in a product is the sum
of the relative changes in its factors, it stands to reason
that the relative change in a quotient is the difference
of the relative change in the numerator and denomina-
tor. In fact, this is true. We leave it to the reader to
verify that

Ax/y)_y A By
x/y y+ Ay X y+ Ay -’

Therefore, if the relative changes in x and y are small,
one obtains

Ax/y) Ax Ay
o - : (3)
x/y X v
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The continuous analogue of equation (3) is

which is equivalent to the quotient rule.

To be sure, our derivations (or should we say Leib-
niz’s derivations) are not mathematically rigourous.
We would argue the standard proofs presented in
calculus classes are not entirely rigourous eitHer, since
they rely on an intuitive understanding of how one
calculates limits, rather than definitions involving ¢
and 4. We believe Leibniz’s idea has greater pedagogi-
cal value.
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Backing Up and Moving Forward in
Fractional Understanding

Angela T Barlow, Alyson E Lischka,
James C Willingham and Kristin S Hartland

A well-crafted opening problem can provide preas-
sessment of students’ fraction knowledge and assist
feachers in determining next steps for instruction.

After watching a demonstration lesson that exposed
students’ misunderstandings regarding division of frac-
tions, a teacher shared this sentiment:

When I read a standard, I think about what that
standard says I have toteach and I find a way to teach
it. I don’t think about how far I need to back up.
(Pamela, a Grade 5 math teacher)

In a discussion of the lesson among colleagues, two
key ideas surfaced. First, standards such as those pre-
sented in the Common Core State Standards for Math-
ematics (CCSSM) (CCSSI 2010) “identify the end goal
of a unit of instruction that encompasses more than a
skill that may be taught in one or two lessons” (Barlow
and Harmon 2012, 500). Second, carefully crafted word
problems provide a means for identifying students’
misconceptions (Barlow 2010) and guide the teacher in
knowing how far to back up along the path of the learn-
ing trajectory. This process of backing up begins with
using responses to a word problem to identify categories
of students’ understandings in relation to the expecta-
tions of the standard and using this information to make
instructional decisions. In some instances, students will
provide evidence of meeting or exceeding lesson expec-
tations; instructional decisions, therefore, will need to
advance their thinking. Instructional decisions for other
students, who are working toward lesson expectations,
should help them connect prior knowledge to new con-
cepts. Students who are lacking fundamental under-
standings require instruction aimed at filling gaps in
prior knowledge. The purpose of this article 1s to dem-
onstrate this backing-up process—by examining catego-
ries of student work taken from a carefully crafted
problem—and suggesting instructional decisions.
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The Backing-Up Process

Use students’ responses to a carefully

crafted word problem to identify categories
of understandings and to make instructional
decisions.

I.

When students exceed expectations,
instructional decisions should advance
their thinking toward an identified end
goal. Build students’ understanding,
perhaps by using a different problem
context or by using numbers that are more
complicated.

. When students meet lesson expectations,

they are ready to begin exploring the new
concept. Guide group discussions to
attend to key aspects of the context to
allow students to move deeply into the
concept.

. When students are working toward

meeting lesson expectations,
instructional decisions should help them
connect their prior knowledge to new
concepts. Supply supportive tasks that
will prepare students.

. When students lack fundamental

understandings, aim instruction at filling
in gaps in students’ prior knowledge
before expecting them to work toward
the lesson expectations.




The Measuring Scoops Problem

To begin thinking about the backing-up process,
we present a problem used in a professional develop-
ment project that elicited students’ fraction under-
standings. The first author created the Measuring
Scoops problem using a problem-creation framework
(Barlow 2010) with a goal of engaging students in
interpreting the remainder of a division problem that
involved repeated subtraction of a fractional quantity.
The problem, which follows, is significant in terms
of CCSSM content standard 6.NS.1 (CCSSI 2010).

Chef Frederick is mixing ingredients to bake a
dessert. His recipe calls for 2 1/2 cups of sugar.
The only measuring scoop that Chef Frederick has
measures 1/3 cup. How many measuring scoops
of sugar will Chef Frederick need?

In thinking about this problem, several key features
emerged that we considered important in terms of its
ability to meet our instructional goal:

* Students are likely to be familiar with measuring
scoops and will relate to the context of the
problem.

* Measuring scoops represent different fractional
amounts and can support students in counting with
a fractional amount as the *“unit.”

* By using 2 1/2 and 1/3, students can represent the
problem in a variety of ways, including drawings
and manipulatives.

* The remainder of 1/2 can be identified visually,
supporting students in making sense of the remain-
der. More specifically, they can see that the remain-
der is half of what they are counting.

To solve this problem, we anticipated students
representing 2 1/2 cups with pictures or pattern
blocks. Recognizing that they need to know how
many scoops of size 1/3 cup are in 2 1/2 cups, students
would divide their cups into thirds (representing the
scoops) and then count the scoops or thirds. We ex-
pected a rich discussion regarding the remaining
partial scoop’s value. Is the remainder 1/2 or 1/67 We
anticipated encouraging students to think about what
they were counting to support making sense of this.

In our professional development project, we use
demonstration lessons as a means for enhancing
participants’ knowledge of content and instructional
strategies. During a demonstration lesson, one project
team member teaches a lesson while the project par-
ticipants observe. For this demonstration lesson, the
first author implemented the Measuring Scoops
problem in a participant’s fifth-grade class of 20
students. About 50 project participants observed the

22

lesson. Although the problem aligns with a standard
from the sixth-grade curriculum, we felt it was ap-
propriate for the fifth-grade class, given that the lesson
occurred near the end of the school year. In addition,
we were interested in the ideas brought by students
who had not yet been taught the standard, which
would likely not have been the case had we been in
a sixth-grade classroom.

Although the Measuring Scoops problem was
designed to support students in interpreting the re-
mainder of a division problem involving fractions,
the student work it generated supplied vital insights
into students’ understandings. This analysis of student
work led Pamela to express the sentiment shared at
the beginning of this article. Next, we will share this
student work and demonstrate how the problem sup-
ported project staff and participants in thinking about
the backing-up process.

Examining Student Work

Considering the purpose of the backing-up process,
we deliberately made the choice to engage students
in solving the Measuring Scoops problem even
though they had no prior instruction on interpreting
the remainder in fraction division. This allowed us to
preassess students’ understandings on the topic and
gauge their readiness to learn, which is the intent of
the backing-up process. Although previous student
experiences included working with models as well
as the algorithm for dividing fractions, we did not
expect to have students who would meet the expecta-
tion of interpreting the remainder in fraction division.
Doing so at this time would result in students exceed-
ing our expectations for this lesson. ldeally, we ex-
pected students to make sense of the context of the
problem, generate appropriate representations of the
quantities involved, and select a reasonable approach
to solve the problem. In reviewing students’ responses
to the problem, we found it useful to group the stu-
dents’ work into four categories:

1. Exceeding lesson expectations

2. Meeting lesson expectations

3. Working toward lesson expectations
4. Lacking fundamental understanding

We begin with an example of students who ex-
ceeded the lesson expectations and then move through
the remaining categories.

Exceeding Lesson Expectations

Although students had not received instruction on
the topic, we unexpectedly had a few students who
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were able to correctly interpret the remainder in the
Measuring Scoops problem (see Figure 1). These
students correctly modelled 2 1/2, separated it into
1/3 pieces (the scoops) and correctly counted 7 1/2
scoops. By correctly interpreting the remainder in
this way, students exceeded our expectations for the
lesson. We hypothesized, however, that the problem
context supported these students with interpreting the
remainder. Therefore, a teacher might offer these
students the opportunity to interpret the remainder in
a division problem in a different context, perhaps with
less simple numbers. In this way, students would be
able to engage in reasoning and recognizing patterns
and thus build understanding.

Meeting Lesson Expectations

In general, students who meet the lesson expectations
are ready to begin thinking about the new content con-
tained in the standard (that is, the interpretation of a
remainder). For the Measuring Scoops problem, stu-
dents who meet the lesson expectations should demon-
strate their ability to model fractions and use the fraction
models to solve a division problem. Students began by
drawing models for 2 1/2 and 1/3 (see Figure 2). Next,
they drew 2 1/2 again but this time divided the wholes
into thirds and Jabelled each third. Although they did
not label the remainder with 1/6 in the model, we see
on the right side of the poster that they used 1/6 in their
check as well as in their solution statement. In thinking

about this remainder piece, however, students did not
attend to the problem context or the unit being counted
(that is, thirds or scoops). As a result, they did not
present evidence of meeting the expectations of the
standard. They are ready, though, to begin thinking
about interpreting the remainder. A teacher might use
this example to facilitate a whole-class discussion re-
garding the meaning of the remainder for the Measuring
Scoops problem. Such questions as the following might
be useful in guiding this discussion.

* How can we deal with the fact that Chef Frederick
has only a 1/3 scoop if he needs 1/6 of a cup of
sugar?

* How can you report your solution in terms of one
unit?

* What are you counting?

Working Toward Lesson Expectations

In some instances, students who are working toward
lesson expectations will provide evidence of possessing
foundational understandings but an inability to connect
these to the problem context. Such students are not
ready to think about the new mathematics contained
in the standard but rather need support to be ready to
learn it. For the Measuring Scoops problem, students
must be able to model division of a whole number by
a unit fraction as well as division of another fraction
by the unit fraction. Figure 3 presents an example of

—
Figure 1. Students had not been

' instructed on interpreting remain-
ders. Nevertheless, some met lesson
expectations, exceeding what the
authors anticipated.

 Bar Nodel

Figure 2. Although this work shows students’ alterna-
tive interpretation of remainders and their readiness to
interpret remainders, failure to attend to the problem
context and the unit being counted show a lack of evi-
dence of meeting expectations of the standard.
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Figure 3. For the Measuring Scoops problem, stu-
dents must be able to model division of a whole num-
ber by a unit fraction as well as division of another
fraction by the unit fraction.
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this; students demonstrated 2 divided by 1/3 but
were unable to extend this to modelling 1/2
divided by 1/3. The statement on the right side
of the poster reads, “So far, Chef Frederick
needs 6/3, but we need to figure out the measure
for 1/2 in 1/3 (thirds).” This statement indicates
that students were attempting to think about how
many one-thirds are in one-half. However, as
they attempted to find their solutions, students
appeared to have gotten lost in their computa-
tions and models.

A teacher might ask questions concerning
what the students were attempting to count dur-
ing their fraction-by-fraction division or ques-
tions leading to a different model by which
students might make sense of the problem.
Follow-up tasks involving fraction-by-fraction
division on appropriately marked grids may help
these students progress in their thinking (Battista
2012) and eventually become ready to attend to
interpretation of the remainder in fraction
division.

Lacking Fundamental
Understanding

Most classrooms will inevitably have stu-
dents who lack fundamental understandings,
which prevents them from being able to mean-
ingfully engage in the intended topic. The ability
to accurately model fractions is fundamental to
modelling and solving division problems. On
the left side of Figure 4, students have correctly
modelled 2 1/2 and incorrectly modelled 1/3.
Interestingly, the sentence on the right asks,
“How can you make a third to a half?” indicating
that they recognize the goal of the problem (that
is, determining how many thirds are in 2 1/2).
Their inability to model thirds, however, seems
to be a stumbling block for beginning the solu-
tion process.

For these students, returning to basic under-
standing of fractions is essential. The introduc-
tion or reintroduction of manipulatives, such as
pattern blocks, and returning to visual modelling
of fractions can allow students entry into this
problem (Battista 2012). However, expecting
students to make sense of fraction operations,
such as those represented in the Measuring
Scoops problem, is unreasonable without first
addressing these fundamental gaps.
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Anticipating Roadblocks in
the Backing-Up Process

The goal for using the Measuring Scoops
problem was to preassess students’ readiness
for interpreting the remainder in fraction divi-
sion by eliciting and understanding students’
thinking. When examining student work in
this way, though, a “roadblock™ may some-
times be encountered if the work does not
clearly align with one of the previously de-
scribed categories. In these instances, addi-
tional questioning of the students is needed
to better understand their readiness for inter-
preting the remainder. To help the reader
anticipate potential roadblocks, we describe
two examples in which students’ work pro-
vided inconclusive evidence about students’
understandings or misunderstandings related
to the division of fractions, in general. In both
cases, students produced work that held the
potential for modelling division of fractions,
but to draw conclusions regarding their un-
derstanding of fraction division would require
100 many assumptions on our part.

Anticipated Roadblock One

In some instances, students get lost in their
work and lose sight of the problem goal. We
see this in Figure 5. Here, students began by
representing the problem with a bar model
twice. They correctly drew and labelled thirds
as well as sixths. In the process, though, they
seem to have forgotten that they were count-
ing thirds (for scoops). Instead, they began
“putting the thirds back together” and an-
nounced that their answer was 2 1/2. In re-
viewing this work, it was problematic for us
to determine what these students understood
about fraction division and the remainder,
making it difficult to categorize the work,

Anticipated Roadblock Two

A second roadblock involves students gen-
erating algorithmic statements using the num-
bers in the problem without considering the
problem context. In Figure 6, students appear
to have performed numerous calculations with
the numbers that have been extracted from the
problem. They began by subtracting 2 1/2
minus 1/3 in multiple ways. Then students
began repeatedly adding thirds, arriving at
2 1/3, for which they then drew a bar model.
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Figure 5. Sometimes students lose sight of the problem
goal. The authors had difficulty determining from stu-
dents’ work below what they understood about fraction
division and remainders.

Figure 6. This work focuses on calculations with ex-
tracted numbers but shows no evidence that students
considered the problem context.
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Although their calculations appear to be correct, they
have not provided evidence of ability to model division
with fractions and to begin thinking about the meaning
of the remainder. We could even hypothesize that these
students did not recognize the problem as one involving
division. However, the work alone does not clearly
indicate an appropriate categorization.

Backing Up as Formative
Assessment

This use of student work as formative assessment
and as a driving force for instruction supports both the
Teaching and Learning Principle and the Assessment
Principle described in Principles to Actions: Ensuring
Mathematical Success for All (NCTM 2014). Assess-
ing student work in this fashion allowed project par-
ticipants to see the reality of students’ understandings
of fraction-related concepts and to think about instruc-
tional strategies that would support student learning
within each category of student work (that is, exceeding
lesson expectations, meeting lesson expectations,
working toward lesson expectations and lacking fun-
damental understandings). We began by posing a
problem beyond students’ current knowledge that al-
lowed for multiple solution methods, provided op-
portunities to connect to prior knowledge and promoted
productive struggle. By doing so, we

embrace[d] a view of students’ struggles as oppor-
tunities for delving more deeply into understanding
the mathematical structure of problems and rela-
tionships among mathematical ideas, instead of
simply seeking correct solutions. (NCTM 2014, 48)

As project staff and participants considered stu-
dents’ work within each category, we acknowledged
that the final goal of understanding for all students
could be accomplished only through incremental
movement. Determining the instruction and interven-
tion needed to facilitate this movement is one of our
primary roles as mathematics teachers. This assessment-
driven process for making instructional decisions is
crucial in advancing our students’ understanding of
fractions. By starting with a carefully crafted problem,
we were able to identify student understandings and
misconceptions and make instructional choices by
which we could guide students to our goal.

Common Core Connections
! 3.NF.1
5.NFE.7
6.NS.1
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An Architecture Design Project: Building
Understanding

Sarah B Bush, Judith Albanese, Karen S Karp and Matthew Karp

Seventh-grade students investigate area, surface area,
volume, proportional thinking, number sense and
technology.

Middle school students need relevant, meaningful
contexts to apply emerging mathematical ideas. In
this project, through the context of an architecture
investigation, seventh-grade students engaged in
mathematics involving area, surface area, volume,
ratios and proportional thinking, number sense, and
technology integration. Students, working in mixed-
ability groups, were given an occupant scenario,
which they used to build a home designed to meet
the needs of their unique residents. After initial
drawings of plans followed by critiques from a

practising architect, they finalized designs and car-
ried out mathematical tasks related to their plans.
As a culminating event, student groups presented
their home plans to local stakeholders, including
peers, an architect who designed the school building,
the district’s mathematics curriculum specialist, and
teachers from the school, who provided valuable
feedback. Throughout the project, students com-
pleted a math log to record their mathematical
thinking. Our project was tested in two seventh-
grade classes taught by one of the authors.

This project aligns primarily to one cluster in the
seventh-grade geometry domain of the Common
Core State Standards for Mathematics (CCSSM),
which is to “solve real-life and mathematical
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problems involving angle measure, area, surface

area, and volume™ (CCSSI 2010, 7.G.6, 50). The

appendix (online) describes specific alignment to
both sixth- and seventhgrade content standards as
well as connections to solving real-world and math-
ematical problems in ways that connect to two
seventh-grade domains: ratios and proportional re-
lationships, and the number system. Additionally,
this project addresses two of the Common Core’s
eight Standards for Mathematical Practice (SMPs).

SMP 4, Model with mathematics, states that

“Mathematically proficient students can apply the

mathematics they know to solve problems arising

in everyday life, society, and the workplace” (p 7).

Students also accessed SMP 5, Use appropriate tools

strategically, employing technology to build their

architectural designs. Furthermore, NCTM’s Prin-
ciples to Actions: Ensuring Mathematical Success
for All describes eight high-leverage Mathematics

Teaching Practices that guide teachers to effectively

implement instruction. This activity provides an

example of Practice 1 and Practice 7:

* “Implement tasks that promote reasoning and
problem solving.” As students engage in this proj-
ect, which allows for a variety of solution strate-
gies, they must reason mathematically.

+ “Support productive struggle in learning mathe-
matics” (NCTM 2014, 10). Students authentically
wrestle with using design technology to create
home plans that are responsive to the needs of

Figure 1. Studenrs had 1o work within
these project constraiints.

Directions: The following is a list of con-
straints that your group needs to be aware of
when designing your home. Your design must
have the following:

¢ One story—no basement
* Between 2,000 square feet, +20 per cent
» At least 15 feet from the road |
* At least 15 feet from all property lines
« Front door
= Back door
» Kitchen
* Atleast | bathroom
| * Use standard conventional dimensions for
doorways, hallways, ceilings and so forth. |
+ A closet for each bedroom
I+ Do not consider electricity, heat and |
plumbing
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occupants as well as conforming to established

building constraints.

Because this transdisciplinary project was an
authentic convergence of design, art, aesthetics,
engineering, community planning and mathematics,
the teacher had to move between the realm of the
mathematics and other subjects to truly address
objectives from each field of study. Transdisciplinary
teaching supperts students in

exploring content areas by foregrounding a prob-
lem or issue using multiple inquiry processes,
which naturally connect the disciplines through
the problem to be solved. (Herro and Quigley
2016, 2)

You will notice that as a truly integrated project,
it is neither a mathematics project that touches on
some small aspect of engineering nor an art project
that touches on a trivial aspect of mathematics—it
is a blend. Therefore, in some sections of the work
described below, the focus will, for example, shift
to design. We have found it important in our work
that middle school students witness how learning
can truly cross over into multiple disciplines, as this
is what they will experience in the real world.

Introduction and Brainstorming

On the first day of this exploration, students
watched a video in which the architect on our author
team provided home-design constraints (see Figure
1). Some elements of community planning and
design were easily understood, but some required
more detail, such as the description of public versus
private space. To get students thinking, the architect
asked, “Where would be the ideal location to posi-
tion the bathroom in the home?”” and “What distance
from the front door of your house do you want to
make your bedroom?” When considering the con-
nections between interior and exterior spaces, he
asked students to reason about “Which actively used
rooms might have windows to look out into the
neighbourhood and “What would you want people
to see if they looked into your house from the street.”

Next, students were placed in groups and given
a unique occupant scenario card (see Figure 2) and
quiet time to individually brainstorm and create
initial conceptual plans for their homes (see Figure
3 for an example). At this point, students were not
yet focused on the precise dimensions of each room.
Day 1 concluded with students working in groups
to discuss the responsiveness of their individual
sketches to the hypothetical residents’ needs and to
work on questions in their math logs (see Figure 4).
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Figure 2. Each student group received a unique occupant
scenario card.

Scenario A: Your challenge is to design the ideal space for a
family of four. This family includes a mom and dad in their
40s, a daughter age 7, and a son age 9. They also have a pet
pig. Mom likes to do yoga, dad likes watching sports, the
daughter wants to be a scientist and the son loves to play
basketball. Their pet pig needs a place to stay cozy outside,
but the family would also like a designated space in the
house where the pig could stay.

Scenario B: Your challenge is to design the ideal space for
a newlywed couple. They have two cats and a cockatiel.
She needs an office space in the house, and he wants a man
cave. He also has a motorcycle.

Scenario C: Your challenge is to design the ideal space for
three elderly sisters. One sister has a walker, and one sister
loves to cook. They all think they are the “ruler of the
house™ and deserve the biggest space.

Scenario D: Your challenge is to design the ideal space for
three college students—two males and a female. The fe-
male wants her privacy. All three of them are avid road
bikers and have a combined five bikes and accessories.

Scenario E: Your challenge is to design the ideal space for
a family of three, soon to be four. The couple already has a
four-year-old boy and just found out they are expecting
another boy. They are very musically inclined, and they
want the four-year-old to learn how to play the piano.

Scenario F: Your challenge is to design the ideal space for
a couple who have grown children. Although they have
been empty nesters for the last five years, they recently
found out that their daughter and granddaughter, age 13,
are moving back in. The teenager is not excited about mov-
ing in with her grandparents,

Scenario G: Your challenge is to design the ideal space for
two brothers. One plays the drums, and the other is an exer-
cise enthusiast and has lots of equipment, including
weights. Both work out of the home with technology jobs
that require workspace and the ability to e-conference.

Scenario H: Your challenge is to design the ideal space for
a young couple with newborn twin girls. Both parents work
long hours, so the husband’s mom is moving in with them
to help out. The couple wants to make sure the husband’s
mom has a small kitchenette in or near her bedroom.

Scenario I: Your challenge is to design the ideal space for
a single man.
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In question 1, students tapped into em-
pathy in considering the occupants’
needs. Two student responses highlight
how the scenarios played a critical role
in their design decisions for the proposed
residents:

Our occupants had 5 bikes, so we
knew that we'd need a garage. Alse,
since the people are college students,
we inferred they would require study
space. The girl got her own room for
privacy, and we had to incorporate a
large living room for parties. Since there
are 3 people, they would probably need
a laundry room for all their clothes.

The occupant of the house needs
includes the man that lives there who
is handicapped and enjoys gardening.
This scenario influences our design
choices because we can’t use stairs
and there has to be a big backyard.

Question 2 required students to ex-
plore the mathematics as they thought
threugh such project constraints (see
Figure 1) as room dimensions and square
footage. Students were challenged by
how to handle the “extra inches” in the
calculations of square feet. When a mea-
sure was 18 ft 10 in by 23 ft 11 in, they
realized after discussion that finding the
area was made easier by converting those
measures to decimals. Students used the
Internet to find standard conventions for
such dimensions as length and width of
doors, width of a hallway and area of a
laundry room.

Creating SketchUp
Designs

For two days, student groups fine-
tuned their original paper-and-pencil
designs using SketchUp (2016) software
to simulate the authentic work of an ar-
chitect. Students reviewed several tutori-
als about SketchUp to help them under-
stand how to effectively use such features
as the dimension tool (find tutorials
under the SketchUp website’s Learn tab).
Groups’ SketchUp designs were based
on the best ideas from each individual
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sketch. At the end of these two days, [
student group designs were sent electroni- Figure 3. This sample student plan involved scenario G.
cally to the architect, who then provided
written feedback to strengthen their final ; i |
home designs (see Figure 5). SketchUp _{inj ; f
% B (;"’ae;m # 2
is free software that can be downloaded "
onto either Windows or Mac. Teachers |
may also wish to explore other free soft- | -
ware, including GeoGebra or Tinkercad
design software. Although creating the
group designs by using software that :
helps students visualize the house three ?
dimensionally has many advantages, this
project can be completed effectively with 3
group designs constructed using paper i
and pencil.

Although creating SketchUp designs
were a key part of this project, the math-
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ing. Therefore, students were also respon-

sible for completing questions 3—6 in their

math logs. Question 3 sparked the most

interesting discussions. Some groups had i

difficulty recalling the meaning of surface

area, which provided an opportunity to

review this key concept. For some groups,

we brought out a three-dimensional (3-D)

solid of a rectangular prism and asked .

students to imagine it as a bedroom:

“What parts of this figure would we need to paint if

we were painting the walls and ceiling?” and “How

could you determine how much paint you need?”

Although some students immediately wanted to use

the traditional algorithm for finding surface area,

instead, we asked students to consider “What makes

sense?” as highlighted in the following typical

discussion:

Teacher: What do you really need to paint in this
bedroom?

Studenr 1: Four walls and the ceiling.

Teacher: How is this different from finding the overall
surface area of a 3-D solid?

Student 2: We don’t need to paint the floor; we only
need to paint five sides total.

Teacher: Is there anything else we need to account
for?

Student 3: The door and windows.

Teacher: Good thinking; how could your group ac-
count for the fact that you aren’t painting the door
or windows?
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Student 1: We could find the area of this wall (the one
across from the wall with the door) and then sub-
tract the area of the door.

Some students also started to confuse surface area
and square footage. While calculating the surface
area of the bedrooms, students referred to the origi-
nal list of constraints and started to panic, thinking
that because their surface area was more than 2,000
square feet that they had exceeded the constraint of
2,000 square feet + 20 per cent for the house. Again,
using the 3-D solids as well as the classroom space
as examples, we held discussions about the differ-
ence between surface area (such as in question 3)
and square footage of a room or entire home.

As students continued to test and retest whether
their overall home design was between 2,000 square
feet + 20 per cent, we found it interesting how stu-
dents made sense of = 20 per cent. The conversation
below displays evidence of students’ mathematical
sense making:

Studenr 1: What is “+ 20 per cent”?

delta-K, Volume 55, Number 1, June 2018



Figure 4. Students worked on their Math Logs
throughout the project.

1.

1

i

1

1

1

Describe your consideration of occupant needs.
How did your scenario card influence your
design decisions?

What will be the dimensions of your actual
house? The total square footage?

Suppose you wanted to paint the walls and
ceiling of all the bedrooms. What is the surface
area of these spaces? Explain your thinking.

You may consider getting air conditioning and
base the size of the air conditioner on the
amount of space it must cool. What is the
volume of each room in your house?

Formulate a rationale on how and why your
home fits the needs of your occupants. What
particular features did you include as a response
to your scenario card?

As you work on your prototype in SketchUp,
how did you use the SketchUp tools? Describe
your thinking using mathematical words,
drawings, and symbols.

Who will be responsible for each part of the
presentation? What questions should you be
prepared to answer (e.g., consider your audience:
the architect, the principal, and so on)?

During your presentation, how will you explain
to the stakeholders the important mathematics
related to your design?

How did the feedback from the architect change
your thinking about your design? Be specific.

0. Architects often consider the surface area to
volume ratio of a house using the surface area of
the home exterior and the volume of the entire
house. What is this ratio for your group’s house?
Show all work for finding both the exterior
surface area and volume, as well as the ratio.

1. What ideas did you gain from being critiqued
by the stakeholders and fellow classmates?

2. Describe the challenges you faced adhering to
the constraints of the project.

3. What essential mathematics must architects
know to do their job?

4. If you were hiring an architect to design your
house, what mathematics questions would you
ask to determine if he or she was qualified for
the job?
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Teacher: It means it is acceptable to have 20 per
cent more or 20 per cent less than the 2,000
square feet.

Student I: How would I know how much that is?

Teacher: Good question. How would you figure
that out?

Student 2: Could we try 2,000 multiplied by
20/1007

Student 3: Oh, that would be 400 because 4 + 4 +
4+ 4+ 4 =20, so 20 per cent of 2,000 would
be 400.

Teacher: Interesting; so what range of square feet
could you have?

Student 3: 2,400.

Teacher: 1 agree that is the max.

Student 1: Oh, so you could have anywhere from
1,600 to 2,400 square feet.

Teacher: Let’s go back to the ideaof 4 +4 + 4 +
4 + 4 = 20, so 20 per cent of 2,000 would be
400.” Can you say more about your thinking
here?

Student 3: Out of 100 per cent, which is five 20 per
cents, so [ knew out of 20, there are five 4s. The
4s and the 20s would be the same thing as the
400 and 2,000. So 400 + 400 + 400 + 400 + 400
= 2,000.

Teacher: What do you call a relationship that is not
the sarne but that has the same scale (trying to link
their thinking to proportional relationships).

Student 2: This is like simplifying a fraction.

Student 3: When you take the fraction

400 _ 4
2,000 20

As students grappled with these various math-
ematical concepts, they were able to work
through question 3 (see Figure 6). As they moved
to the next question, students had less difficulty
finding the volume. As students worked on ques-
tion 5, they fine-tuned their previous ideas from
question 1. On question 6, students described
their selection and use of tools (see Figure 7),
which connected mathematics, art and engineer-
ing design concepts.

Preparing for Project
Culmination

Students spent two days completing these
tasks: addressing architect feedback to finalize
their home designs, responding to questions in
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their math logs and creating their presen-
tations. Architect feedback was in the
form of general considerations for design,
in every case resulting in students improv-
ing their home design through multiple
iterations. For example, one group re-
ceived feedback about their kitchen being
only about six feet wide. After we
prompted this group to get a yardstick and
measure six feet, they quickly realized |
that this measurement “won’t work be- |
cause you need enough space for coun-
ters, an oven and to walk through past
someone.” Architect feedback also fo-
cused on design and proportional thinking
(see Figure 8), causing students to recon-
sider and improve some of their previous
responses in their math logs. '
Once designs were finalized, groups ;
worked to complete questions 7-14 in
their math logs. Some questions were
designed to help organize students’ pre-
sentations, and other questions called for

Figure 5. The architect gave students feedback to
strengthen their final home designs.

students to summarize changes made —
from the architect’s feedback. Question
10 allowed us to formatively reassess
students’ understanding of surface area |
and volume; we found that as the week
progressed, students had gained a better
conceptual understanding of these ideas.

Finally, students created PowerPoint
presentations guided by a template (see
online) that included needed presentation
components.

Presentation Day with

Figure 6. The computation below is a sample student ‘
response to question 3. |

T B T4, 84+‘7f 77 Y18.614{p1 17x2)

Fovtyi s BR: 34

14 9l G302+ 16.804 123 54 240,890+ |

EMp BRIGL. 4821+ 42,45+ 71+

DrLGG +42 45+ 13 11 "29(:? 6\H2

'351"[1 2.8 >g-_’)+fg-f, 1Zz+19.54

08 +755.¢ +5].12119.52=4060.27 +*?

Final Reflections 2

On presentation day, group members set up stations
that were visited by peers, an architect who designed
the school’s building, the district’s mathematics cur-
riculum specialist and teachers from the building.
Groups were also given time to view classmates’
presentations, As they critiqued their peers’ work,
they completed feedback sheets that included “a plus
and a wish.” Student feedback showcased a new
understanding of architecture and included these
comments: “The kitchen is too long and skinny,” “I
would have the man cave separate from the living
room,” “They should have explained more how they
found the dimensions, etc,” and “More open space is
needed from kitchen to living room.”
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The stakeholders and teacher then evaluated stu-
dent presentations using a checklist aligned directly
to the assignment. During the presentations, we
found that students were able to clearly articulate
their mathematical understanding along with their
reasoning for their design decisions.

After the presentations concluded, the architect
gave feedback to help improve the overall designs.
He suggested that students could measure the dimen-
sions of their own home so that they could better
understand the typical ratio between the area of a
kitchen and a living room. Another suggestion was
to allow students to look at blueprints of a house to
deepen their understanding of scale and propoitions
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Figure 7. Question 6 answers connected mathematics, art
and engineering.
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Figure 8. Architect feedback helped students improve
previous math log responses.
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before using SketchUp. Following the
presentations, students reflected on what
they had learned from this project (sup-
ported by Math Log questions 11-14).
These culminating questions addressed
several take-aways, including the advan-
tages of continuously using feedback to
make iterative improvements to one’s de-
sign. To tie the work to the mathematics,
students were asked to articulate what
mathematics architects must know, ques-
tions 13 and 14 (see Table 1).

A Meaningful Context for
Integrating Technology

This Architecture Design Project pro-
vided a meaningful context for working
with area, surface area, volume, ratios and
proportional thinking, number sense and
the integration of technology. Students
were motivated and engaged, and they
greatly valued the video information and
feedback from a practising architect. The
practising architect on our author team
emphasized to students the importance of
being able to use SketchUp and other
technology tools as an important skill for
their future careers in the 21st century. In
addition to the focus on mathematics, this
transdisciplinary project incorporated key
elements of engineering design, art and
technology, and it offered an avenue for
the classroom teacher to showcase the
work of her students to multiple stakehold-
ers. We are hopeful that reading about this
project inspires other middle-grades teach-
ers to explore architecture and integrate
mathematics with other content areas in
support of authentic mathematics applica-
tions in concert with individuals working
in these professions.
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Table 1. Student responses to questions 13 and 14 focused
on the mathematics that architects must know ro do their
jobs.

13. What mathematics do | 14. What mathematics

architects need to questions would I ask
know to do their job an architect to deter-
well? mine whether he or
she should be hired
' for the job?
Ratio, area, surface area, ¢« What are the dimensions
volume, width, length, of the house?
height, thickness (of walls), |+ What is the volume of
dimensions and so on. each room?
* How would you scale the
house in a model?
The essential mathematics | * How do you find
architects must know how dimensions?
to do their job is how to * How do you find the
| find the square footage, surface area?
volume and making the ¢ How tall do doors need
rooms the right size for its to be?
occupants.
» Square foot How big do you think the
* Cubic foot master bathroom should be |
* Conversion between in relation to the master ;
measurements bedroom? '
* Ratios
They need to know stan- What square footage and
dard dimensions and the volume would meet the
height walls should be in standards of the area (plot
relation to people. of land) the house will be
built on? :
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Instruction and Learning Through
Formative Assessments

Teachers Can Use Rich Mathematical Tasks
to Measure Students’ Conceptual Understanding

Michael J Bossé, Kathleen Lynch-Davis,
Kwaku Adu-Gyamfi and Kayla Chandler

Assessment and instruction are interwoven in math-
ematically rich formative assessment tasks, so employing
these tasks in the classrooms is an exciting and time-
efficient opportunity. To provide a window into how these
tasks work in the classroom, this article analyzes sum-
maries of student work on such a task and considers
several students’ solution strategies to exhibit the useful-
ness of these tasks in assessment, learning and teaching
in the classroom. This article also provides some guid-
ance on implementing these tasks in the classroom,

The literature is replete with descriptions, uses and
effects of rich mathematical tasks. These tasks draw
on students’ prior understanding; create conceptual
connections among mathematical ideas; provide stu-
dents with the opportunity to engage in activities that
require them to attend to precision, use tools appropri-
ately, model with math and critique the reasoning of
others; provide interwoven assessment and learning
experiences; direct students’ attention to precise math-
ematical concepts rather than skills; engage students
to creatively investigate and communicate concepts;
and provide teachers with opportunities to assess stu-
dent understanding, misunderstandings and gaps in
knowledge (Arbaugh and Brown 20035; Boesen, Lith-
ner and Palm 2010; CCSSI 2010; Henningsen and
Stein 1997; Herbst 2003; Smith and Stein 1998).

It is commonly recognized that formative assess-
ments provide opportunities for teachers to assess
student understanding through “evidence of students’
reasoning and misconceptions to use in adjusting
instruction” (NCTM 2013, para 1). However, through
well-designed formative assessment tasks, students
can also learn the mathematics inherent in the task.
Thus, formative assessments through mathematically
rich tasks can have multifold effects of assessing
student understanding and misunderstandings and
discovering gaps in student understanding; providing
information through which teachers can adjust in-
struction; offering student feedback to support their
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own learning; and being an engaging task through
which the mathematics at hand can be encountered
and learned (Black and Wiliam 2009; Clark 2011;
Hobsen 1997; Long, Clark and Corchran 2,000;
NCTM 2013; Pryor and Crossouard 2008).

In concert, rich mathematical formative assess-
ments possess a number of recognizable characteris-
tics. They address conceptual understanding of pre-
cise mathematical concepts recognizable by both the
teacher and the student; assess student understanding
of particular mathematical concepts and also serve
as springboards through which the associated con-
cepts can be investigated and learned; can be gener-
ated to address any grade-appropriate mathematical
concept; can be differentiated quite easily to address
students of differing ability levels; often address
Krutetskii’s (1976) three processes of reversibility,
flexibility and generalizability; and are solvable
through multiple heuristics.

A Sample Task and Classroom
Context

The task shown in Figure 1 was designed to pin-
point student conceptual understandings and misun-
derstandings regarding constructing and comparing
function models (CCSS.Math.Content. HSF.LE.A.2)
(CCSS12010). While seemingly straightforward and
unambiguous, this rich task encompasses numerous
notions associated with the concept of polynomials,
including the definition of polynomial functions and
their continuous nature; the role of the leading coef-
ficient and the degree of a polynomial on the graph’s
extreme behaviours; the definitions of factors, linear
factors and a factored polynomial; the graphical ef-
fects of roots of odd and even multiplicity; and the
association of zeros, roots, factors and x-intercepts
between the polynomial function and its graph.
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Beginning with concepts from introductory algebra, this task
intersects precalculus through the generalized solution

), — K(.X = a)c;dd (x . b)mcn (.1' — C)crdd(x _ d)cw:n

where Ke R*and a, b, ¢, d e R.

This specific task addressed three of the basic processes
identified in Krutetskii’s (1976) model of mathematical
abilities (that is, reversibility, flexibility and generalizabil-
ity). It required that students reverse their thinking about
polynomials and factoring in a direction counter to what
they typically experienced during instruction; flexibly solve
aproblem in more than one way and understand more than
one solution; and generalize from specific cases to make
deductions from given or known facts.

|
Below is a truncated graph of a polynomial (All '
the behaviour near the x-axis is shown.) There
is no scale for the y-axis. Write the equation of
a polynomial function that would produce this
truncated graph.

1L
| b VIR
|

Figure 1. This is an example of a mathematically rich
formative assessment task.

This mathematically rich formative assessment task was
selected for a number of reasons. All students were from
the same high school class under the same teacher and had
previously investigated polynomial functions and graphical
and algebraic representations in their high school precalcu-
lus class. They had all experienced identical content, in-
structional practices and extended problem-solving chal-
lenges. The task served as a means through which student
knowledge, gaps and misunderstandings could be observed.
The classroom teacher assessed the task as both challenging
to most students and doable by all.

All students were given up to two hours to complete the
three tasks; most took less time (10 to 90 minutes), as they
were either able to solve the problem quickly or struggled
to persevere through the problem-solving process. Students
were primarily left alone to demonstrate what they knew
and to learn through the activity while the researchers ob-
served student work and assessed student understanding.
The findings and summaries are addressed below in two
parts: assessment and learning.

Assessment

The following are syntheses of narrative accounts of
students’ activity as they worked independently on the task.
These summaries abbreviate much fuller transcripts;
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omitted materials were deemed as not furthering the find-
ings. (See Bossé, Adu-Gyamfi and Chandler [2014] for a
more detailed description of the associated study.)

Student 1 holds a course grade of C. The teacher
believes that he will be able to do the task, albeit with
a struggle. Trying to create a correct graph, Student
I unsuccessfully uses trial and error, entering values
and polynomial functions into the calculator. He does
not know what “truncated graph” means and strug-
gles, unnecessarily, to predict the behaviour of the
graph above and below the x-axis. He claims that
polynomials are in the form x* + 2x + 3 and does not
understand “polynomial in factored form.” Through
trial and error, he unsuccessfully plugs numbers in
for a, b, c and 4 into

y=ax*+bx + cx+d.

He claims that a graph is the answer to a problem, not
the beginning point. After he is shown (x — a), (x — b),
(x = ¢) and (x = d) as factors, he is unsure how these
are connected to the graph. When he is told that

y=&-a)x - by(x - o)(x — dy’

represents a possible solution, he tries to rewrite it in
the form

pXt+gx" + .+ rx+s

and shows no understanding that the leading coeffi-
cient has to be positive. Throughout, he is continually
frustrated.

Although the teacher expected him to struggle some,
she expected him to do better. She was surprised that he
struggled with the vocabulary, linear factors and poly-
nomials and that she had not seen this before.

The remainder of the work of Student 1 (beyond the
summary provided) demonstrates that he perceives the
polynomial function and graph as mostly disjointed and
unconnected. He does not recognize zeros on the graph
and does not understand the corresponding (x — _ )
binomial in the factored form of the polynomial or
consider the far-left and far-right behaviour of the graph
in respect to either the degree of the polynomial or the
sign of the leading coefficient. He recognizes “polyno-
mial” only in the form y = px* + gx* + rx + 5. Altogether,
this student has significant gaps in his knowledge that
were revealed to the teacher through the implementation
of this task. The teacher recognizes that much effort
will be needed to bring him to satisfactory understand-
ing and that most concepts will need to be readdressed
in novel ways.
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Student 2 holds a course grade of C. The teacher
believes that this student will be quite successful
with the task. Student 2 writes down expressions

(% +2)x+ 19)x — 1)(x — 23),
(x + 2)x + 1’(x = D(x = 2)%,
and -3x* + =2x° + 2x + 3,

superficially analyzes them, and then attempts to
graph the function. She struggles as to whether a
and b should be represented by -@ and -b. She repeat-
edly attempts to graph polynomials entered in
general form and some in factored form. She rec-
ognizes that the roots are squared at a and ¢, but
does not know how to represent that condition in
factored form. She tries values for a, b, c and d in
polynomials of the form ax’ + ba? + ¢x + d. She
remembers that 4, b, c and d must be inside paren-
theses, but does not remember how to do this. She
claims her confusion is because they are variable
and not numbers. She struggles to determine if the
linear factors should be (x — @*) or (x ~ @)* and
decides on the example

(x+2)x +1)(x - D(x - 2%).

Her continued investigation (with numerous brief
pauses) is full of inquisitiveness and problem solv-
ing, without any semblance of frustration.

The teacher is relatively pleased with the stu-
dent’s work but is surprised by her lack of under-
standing linear factors, positive and negative roots,
and the position of the exponent.

Through this and additional work (beyond the tran-
scripts provided), Student 2 recognizes a number of as-
pects of the graph itself, including the far-left and far-right
behaviour of graphs of polynomial functions; the associa-
tion of zeros, roots, and x-intercepts between the graph
and the equation; and the nature and effects of roots of
odd and even multiplicity. However, the specific nature
of linear factors together with their multiplicities remains
an obvious gap in her knowledge; she is unsure if the
factors should be (x - a) - (x - b) or
(x + a) - (x + b), and she is confused regarding whether
the exponentiation should be inside or outside the pa-
rentheses. Notably, she attempts to map «, b, ¢ and d
from the graph to the equation without understanding
the interconnection of zeros and intercepts on a graph
and zeros and real roots of a function. While this student
has significant gaps in her knowledge, they are less so
than for Student 1, and the teacher comes to better un-
derstand precise concepts with which the student
struggles. Now the teacher recognizes the particular
concepts that need to be addressed to complete the stu-
dent’s understanding.
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Student 3 has an A+ average in the course. The teacher
expects that he will fully master all the concepts in these
tasks. Almost immediately, Student 3 recognizes that
the polynomial is of even degree (at least 6) with a posi-
tive leading coefficient. He claims that a, b, ¢ and d
represent the zeros of the function and writes

y=(x-a)x - bYx - c)x-d)?,
then rewrites the expression as

y=e (X - a)ndd(x . b)exen(x - C)odd(x _ d) even.
where ¢ > 0.

Student 3 has a strong understanding of mathemati-
cal concepts embedded in this task. He fluently under-
stands both representations and can communicate such
without effort. The context of the problem immediately
directs him to the structures that are most important in
both representations. Through observing this student
perform the task, the teacher recognizes that she has
not sufficiently challenged the student in respect to his
ability and current understanding. She decides to pro-
vide him additional mathematically rich tasks targeted
to additional concepts.

Assessment Summary

As seen in some summaries, the teacher was sur-
prised at the understanding, misunderstandings and
knowledge gaps that she was able to observe through
student work and communication on the task. Even
though these students had passed her previous tradi-
tional assessments on this topic, she was surprised by
the degree to which they struggled in general and on
which concepts in particular. Specifically, she was
pleased by the targeted way the task revealed individu-
alized precise concept understanding among the stu-
dents and prescribed similarly precise and differentiated
instruction to help each and all be successful.

Learning

The following excerpt describes Student 2’s
progress.

Approximately 45 minutes later, Student 2 realizes
that the polynomial has to be raised to an even power
to produce the correct left and right behaviour, but
she does not know how to use parentheses to ac-
complish this. She decides to graph

y=(x+=-3)x+-Dx-1x-3)

and other such cases. Through protracted trials, she
recognizes that

v=(x+3)x+Dx—-1D(x-3)

implies



y=(x—a)x - b)x - c)x —d).
After more investigation, she recognizes that the
graph reveals some single and some double roots;
struggles to know which are which; recognizes the
need to distinguish these through (x — &%) or
(x — b)*; writes

(x+ 2)x + D(x = D(x = 2)%

and after more thought and experimentation, re-
writes this into

(x — a)(x ~ bY(x - c)(x — d)
and finally to
(X — a)ndd(x i b)even(x _ ':.)ndd()r _ d)emn.

The teacher is pleased that the student learned
through only one task within one class period, since
after days spent previously covering the associated
mathematical topics in class the student had not
gained sufficient understanding.

This student received no assistance from the teacher
or the interviewer, but was given sufficient time to work
through the investigation. Fortunately, since she had
previously experienced time-intensive problem-solving
tasks, she was able to persevere through this task. The
progression from Student 2°s previous transeripts to this
transcript (over the total span of about 90 minutes)
demonstrates a growth from misunderstandings and
knowledge gaps to understanding most of the associated
concepts. Moreover, the concepts learned are now
strongly interconnected both within each representation
and between the two representations, rather than being
treated disjointedly. Altogether, the teacher was pleased
at the rapidity, efficiency and thoroughness of the stu-
dent’s learning and credited this success to the nature of
the mathematically rich task and the protracted time
allowed for its investigation.

Learning Summary

While Student 1°s extensive misunderstandings and
knowledge gaps significantly slowed his learning of the
concepts, extended transcripts reveal that he learned
many of the mathematical concepts, but at a slower pace
than Student 2. The teacher was pleased with the learning
of Student 1, but she stated that she believed that if a
simpler version of the task had been provided before
this one, the students would probably have done better
on both tasks. The teacher decided to create concept-
similar tasks that would scaffold to this type of example
for this student (for example, begin with quadratic func-
tions). Additionally, the teacher decided that she would
allow this student to work with another student on some
future tasks to simultaneously scaffold his learning and
diminish his frustration. Since Student 3 was already
familiar with most of the mathematical content
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associated with the task, the transcripts show little gain
in understanding. The teacher decided that she could
create parallel tasks (using transcendental functions) to
challenge this student and lead him to more advanced
concepts.

Implications for Instruction

As demonstrated above, the mathematically rich for-
mative assessment task served its dual purposes of assess-
ing student understanding, misunderstandings and
knowledge gaps while providing them with an effective
learning experience. As students responded to the task,
their understanding and connections of mathematical
concepts deepened. Through these tasks, teachers can
assess much more than whether or not students can answer
questions or perform mathematicat calculations; student
conceptual understanding of numerous embedded notions
can be assessed, and teachers can use that information to
plan further instruction.

Students with greater gaps in understanding tend to
learn much from rich mathematical tasks, albeit at a slower
pace than others. Initially, they balk at these unusual tasks
in which they are not given explicit direction on how to
complete the task or what the correct response may be.
However, as these tasks become more common, students
will warm to them. For these students, it may be best to
initially scaffold their experiences by using versions of
tasks that are differentiated for their specific needs before
employing more complex tasks. These students may need
to complete a greater number of these tasks than may their
classmates. Since these students are often more prone to
be frustrated in problem solving and have difficulty per-
severing in such, care must be taken to not break their
spirits. Thus, it is valuable to limit the duration of the tasks
initially and increase the duration of tasks as is tolerable.
Allowing students to work with others, rather than inde-
pendently, may also help them avoid being overly
frustrated.

Students who are comfortable with more advanced
mathematics should be given tasks that also meet their
needs. Most mathematically rich tasks are easily modified
to be deeper and more challenging. These students often
enjoy such tasks. Students can be given these tasks prior
to instruction on particular topics; they can learn through
these tasks, sometimes even independently of an instruc-
tor. Also, students can be asked to create and solve their
own rich mathematical tasks, leading to tremendous
learning experiences.

What to Expect in the Classroom

Mathematically rich formative assessment tasks may
seem more difficult initially than traditional classroom
instructional questions, particularly if they are seen as
unusual or unfamiliar. These tasks address or assess
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Selecting the Mathematical Tasks

more or less mathematically complex.

1. The following functions are equivalent, but in
different algebraic forms. What information
regarding the function is revealed or hidden in
each of the forms?

fx)=2x+3x+1
gxy=x2x+3)+1
h(x)=2x+Dx+ 1)
To make the task simpler: Provide options such
as showing the function is a quadratic; showing
its factors; revealing its roots; revealing its y-
intercept; showing that it is concave up.

2. Explain why the accompanying function and
graph are inconsistent.

=

_G-2P@+ 1)
T X+ 1)

fx)

To make the task simpler: Use polynomial
functions.

1

For any mathematical topic at any level, rich mathematics tasks are available. We provide additional
examples applicable to high school. For each example, a variation differentiates the problem to be either

3. For fix) = 2x + 3 and g(x) = (x — 3)/2, we find
that f{g(x)) = g(Ax)). Is it usually the case that
Agx)) = g(fix))? Explain why or why not.

To make the task more complex: Explain neces-
sary conditions for f{g(x)) = g(f(x)) to be true.

4. For  x+ = x+___, fill in the blanks
such that the equation has one solution; no
solution; an infinite set of solutions.

To make the task more complex: Create an
equation including a quadratic and a linear
function.

5. Without converting the graph below to an
equation, explain everything you can about the
graph and its respective function.

=

To make the task simpler: Use a polynomial
function.

precise mathematical concepts and cause students to
think more deeply about the mathematics at hand and
the interconnectedness among mathematical concepts
and representations. Although students may balk at
these tasks at first, many students quickly come to enjoy
the challenge and heartily participate in classroom
discussions.

Classroom time must be planned for students to
struggle with and learn through a mathematically rich
task. Combining formative assessment and instruction
focused on conceptual understanding can break the
cycle of skills-based instruction, assessment, follow-up
instruction and further assessment. Teachers must place
some trust in students as learners and communicate
high expectations to them. As students work through
these tasks, their conceptual understanding can grow
at an exceptional pace. When students show significant
misunderstanding or knowledge gaps, teachers can
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intervene with instruction directed at particular con-
cepts and scaffold understanding while not forfeiting
time globally addressing concepts that students may
have mastered.

There is a delicate balance between allowing stu-
dents to persevere through the problem-solving task
and providing them assistance before they become too
frustrated and shut down. Classroom teachers must
know their students well, adjust the task or the time
allotted for the task appropriately for individual stu-
dents and the class, and know when to intervene. We
recommend that they allow learning to happen organi-
cally and not provide hints too quickly; jumping in to
assist skews interpretations regarding what students
know or learn.

Most of these tasks are excellent fodder for collabora-
tive assessment and instruction. This practice elicits rich
communication and dialogue among students, giving
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teachers greater access to student thinking and giving
students access to greater learning. Teachers also enjoy
students’ robust mathematical dialogue.

The most obvious question for any teacher may now
be, “But I have 30 students in my classroom! How can
[ possibly do this?” First, no one educational practice—
even using mathematically rich tasks—is a panacea for
all student learning. These tasks should supplement,
and not completely replace, other instructional tech-
niques. (See sidebar, Selecting the Mathematical Tasks.)
Second, novel instructional techniques take time and
practice to master. Third, when initially using these
tasks, it may be beneficial to try them as either instruc-
tional or assessment tasks rather than integrating both.

We hope that this brief introduction to rich mathemati-
cal formative assessments will evoke interest in these
tasks and encourage teachers to try them in their class-
rooms. The authors have used these tasks with great re-
sults. We hope others see their worth and enjoy them also.
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Math Competitions

Alberta High School Mathematics
Competition 2016/17

Part 1

1. Ifitis 10:00 AM on a Tuesday, which day would it be 2016 hours later?

{a) Tuesday (b) Wednesday (¢) Thursday (d) Friday {e} Saturday
Solution:
Sinee 2016 = 32 » 9w ¥ = 12 x 7 2k, the answer is T0:00 AM on a Tuesday (1.2 weeks from the original day). The answer is

{a).

2. Ifx>0,x #1,and (log, x)* = log, x, then:
fa0<a<] Ml<x<? (c)2=sx<4 (dj4=sx<oo (e} the situation is impossible

Solution:
The equation can be written as (log, Sl logs x, and since x # 1, this equation is equivalent to Jog, « = D with the
sofition v = v2 € (1,2}, The answer is (h).

3. Aring of 10 grams is 60% gold and 40% silver. A jeweller wants to melt it down, add 2 grams of silver and add
enough gold to make it 70% gold. How many grams of gold should be added?

(a)4 {b)5 ()8 (dyo {e) more than 9

Sohation:
Last & be the grams of gold which should be added. Then
- f
Y S
10 +2+x
Soiving the equation one obtins x = 8.

Alternative solution: The original ring contains 4 g of silver and 6 g of gold, The new ring will contain 4+ 2 = 6 g of silver,
which must account for 30%, of the toral. Thus the new ring must weigh 6 « ii-; = 20 g, of which thevefore 20-10-2=8

miust be added gold. The answer is ich.
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. Aquadratic polynomial [ (x) = @x® + bx + ¢, where @, b and ¢ are integers, satisfics f(2) = 4and f(3) =9. The

number of such polynomials is:

{ao (b1 (€12 d)3 {e) more than 3

Solution:
Wsing the given condition we get da + 2h+ ¢ = 4,940+ 30 + ¢ = 9 from which. salving for b,c in terms of g, onw obtains
fr=350—al e =6la— 1), that is, infinitely many integer solutions. The answer is {el.

. Forany integer n, the expression n° + 35 +2 cannot assume the value

(a) O (h)y 2 (c) 110 (d) 375 (e} 420

Solution:
B S . S s S " i - T "
Since st 4 3+ 2 = {4 Tl 23 it must be even. Thus, 375 is not attainable. The other four numbers in the list can be

atained using n=-1, r =0, n =% und # = 19, respectively. The answer is {dl

. Two straight lines with nonzero x and y-intercepts have the following property: the x-intercept of the first

line equals the y-intercept of the second line, and the x-intercept of the second line equals the y-intercept
of the first line. If the slope of the first line is m, then the slope of the second line is

a) m {(b) —m (©) L (d) _,_;__ {e) none of these
m m
Solution:

Iis given that if (4,00 and (0,00 lie on the first line then (0, &7 and 15.0) lie on the second line. The slopes of the lines ane

then m = —lxg and —alb = 1m, respectively. The answer is fu),

. The angles of a triangle when measured in degrees are all prime numbers. The smallest possible size of the

largest angle is:

(a) 61° (b) 67° {c) 79° (d) 89° {e) the situation is impossible
Solution:

Let A= B 51 be the measures in degrees of the angles of AABC Since A+ B+ C = 180° ane of the angles should be even
and hence A = 27, On ihe otherhand, 178" = B~ (7 < 2C, henee > 897 Sinve B9 is prime, we can take B= ¢ =897, A =2°.

The answer is (d).

. How many three-digit numbers can be written after 523 to vield a six-digit number which is divisible by each

of 7, 8and 9¢
(al 0 (b 1 {c)2 (d)3 (e) 4

Solution:

Sinee 7, 8 and 9 are pairwise relatively prime, the six-digit number must be a multiple of 7 » 8 x 9 = 504, When 523999
is divided by 504, the remainder is 343, To ger a multiple of 304, we subtract 343 from 999 to obiain 656, This is one of
the answers, und we have 523656 = 7 < 8 = 9= 1039, We can get another answer by subtracting 504 from 656 (o obtain
152, and we have 323152 = 7 x 8 x4 » 1038, This subtraction cannot be repeated without reducing the difference below

-y

323000, Henve 636 and 132 are the only possible answers,

Alrernative Solution: The six digit number should have the form 30400 where 12 is a positive integer. The conditions of the
problem lead to the inequality 523100 < 5041 = 5323999 or equivalently 1038 < 1 < 1039, and hence # = 138 or 2 = 1039,
With these two values of #, one obtains two three-digit numbers having the requested properties. The answer is (¢l
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10.

1.

12.

. When x* + X7 + x

104 217 4 £ is divided by x* - I the remainder is

fa) x+2 (b) x+3 (c)2x+3 (d)3x+1 {e)3x+2
Solution:
The remainder must be a fitst degree polvnomial Ax 4 Band i Q{x} is the quotient then

P L Qi.r](.\'g =+ Ax+ B

Tor any real v Taking x = £1 in the above equation we obtain A+ B =5and -A+ B = | hence A= 2,B = 3 and thus the
remainder is 2x + 3. The answer is {cl.

Let D be an arbitrary point on the side BC of the equilateral triangle ABC. Points E and F arc on AB and AC
respectively so that DE L AB and DF . AC and E), F| are points on BC such that EF) L BC and FFy L BC.
If £, F) has length § then the Jength of BC is

2 4 3 iy
{a) 3 (b) 5 (c) 1 {d) 3 (e) v'3

Solution:
let BC = a. We have DE) = DEcos30° = 3_—,5 DEand DFy = DFeas30% = -‘vsj DE henee £\ Fy = ‘?-i (DE+DF). Onthe other
hand DE- AR+ DF- AC = 2Areal ABC1 thatis. a(DE+ DF) = 3 and hence DE+ DI = 232 Therefore, £, F) = 3. Since

]

EyFy = .], we must have a = 5. The answeris (a).

A box contains two red balls, two green balls and two vellow balls. If you randomly remove three balls from
the box without replacement, what is the probability that you have removed one of each colour?

1 2 1 4
o by = g o B (e) none of these
{a) 8 (b) 5 (c) 5 {d) S

Solution: i
There are a total of [‘j} = 20 possibilitics and only 8 are favourable. The requested probability is .;% ez ?"':— The answeris (h.

Let f : R — R be a function such xf(x) + (1 = x) f(~x) = x° + x + 1 for any real number x. The greatest real
number M for which f(x) = M for all real numbers x, is

3 5 7 9 11

e hy - b T st
(a) 1 (h) 5 {c) : (d) T (e) T
Solution:

If v is replaced by —x in the given equation then
—xfi-xi+ 1+ 0l = —x+ 1.

Using the given egquation and the one that is oblained above, one obtains by subtraction that fi-x1 = flx)+2x, so

A L)+ (e X0 FTx) # 220 = 3%+ v+ ] and thus

L " — . Ia= 11
flxi=x"+x+1=2x{1-xI=3x" -x+1=3|y——-| +—
. & 12

and hence f(x} = %i, K= % then we get j“} = }{;,'ﬂw answer is (el
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13, In aschool's math club, the number of different 3-person committees thar could be formed containing two

gitls and one boy is 2016 more than the number of different 3- person commirtees containing rtwo boys and
one girl. The number of girls in the club is:

(a} 1 (h) 63 (c) 64 (d) 2016 (c) not uniquely determined

Sohluation:
et s, ndenaote the number of girls and respectively hovs in the club. The condition of the problem s

g wy o . . B ool oo
wE | | = 2006 e== annin — 1) = 25 2016 = 63 0 B = 27 BT xS

T

Let b = G, 1) be the greatest common divisor of s, 0. Since & is a divisor of we,n,m =0, then & will be a divisor of
2532 v 7w mnim - ) henee K 11,24 A = 1 the only convenient solutions are g = 64,17 = 1 and we = 84,0 = 63,
otherwise m = 61, which is not possible. Wk = 2 then = 2nn,0 = Zny with iuy,mpd = 1Toand mgmlmg —ml = 8=
9x 7. No ronvenient integer values for 17y, ¢ van be found in this case. Simitarly. it & =4 then s = Anip. i = do with
{5, 100 = 1, and e equation can be simplified to oy s - e} = 9> 7, which does not have integer solutions.
Alternative Solution: The solutions of the equation #ring - nj = 2% « 37 % 7 van be found using another approuch, First
one van rernark by AGM tnequality that

QUB2 = el - Y S g e

et i r.-J':’ i

henee mt = 16128 and thus w2 = 26, On the other hend i 22 > 64 then
Bl -6 == e — nl e G RiGE — )
hence
G35 nBd -0 e (n-Nn—-63)>0
and thus 1 > 463, which is not possible sinve nintm — 71 = 63- 64

We conclude that s € 128,32,36,42,48,56,63, 641 The enly convenlent value is ni = 61 which gives the equation ni6d —
= 63 and hence p = 1o = 63,

The answer is (o},

o « 37 37 T
. The product of all real numbers x that are solutions of the equation vV x*+ x+ Vad + x+3=31s

(a) 26 {b) —-24 (c)4 (dj 20 (e) 26

Solution: )
The funciion i = v

+a+ 1,06 B isincreasing hence S0 = ¢t e== f{11= 1 that leads 10 the conclusion that the
real soluions of the given equation and v2 + x+3 = 3 arg the same. The solutions of the last equation are just the
selutions of the quadratic equation 2% + ¥ = 24 = 0. for which the product of the solutions is - 24.

Altersative Solufion: Ted v 3 0% + 0 + 3 then the given equation can be written as
3 4 s s ;
=Gy a2V e (=30 431+ 0= = pad

and then x7 + 1 - 24 = 0. The answer is thi,
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15. The area of the trapezoid ABCD with AB || CD, AD L AB and AB =3CD is equal to 4 . A circle inside the
trapezoid is tangent to all of its sides. The radius of the circle is

A 3 /3 /3 |
(a) }—5~E (b} }; (c) 1’; (d) 32— (e) none of these
Solution:
D

|
"y f i
i ™
ris 14 X
| 8 j
L.. = = ,‘-..J_..-:. SR o :}.‘;
! Ty ¥ B

Using the netations from the above diagram and the conditions from the problem one obtains:

MHr+w)=rdy &= yajy+2r

and

s+ =arf+ {irepi=lrsu))” e ap= 7,

Hence .
3
R F2rl=0" shes P =

and consequently y = 3r. On the other hand the area of the rrapezoid ABCD is 4, thus

r+xtr+pir=4.

Substituting for x = £ and y=3rwegetr = 5:,—4 The answer is {d).

16. A quadrilateral is called convex if its diagonals intersect inside the quadrilateral. A convex quadrilateral has
side lengths 3, 3, 4, 4 not necessarily in this order, and its area is a positive integer. The number of non-
congruent convex quadrilaterals having these properties is:

(a)y 12 {b) 24 (c) 28 {d) 35 (e) none of these

Solution:

{1} Assume that the sides of the quadrilateral are of lengths 3.4.3.4. in this order. The quadrilateral is a parallelogram
(soit is convex) . Let a € 10, § | be the measure in radians of an angle of the parallelogram and § its area. Then we have

S=]2sina == sing = -

falon

Since U< sina = 1 there are twelve convenient integral values of S, namely 1,2,- 12, and thus twelve distinet values of
a. Therefore we get twelve non-congruent parallelogramms with area a positive integer.

1ii) Assunie that the sides of the quadrilateral are of lengihs 4,4.3.3, in this order. Let o be the measure in radians of
the angle between two sides of lengths 4 and 3. The quadrilateral is convex il a € (7] with sinf§ = 3-3: Note the the
lower limit 3 for the angle a occurs when the sides of length 3 are buth on the same line and hence, the quadrilateral
degenerates to an isosceles wriangle of sides 4,1.6.
Asabove, one obtainssine = 1, If o € [ .7 there are 12 integer values for § for which we get twelve distiner values for a
and hence one oblains twelve non-congruent quadrilaterals. If a € [f. 3,) then sinfi <sina <1 &= % <sing <1 <=
VB3 < § < 12. There are four integer values for § in 163,121 and thus four distinet values for a € {3, 333 such that sina =
TE for which one obiains four non-congruent conves quadrilaterals. The nuisber of cequested conves quadrilaterals is
12+12+4=28.

delta-K, Volume 55, Number 1, June 2018 45




Alieenative Approcch: The largest paratfelogram of sides in the order 3,431 is clearly the rectangle fas it has largest
altitude) of area 12, and so other parallelograms in this famity can have areas 1 to 11, Similacly the quadrilaterals with
sides in the order 4.4.3.3 are all composed of two congruent iriangles with twa of the sides heing 4 and 3, with wea at
mast 6, so the largest such quadrilateral will also have area 12, As the angle between the sides 4 and 3 becomes greater
than 90%, we get 11 more convex quadrilaterals of area 1 1o 11. When this angle is less than 90%, we stay convex as long as
the two sides of Tength 3 de notalign, which happens when the quadrilateral becomes an isosceles triangle of sides 4,46
of arca 463 < 8. Thus we gel four more conves quadrilaterals of arcus 89,10 and 11 as well, for a towl of 28. The answer
is {1

Part 2

Problem 1
Suppose for some real numbers x, v and z the following equation holds:

2x2 4 P4 2 = 2x(y+ 2).
Prove we must have x = y = z.

Solution:
Rewriting the equation gives (x— 112 + (x — 2i% = 0 implying v = yand v = z.

. s . e . . . "o Wy 2 A
Alrernative Solution: The given equation can be rewritten as 207 - 2y + 200+ (y" + 271 = 0, aud hence

BB G SR -BYE ] Yok -2
K oy i L T D S S el Gl el b s,

9 2

’ 2 3 2yl
Since y must be real, iy - 217 < 0which means y = 2, and then v= S = 1,

Problem 2

Twe robots R2 and D2 arce at a point O on anisland. R2 can travel at a maximum 2 km/hr and D2 at a maximum
of I kin/hr. There are two treasures located on the island, and whichever robot gets to each treasure first gets to
keep i1 (if both robots reach a treasure at the same time, neither one can keep itj. One treasure is located at a point
Prwhich is 1 km west of O. Suppose that the second treasure is located at a point X which is somewhere on the
straight line through P and O (but not at ). Find all such points X so that R2 can gel both treasures, no matter
what D2 does.

Solution:
Using Cartesiap coordinates, we put O = (0,01 = (=1,0 and X = {x.0] for some real number x £ 0, The treasure located at
point P will be denoted P2, and similarly for the treasure located at X, First note that if x < 0, then R2 can travel west ina straight
line and get both treasures, one after the other, befare D2, Now suppose that x> 0.

(a3 R2 Travels west at a meaxinnum speed to pick wp P and then returms east 1o piek wp X, it veeds »1»1'%,“1 & “L::-“ hours. D2
has ne chance to get Phence it should travel east for at least x hours and wy o pick up X1 3—5-‘ < xorequivalenthy x » 2, R2
will get both treasures,

;i b 7 : : s Sty
thy U R2 ravels vast at a waximum speed to pick up X and then rvetrnys west to get P, it needs a 223380 = 2221

5~ = === hours. D2
should rravel west to pick up £, for which it needs at k-ast one hour. 1f ‘*:“j'—] < 1 orequivalemly x < _'{ R2 will get both treastires.

werifae li‘ .2] there Is no winning strategy for R2. This is equivalent to showing that always 1)2 can prevent R2 getting both
treasures. Here is D2 stratogy: antil R2 gels one treasure, 12 micees so Hhat its pusttéon is always on the other side of the paint
) froure R2's position, bubat half the distance fron O that R2 s Onee R2 gets one of the treasures, RY is at Jeast twice as far from
the other treasure than D2; then D2 heads straight o the other treasure and gews there belore B2,

Hx=Zarv= E 42 can prevent A2 to get both treasures by using the saune strategy as above. In this case both robots reach
nne treasure at the same time. so neither one can keep it

From (a).th! and (¢! we conclude that R2 has strategies ta get bath treasures no matter what 122 does if and only if x €
f~00. U0, §) U200l
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Problem 3

One or more pieces of clothing arc hanging on a clothesline. Each piece of clothing is held up by either 1, 2 or
3 clothespins, Let a; denote the number of clothespins holding up the first piece of clathing, a; the number of
clothespins holding up the second piece of clothing, and so forth. You want to remove all the clothing from the

line, obeying the following rules:
(i) you musi remove the clothing in the order that they are hanging on the line;
{ii) you must remave either 2, 3 or 4 clothespins at a time, no more, no less;

(iii) all the pins holding up a piece of clothing must be removed at the same time.

Find all sequences a;,4y,..., 4, of any length for which all the clothing can be removed from the line,

Solution:
We claim that the clothing can be removed for all sequences evcept for 1, 131, 13131, and so on; that is, the exceptional se-
quences are of the form

Ayelizafy= BB 80,

where the 1's and 3% alternate, starting and ending with 1. Call such asequence a bad sequence.

oy, oy =1.3.1,3,....1.3, 1 then in vour first step you are forced 1o remove the first two pleces, using 1 and 3 pins
respectively, because you cannot remove just wiie pin and cannot semove 5 pins at a time. This continues right 1o the end, il}
there Is only one pin left. which you cannot remove. Thus all the bad sequences result in clothing left on the line.

Now we prove that any non-bad sequence gy, an ... ay can be removed. Of course the 1-digit sequence 1{which is bad)
cannot be removed, while the non-bad sequences 2 and 3 can be. We proceed by induction, Choose 4 non-bad sequence
ay. b, ..., dy of I's, Zs and 3%, and suppose that all shorter non-bad sequences can be removed.

I ap = 2 or 3, and the sequence az,d3,..., 4, s not bad, then we remove a; by itsell, and the remaining sequence can be
removed by induction. If @) = 2 or 3, and the remaining sequence ap,a3,....qy is bad, then we ramove a, and az = 1 iwhich
add up to 3 or 41, and the remaining sequence as.....ay 15 not bad so can be removed by induction.

[fa; = 1.and the sequence @3.ay, ..., 4, is not bad, then we remove o} and @y (which add up 1o 2, 3 or 4). and the remaining
sequence can be removed by induction. )t a; = 1 and the sequence . aq,....a, 15 bad, and ap = 1 or 2, then we remove @, az
and az = 1 (which add up 1 3 0r 4) , and the remaining sequence can by removed by induction. Finally, if @ = 1 and the
SPUENCE @3.A1,... Ay 18 bad, and ay =3, then the sequence ay.az, ..., 4, 18 in fact bad, which is a contradiction,
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Problem 4
ABCD is a convex quadrilateral such that S BAC = 15°, ZCAD = 30°, ZADB =90° and £ BDC = 45°. Find JACBE.

Solution:

] AR = a2 AAFEB is similar o ACED thus e }-;5) and hence

let AD = a, then DB = o, D = % BF = u{! - ol 48 - 4
V3 yv.3 i
%

DC=a CIn ABDC, by using cosine law we get

5 £ 3
; . e a dB24yE) /
BeZ = DR+ DCE —2DB - DCeosas” = o + 2 " = R e 2

thus BC = av2, which leads to £ ABC is isusceles, hence ZBC A= JBAC = 157,

Problem 5
Find the minimum value of |x + 4y + 73| where x, y, z are non-equal integers satisfying the equation

(x-yily-2llz-x)=x+4y+7z.

Solutiom:
if an integer m is o mudtiple of 3 lot us write n = &3, I 1.y, 2 have different remainders when they are divided by 3, then
XE 34y, ¥ e A3 2= 3+ g where Ty .t = 10,120 One obtains that A 4y + T2 = 3+ 1y + m + 1y = #3 while
(= yHy= 2z~ x) = LA3+7 = M3+ 70 w0334 Ty = ryd = A3 00 = ralrg = rydr - 0 # .43 which is a contradiction,
Therefore al least Two rernainders are equal and hence

Bx— pip—HaE— ) s 3+ dyr 72 e Lo+ 2l &= 3+t
Since two of the remainders ave equal, 3iim + 72 + ry if and onbe if all three remainders are equal. Therefore
2THx — Py ~ ST~ X) omme 2TLNAHA 04+ 72,

Take &= v+ 3a, y = 54 3band v+ 4y + Tz = 27k whoere o, b L are integers. $Since a, v 2 are distinet, one obtains hat none
af the integers a.b or a + B is cqual to 0. I3y using these notations, the given equation (o~ yily - 2o — sl =a+4y+ Tz canbe
written as —abla + Bl = & Ivis clear that sk 2 2. The value ki = 2 coudd be obtained if we ake o = 1,b = 1. for which we get
a=0.y= -3 and 2= -6. We conclude that the minimum value of tx + 4y + 728 27 -2 = 54,

48 delta-K, Volume 55, Number 1, June 2018



Calgary Junior High School Mathematics
Competition 2016/17

Part 1

Al If vou place one die on a table. you can see five faces of it (the front, back, left, right il

and top). If you stack two dice on a table, then the number of visible faces is nine.
In a stack of three dice. the number of visible faces is thirteen, and so on. How many
dice do you need to stack on a table (in a single stack) so that the number of visible

25

faces is 1017

A2 What is the perimeter (in cm) of the following figure? a“

28
8 cm

6 cm s

: G : i : ; A3
A3 The integer 5 has the property that it is prime and one more than it (i.e.. 6) is twice

a prime (6 = 2 x 3). The next integer with this property is 13. since 13 is prime and
one more than it (i.e., 14) is twice a prime (14 = 2 x 7). What is the next integer
after 13 with this property?

37

A4 Srosh can jog at 10 km per hour in sunny weather and at 6 km per hour in rainy it

weather. She jogs 20 km in 3 hours. How much time {(in hours) during her run was
it raining?

pal—
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A5 A number is multiplied by % and % is then added. The result is divided by —g— and

finally the original number is subtracted. What is the answer?

A6 In the game of pickleball. the winner scores 9 points while the loser gets between 0
and 8 points (inclusive). Ruby plays 6 games and gets a total of 50 points. What is
the smallest possible number of games she won?

A7 Mary is 24 years old. She is twice as old as Ann was when Mary was as old as Ann
is now. How old is Ann?

AR A belt runs tightly round three pulleys. each of diameter 40 cm The centre of the
top pulley is 60 cm vertically above the centre of the second pulley. which is 80 cm
horizontally from the centre of the rightmost one.

What is the total length in cm of the belt?

£

60,

/—;\ 80cnm. é
o —-—-}- -—— - @
N S

Solution. The straight portions of the belt have lengths 60cm.. 80cm.. and (by
Pythagoras’s thcorem) 100cm. The curved portions comprise the circumference of
one of the pulleys. length 40w em. Total 240 + 407 = 40(6 + ) = 365.663706... cm.

|

A9 Rahat has a jar with ten red balls. ten blue balls. and ten yellow balls. He picks
one ball at random and puts it in his pocket. Then he picks anotlier ball at random
from the remaining 29 balls in the jar. What is the probability that the two balls
Rahat selected have different colour?

| 1
!
AB
2
A7
18
AR
40(6 + )
or 365.6
\ A9
20/29
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Part 2

Bl m the game Worm. Alice and Bob alternately connect pairs of adjacent dots on

the shown grid with either a vertical line or a horizontal line. Subsequent segments
must start where the previous one ended and end at a dot not used before, forming
a worm. The player who cannot continue to build the worm (without it intersecting
itsclf) loses.
For example. if Alice’s first move is al  a2. Bob may then continue with either a2
- a3 or a2 — b2. Suppose Bob plays a2 — b2. and Alice then plays b2 — ¢2, followed
by Bob playing ¢2 — cl. Then Alice will win with the move ¢l - bl since Bob has
no remaining moves to continue building the wormni.

The Grid Sample Game: Alice wins

If Alice plays first. can she always win if she plays well enough? If so. how?

Solution. Alice can guarantee a win if she plays well enough. For example, Alice
could first play a2 — al, and Bob is then forced to play al - bl. Alice then plays bl
- ¢l forcing Bob to play ¢l — ¢2. Alice then plays ¢2 — ¢3 forcing Bob to play ¢3 -
b3. Alice then wins with either b3 — b2 or b3 - a3.

Other solutions are possible but may require case work.
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B2 we say that a 2 by 5 rectangle fits nicely into a 9 by 9 square if the rectangle occupies
exactly ten of the little squares in the 9 by 9 square.

The diagram on the right shows the 9 by 9 square with two non-overlapping rectan-
gles nicely placed in it.

(a) How many 2 by 5 rectangles can vou fit nicely into a 9 by 9 square without
overlapping? The more rectangles you succeed in fitting into the square. the better
your score will be,

Solution. The maximum number of rectangles that can nicely fit into a 9 by 9
square is eight. One such configuration is shown below.

(b) Show how to fit some 2 by 5 rectangles nicely into a 9 by 9 square so that no
further 2 by 5 rectangles can be fit nicely into the 9 by 9 square. The fewer rectangles
you use. the better your score will be.

Solution. The minimum number is three (one can justify why two is not possible
by considering the cases of two horizontal rectangles. two vertical rectangles or one
horizontal and one vertical rectangle. then analyzing the empty space left over). One
solution demonstrating that three is possible is shown below.
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B3 (a) Write 2017 as a sum of two squares of positive integers.

Solution. One solution is 2017 = 81 + 1936 = 9 + 442 (in fact. it can be shown
that this solution is unique).

In order to reduce trial and error. consider the following observations:

e Since 2017 is odd. one square must be odd. the other even.
e Odd squares end in 1. 5 or 9; even squares in 0. 4 or 6. Therefore the two

squares must end in 1 and 6.

e An exploration of numbers then gives the answer. Alternatively. one can notice
that odd squares are 1 more than a multiple of 8 and since 2017 is one more
than a multiple of 16. the squares must be of the form (4z)? and (8y & 1)2.

e Thus. (4x)% 4 (8y £1)% = 2017 implying 2% + 4y? £ y = 126. Then z and y are
of the same parity. both odd. or both even with y singly even.

Alternatively, one could compute a table of squares. subtract each from 2017 and
check if the result is a square number.

n® | 2017 — n check

1 2016 not a square
4 2013 not a square
9 2008 | not a square
6 2001 not a square
25 1992 not a sguare
36 1981 not a square
49 1968 not a square
64 1953 not a square
81 1936 | is a square

|

=l

©C 00~ O U i W3 N~ 3

(b) Write 2017 as a difference of two squares of positive integers.

Solution. One solution is 2017 = 10092 — 10087 (in fact. it can be shown that this
solution is unique). One method to deduce this is as follows.

2017 = 2017 x 1
= (1009 + 1008) x (1009 — 1008)
= 1009% — 10082

B4 Greg and Joey decide to race each other on an 800 metre track. Since Joey is faster
than Greg. the two decided to give Greg a head start. In the first race. Greg was
given a 20 metre head start. however. Joey still won and finished 2 seconds earlier
than Greg. In the sccond race. Greg was given a 38 metre head start. and this time
Greg won and finished 1 second ahead of Joey. Assuming both Greg and Joey ran at
uniform speeds in both races. determine the speeds (in metres per second) of both
runners.
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B5

54

Solution. The answer is that Greg runs at 6 metres per second and Jocy runs at
6.25 metres per second.

Solution 1. Suppose Joey ran 800 metres in ¢ seconds. Then Greg ran 780 metres
in t + 2 seconds and 762 metres in ¢ — 1 seconds. Since Greg ran at uniform speed
in both races (by assumption). we have

780 762

t+2 i-1

Cross-multiplying gives 780(t—1) = 762(¢+2). thus. ¢ = 128. This implies that Joey
runs at 800/128 = 6.25 metres per second. and Greg runs at 780/130 = 6 metres
per second.

Solution 2. Suppose Greg runs at x metres per second. Then Greg finished the
first race in 780/x seconds and the second race in 762/r seconds. Joey finished the
first race in Trﬂ — 2 seconds and the second race in % + 1 seconds. By assumption.
Jocy ran at uniform specd in both races. and since he ran 800 metres in cach race
he must have finished both races in the same amount of time. Thus.

780 762

— D=,
x ;7

This imnplies, 780 = 762 + 3z. hence. x = 6.

Thus, Greg finished the first race in 130 seconds and the second race in 127 seconds.
This implies that it takes Joey 128 seconds to run 800 metres. that is. Joey runs at
6.25 metres per second.

Every day Tom puts on his socks. shoes. shirt. and pants. Of course he has to put
his left sock on before his left shoe. and his right sock before his right shoc. He also
must put on his pants before he puts on either shoe. Otherwise he can put these six
articles on in any order. In how many orders can he do this?

Solution. Suppose that Tom puts his socks and shoes on in the order (sock. shoe.
sock. shoe). There are only two ways to do this. namely Tom starts off with either
his left sock or his right sock. and then he has no choice for the other three items.
Then e must put his pants on either before he puts on the first sock or immediately
after. so he has two choices for when he puts on his pants. This gives 2 x 2 = 4 ways
to put on everything but his shirt in this case.

Suppose instead that Tom puts his socks and shoes on in the order (sock. sock. shoe.
shoe). He again has two choices for which sock he puts on first. and this time he also
has two choices for which shoe he puts on first. so he has 2 x 2 = 4 ways to put on
his socks and shoes in this case. He can put on his pants either before the first sock.
or between the two socks. or immediately after the second sock. so he has 3 choices
for when to put on his pants. Thus he has 4 x 3 = 12 wayvs to put on everything but
his shirt in this case.

Thus Tom has 4 + 12 = 16 ways to put on evervthing but his shirt. He can put on
his shirt at any time. so he has 6 choices for that (before the first sock. after the last
shoe, or anywhere in between). So the total number of ways he can put on all six
items is 16 x 6 = 96.
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B6 A straight line is drawn across the equilateral triangle ABC of side-length 9. cutting
the sides AB and AC at points F' and E. as shown. What is the length of CD?

A
A
g A
.5 f': N
/ X
i S
F \NDO
S
7 \\\.\ \\,
/ \\ \\
.
P R
5 ¥
/r: Ny
# \ e
3 B,
B L .98 . ¥ i
e D

Solution. Let G, H and I be the feet of the perpendiculars from A. F and E.
respectively onto BC.

A
-
AN
E I'r" i \'\,
1" ¥ \\ 6
e
5 \
/ - \,
ot \\ \‘
’,r' ) \\\ Y
G/l ) | \\E\\_b:
./I i \.\\
/'" l \-», e
4 I N T
/ A
g \ Y
B | .
H G i W D

Then BG = %BC = %. Triangles BHF and BGA are similar triangles, thus.

BH _BF BH 6

BG BA | 92 9

implying BH = 3. Finally, ID = HI = . thus. BD = 12 implying CD = 3.
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Edmonton Junior High School
Mathematics Competition 2016/17

Part 1

1. A 4-digit number uses each of the digits 3, 4, 5, and 6 exactly once. If the digits are placed randomly, what is the
probability that the 4-digit number is a multiple of 6?

1 % 2 1 5

A - B. = . = D = E.=

6 3 3 2 6
Answer: D
Solution:

There are 4 x 3 x 2 x 1 = 24 ways to write a 4-digital number. The 4-digital number is already divisible by 3
regardless of the positions of the digits. To be divisible by 6, the number must end with either a 4 or a 6. There

are 3 x 2 x 1 = 6 ways to write the first three digits. This gives the probability of %i_*: - %

2. Two analog clocks run at the correct rate of speed. Both clocks show the correct time
when itis 9:45pM  However, as the hands on one clock run forward, the hands on the
other clock run backward, When will both clocks next show the same time?

A. 4:15AM B. 3:45AM C. 3:.45pMm D. 4:15pm E. 9:45AM

Answer: B
Solution:

Since the two clocks run at the same speed, the two clocks would display the same time exactly 6 hours later.
This gives 3:45 PM.

3. Cellphone company Apple has no monthly fee but charges:

e Local calls at $0.10/min, plus

e Long Distance calls at $0.50/min, plus

e Text Messages at $0.20/text beyond 75 texts, plus
e Data at $10/GB past 3 GB.

Cellphone company Banana charges $125/month for unlimited usage.

Jaime’s typical use per month is:

e Local calls: 500 minutes, plus

e Long Distance calls: 10 minutes, plus
e Text Messages: 250

e Data: 5 GB
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Based on Jaime’s usage, which statement is true?

A. Jaime saves less than $200/year using company Apple.
B. Jaime saves more than $200/year using company Apple.
C. Jaime saves less than $200/year using company Banana.
D. Jaime saves more than $200/year using company Banana.
E. Both companies would charge Jaime the same amount.
Answer: A
Solution:

Using Jaime’s data usage, we have 500(0.1) + 10(0.5) + 0.2(250 — 75) + 10(5—-3) = 50 +5+35+ 20 =
$110. Each year, Jaime saves 12(125 — 110) = $180 using company Apple.

4. It will take me 2% of 8 hours to finish folding my laundry. It will take me 55% of 20 minutes to unload the
dishwasher. Which task will take me longer to complete, and by how many more seconds?

A. Folding laundry by 84 seconds.
B. Folding laundry by 54 seconds.
C. Unloading the dishwasher by 84 seconds.
D. Unloading the dishwasher by 54 seconds.
E. Both tasks take the same amount of time.
Answer: C
Solution:

Folding laundry requires 0.02(8)(60)(60) = 576 seconds. Unloading the dishwasher requires 0.55(20)(60) = 660
seconds. Unloading takes longer by 660 — 576 = 84 seconds.

5. [Istarted a game with an even number of points, and played 3 rounds. In the first round, 1 lost half of my
points, In the second round, I won back twice the number of points that I had started the game with. I ended
the third round with half the number of points that I had started that round with. I ended the game with 15
points. Which describes how the number of points I ended the game with compares to the number of points I
started the game with?

A. Tended the game with half the points that I started the game with.
B. 1ended the game with double the points that I started the game with.
C. TIended the game with 3 more points than what 1 started the game with.
D. 1ended the game with 3 less points than what 1 started the game with.
E. Iended the game with the same number of points that I started the game with.
Answer: C
Solution:
Start of round Win or lose End of round
2n
2n n n
n 4n 5n
5n 2.5n 2.5n=15

Start of the game = 12 points. Therefore, Jaime earns 3 more points than the start of the game.
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6. Given that the formula for the Volume of a Sphere is: V= G) nr?

A cube has the same height as the diameter of a sphere. The Surface Area of the i N
cube is 216 cm?®. Rounded to the nearest whole cm?’, how much larger is the volume 5 i
of the cube compared to the volume of the sphere? i !
A. 96 B. 103 C. 108 D. 127 E. 216 " L T
P
Answer: B
Solution:

The length of one side of the cube is f% =6cm.

The difference in volume is (6 X 6 X 6) — g(n)(33) = 103cm?

7. A package contains 4 chocolate, 3 vanilla and 3 lemon cupcakes. How many chocolate cupcakes,
represented by x, must be added to the package so that it will contain 60% chocolate cupcakes?

Which of the following equations could be used to solve this problem?

A x-10 60 x+10 60 x _ 0.6 x
T ox—4 100 T ox+4 100 " x+10 1
x+4 60 %
D. = — E. — = x+10
x+10 100 0.6
Answer: D
Solution:

The total number of chocolate cupcakes would increase by 4 while the total number of cupcakes also increases
number of chocolate cupcakes _ x+4

60 . ;
= — gives the correct expression.

by 4. The proportional statement rotal mumber of cupetkes — x P10 =

Part 2

8. Each person in a room shook hands once with each other person in the room. If the total number of
handshakes was less than 1000, then what is the most number of people that could have been in the room?

Solution:

Total number of handshakes is best dealt with using the series (n — 1)+ (n-2)+(n-3)+ ... +3+ 2+ [ where
n is the number of people in the group. For example, if n = 5 people, there would be 4 + 3 + 2 + 1 handshakes in

total. Pairing the front and back each time yield a sum of n. There are exactly %1 pairs giving a sum of n (E;—I)

-1

Solving the inequality n (T) < 1000, we have n =45,
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9. The sum of two rational numbers is 1. Amy add the larger number to the square of the smaller number.
Beth add the smaller number to the square of the larger number. What is the difference of the two values?

Solution:

Let the larger of the number be n and the smaller number be (1-n7).

We have (n+ (1 —n)?) — (n? +(1—n))=(n-}—1—2n-I~n2)—(n2 +(1-n))=0.

10. Although Jen has no savings, she wants to earn enough money in 4 months to buy a puppy. On the first
month, Jen earns half of the total cost. On the second month, Jen earns one-third of the amount she still

needs. On the third month, she earns $80. After 3 months, she has earned 75% of the total cost of the puppy.

How much money must Jen earn in the fourth month to have enough to buy the puppy?
Solution:
Let n be the cost of a puppy

We have the equation% = §+ g + 80. Solving for 5 yields p = 960. Jen needs to earn i X 960 = $240

11. Xiang’s age is 10 less than the sum of Yvonne’s age and Zoe’s age. The ratio of Xiang’s age to Yvonne’s

age is 3:2. Zoe is 2 years older than Yvonne. What is the sum of the ages of the three people 4 years from

now?

Solution:

Let Y be Yvonne’s current age. It follows that x = 373’ andz=y+2.

Solving the equation%y =y+(y+2)—10,wehave y=16, x=24 and x = 18. In 4 years, we have 20 + 28
22 =170.

+

12. What is the sum of the interior areas, 10 Fhm o o o e et e
the nearest unit?, of the letters used to S3 SPa ot o EadSCiadan g craSthE Zases

» - s ® * B &4 W & 8 % 4 9 € ¢ 3 W 94" e

spell the word “MATH"? =% < el =s . . J

- LI B - 4 B ¥ @ L] * - L] -

Solution: : p S ERE e = =i
M=21,A=T=18,H=22 - *avv L] » e ® . . . .
The total area = 79 unit?® ..._: e e e
" . e Wiy e e w e % a B % & % 8. ® 8 T V & & & % 9N
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13. What is the area, in square centimeters, of an isosceles trapezoid, given the following clues?

e lts perimeter is 64 cm
e FLach of the 2 congruent sides is 10 cm
e The difference in the lengths of the parallel sides is 12 cm

a
Solving the two equations ¢ + b+ 20 =64 and b — @ = 12, we have a = 16 and b = 28.
10" 4= V107 =67 = 8. The area is 220 — 176 cm?
b

Part 3

14. Mary divides by 5 each number from 1 to 2017, inclusive. She then adds together all the remainders she
gets. Find the sum Mary obtains.

Solution:

When we divide the number 1, 2, 3, ..., 2017 by 5, the remainders have a repeating pattern: 1, 2, 3,4, 0, 1, 2, 3, 4,
0. 1,2

The pattern 1, 2, 3, 4, 0 repeats 403 times and ends with 1, 2. The sum is 403(10) + 1 + 2 = 4033.

15. How many 4 digit palindromes are divisible by 77?

Solution:

A 4 digit palindrome has the form abba = a(1001) + b(110). Since 7|1001, we need 7|110b. This is possible when
b =0 or 7. Since there is no restriction on a except @ # 0, we have 9 choices for a and 2 choices for &. In total, there
are 9 x 2 = 18 such numbers.

16. Nickels, dimes and quarters are to be used to make exactly $1.00. At least one of each 25¢ | 10¢ [ 5¢
type of coin must be used. In how many different ways can this be done if an even number ] 5 1
of coins must be used?

1 4 |7

Solution: 1 6 3

2 2 6

Using a table of values to organize the number of coins, we have 6 ways to make $1.00 using 3 2 5

even number of coins. 3 5 ]
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17. A girl and a boy play the game Rock, Paper, Scissors ten times, where rock beats scissors, scissors beat
paper and papers beat rock. The boy uses rock three times, scissors six times and paper once. The girl uses
rock twice, scissors four times and paper four times. None of the ten games is a tie. How many games has
the boy won?

Solution;
Scissors are used ten times altogether. Since there are no tied games, exactly one player uses scissors in each
game. In the six games where the boy uses scissors, the girl wins two of them when she uses rock, and lose the

other four games. In the four games where the girl uses scissors, the boy wins three of them when he uses rock,
and lose the other one. Hence the boy wins seven games.

18. Of all the whole numbers N from 1 to 2017 inclusive, how many have the property that there exists a
number M such that the sum of M and N is equal to the sum of the reciprocal of M and the reciprocal of N?

Solution:

Let m, n be the two numbers. We have

m+n=—+-—
m
n+
m+n=
mn
1l=—
mn
mn =1

Hence m and » are reciproal of one another. Of the numbers from 1 to 2017, there are 2017 reciprocals.
Therefore, there are 2017 values for M.

19. Find a positive integer whose ones digit is 5, and when it is multiplied by 4, the S becomes the first digit
while all other digits shift one place to the right.

Solution:

Create a pure repeating decimal x where the positive integer is the repeating block. Then 40x is the same as x

except with an extra 5 in front of its decimal point. Hence x = = = 0.128205. Thus the desired positive

39
integer is 128205,
Alternative solution:
Divide 5 by 4. The quotient is 1.25. Divide 51 by 4. The quotient is 12.75. Divide 512 by 4. The quotient is

128. The division is exact but the ones digit is not S. So we continue. Divide 5120 by 4. The quotient is
1282.5. Divide 51282 by 4. The quotient is 12820.5. Divide 512820 by 4. The quotient is 128205. This is the

positive integer we seek.
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Book Review

Mathematical Mindsets
by Jo Boaler
Jossey-Bass, 2016

Reviewed by Ashley Durbeniuk and Terry Freeman

Mathematical Mindsets, by Jo Boaler, brings to
light the five Cs of learning: curiosity, collaboration,
connections, challenge and creativity. It allows stu-
dents to see that math is not just a black and white
subject. Multiple pathways can get learners to their
final destination. In our experience, allowing students
to use their own creativity in math gives them the
satisfaction of connecting their life to mathematical
concepts. [t also gives them a chance to succeed in a
subject that they may have previously failed. An
example of this is the linear relations task that intro-
duced the idea of linear relations in Grade 9 math. It
encouraged students to think outside the box, see their
own patterns and express their learning in multiple
ways. Students were given the opportunity to col-
laborate with one another and share their ideas with
a table group, where students of all levels of under-
standing were able to be experts in their own right.
As a class, they discussed the multiple pathways.

The book discusses many nontraditional ap-
proaches to the learning of math. Boaler proposes
“Positive Norms to Encourage in Math Class.” These
norms include (1) everyone can learn math to the
highest levels, (2) mistakes are valuable, (3) questions
are really important, (4) math is about creativity and
making sense, (5) math is about connections and
communicating, (6) depth is more important than
speed and (6) math class is about learning not per-
forming. Jo Boaler provides the research behind each
of these norms. Mathematical Mindsets is ripe with
tangible examples. Taking on the debate over Mad
Minutes, the book references an article by Boaler
entitled “Fluency without Fear.” The article discusses
the stress associated with timed fact tests. She pro-
poses cooperative, nontimed activities like Close to
One Hundred. This game is a favourite of many
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students. It strengthens numerical fluency while work-
ing with a partner in a nonthreatening environment.

The lens of the 5 Cs encourages teachers and stu-
dents to interact with math in meaningful, real-world
situations. Watching Grade 4 students work on a
challenge requiring collaboration, creativity, connect-
ing and curiosity to discover the area and perimeter
of an alien ship produced an unexpected mathematical
discovery—how to discover the area of a triangle.
This activity was what Jo Boaler calls “Low Floor—
High Ceiling” tasks. Such tasks engage all students
in meaningful ways. Grade 1 students were chal-
lenged to discover the cost of a pizza party for their
class, grade and school. These young mathematicians
were totally engaged for 90 minutes. “The Power of
Mistakes” was celebrated. Favourite mistakes were
celebrated and moved thinking forward. The beauty
of each of these “Rich Mathematical Tasks” is that
they were carefully crafted so that each student would
have success. More important, the work and effort of
each team member contributes to the final outcome.

Mathematical Mindsets is not a theoretical dis-
course on what could be. Rather, it is thoughtfully
written so that teachers of all grade and ability levels
can affect positive change in their practice. More
important, these shifts in practice engage the students
and they see the beauty of math, how powerful
struggle is and how a growth mindset can be fostered.
Join the revolution and read this book.

Ashley Durbeniuk is the department head of instruc-
tion ar Alexandra Middle School, Medicine Hat
School District No 76.

Terry Freeman is a learning coach with the Medicine
Har School District No 76.
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Website Highlight

Mathematics of Planet Earth
http://mpe.dimacs.rutgers.edu/

Lorelei Boschman

Recently, [ came across an open source mathemati-
cal website that grabbed my attention. It is worth
exploring for either demonstrative or investigative
purposes with mathematics students, Below is infor-
mation directly from the website. Can you think of
ways to integrate some of this excellent mathematical
and scientific work into your curriculum?

Mathematics of Planet Earth (MPE) is an initiative
of mathematical science organizations worldwide de-
signed to highlight the ways in which the mathematical
sciences can be useful in tackling our world’s problems.
The exhibition Mathematics of Planet Earth consists of
modules submitted by the community, It started with a
competition in 2012; winning modules from that com-
petition were presented at the official opening event of
the first MPE exhibition in Paris in March 2013.

The modules of the Mathematics of Planet Earth Open
Source exhibition can be reproduced and adapted by sci-
ence museums and schools around the world (https:/
imaginary.org/exhibition/mathematics-of-planet-earth)
(scroll down to the bottom to see the “exhibits™).

Users worldwide from science museums to schools
can reproduce and utilize the modules. The exhibition
has a virtual part as well as several material parts.
Copies of the material parts can be recreated or travel
around the world, and the virtual modules are avail-
able on the basis of creative commons licenses.

In one way or another, all exhibits are demonstrat-
ing the crucial role mathematics plays in planetary
issues. The modules cover a wide variety of topics
such as astronomy, fluid dynamics, the mathematics
of volcanoes or glaciers and problems in cartography.

The virtual modules displayed in the exhibition
come from an international competition organized by
the initiative MPE, IMU, ICMI and IMAGINARY in
2013 and 2017. They are of four types: interactive
modules, films, posters and instructions to realize a
physical module. The three winners of the first com-
petition received their prize at UNESCO during the
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MPE Day in March 2013; the three winners of the
second competition received their prize at the MPE
exhibition at Imperial College London in October
2017. The exhibition is still under development. New
ideas and modules are welcome. See the MPE project
(https://imaginary.org/content/new-mpe-exhibits) for
more information.

For more information on the Mathematics of Planet
Earth initiative, please visit http://mpe.dimacs.rutgers

.edw/.
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@ The Alberta Teachers’ Association

Consent for Collection, Use and |
Disclosure of Personal Information

Name: - S _ ) . (Please print)

I am giving consent for myself.

I am giving consent for my child or ward.

Name: gy (Please print)

By signing below, I am consenting to The Alberta Teachers’ Association collecting, using and
disclosing personal information identifying me or my child or ward (identified above) in print and/
or online publications and on websites available to the public, including social media. By way of
example, personal information may include, but is not limited to, name, photographs, audio/video
recordings, artwork, writings or quotations.

I understand that copies of digital publications may come to be housed on servers outside Canada. .

[ understand that I may vary or withdraw this consent at any time. I understand that the Association’s
privacy officer is available to answer any questions I may have regarding the collection, use and
disclosure of these audio-visual records. The privacy officer can be reached at 780-447-9429.

Signed: . ——— -

Print name: . Today's date: —_ -

For more information on the ATA’s privacy policy, visit www.teachers.ab.ca.
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Publishing Under the
Personal Information
Protection Act (PIPA)

The Alberta Teachers’ Association (ATA) requires con-
sent to publish personal information about an individual.
Personal information is defined as anything that identifies
an individual in the context of the collection: for ex-
ample, a photograph and/or captions, an audio or video
file, artwork.

Some schools obtain blanket consent under FOIP, the
Freedom of Information and Protection of Privacy Act.
However, PIPA and FOIP are not interchangeable. They
fulfill different legislative goals. PIPA is the private sec-
tor act that governs the Association’s collection, use and
disclosure of personal information.

If you can use the image or information to identify a person
in context (for example, a specific school, or a specific
event), then it’s personal information and you need consent
to collect, use or disclose (publish) it.

Minors cannot provide consent and must have a parent
or guardian sign a consent form. Consent forms must be
provided to the Document Production editorial staff at
Barnett House together with the personal information to
be published.

Refer all questions regarding the ATA’s collection, use
and disclosure of personal information to the ATA pri-
vacy officer.

Notify the ATA privacy officer immediately of any in-
cident that involves the loss of or unauthorized use or
disclosure of personal information, by calling Barnett
House at 780-447-9400 or 1-800-232-7208.

Maggie Shane, the ATA’s privacy officer, is your resource
for privacy compliance support.

780-447-9429 (direct)
780-699-9311 (cell, available any time)

MCATA Contacts

President
Alicia Burdess
aliciaburdess@gpcsd.ca

Journal Editor
Lorelei Boschman
lboschman @mbhc.ab.ca

ATA Staff Advisor
Lisa Everitt
lisa.everitt@ata.ab.ca

Complete contact information for the MCATA
executive is available on the council’s website
at www.mathteachers.ab.ca.
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