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From the Editor's Desk 

Lorelei Boschman 

Yesterday I received a message from a preservice education student who recently completed a mathematics 
course with me: 

"Did you know that a 10 ounce cup of coffee has a splash radius of at least 12feet? I'm pretty sure that 
the gravitational force of falling exponentially increases the amount of coffee that was once INSIDE 

that cup. I've done my part of the research here and am passing it on as a public seniice to you.'" 

Of course I smiled in a humorous yet understanding way, visualizing the "research" she participated in. This 
brought me to thinking about how students perceive the discipline of mathematics in their worlds, as students 
of mathematics versus teachers who have studied and taught mathematics. Having a student relate, and actually 
identify purposefu1ly even without a prompt, to the mathematics occurring around her was rewarding for me, 
the instructor, and I recognized that this may not be a person's main thought as the coffee cup is corning down. 
But it was. I realized that this symbolizes the effect that we want to have on students of mathematics . We want 
them to see the value, the usefulness, the evidence and the importance of mathematics. We work daily to this 
effect. Having students recognize and experience the real relationships of the mathematics within their daily 
lives and beyond the classroom is notable. We purpose ourselves to creatively teach students and facilitate 
learning opportunities for them to experience this exact situation and the mathematics that emerges first-hand 
and actually recognize it! Looking at the world around us and "seeing" all the mathematics that exists and 
comes into play daily all around us is an aptitude to be encouraged and admired. If and when we build this into 
students, the math teacher in all of us breathes a contented sigh of accomplishment. 

This journal includes many ideas about relating mathematics to our world with purposeful and complemen
tary thoughts, ideas and activities for each level. As you read the journal, consider how to modify the article or 
activity for students at your level. Mostly, consider how to relate the mathematics you are teaching, exploring 
and facilitating for students to make those connections to their lives and create that deeper meaning, understand
ing and usefulness. 

I'm quite sure my student's understanding ofradius, especially one of 12 feet, was reinforced that day. Per
haps it even brings up more questions and opportunities about the force required to even send coffee that far! 
I will continue to actively think about this example and consider how to create more of these real mathematical 
scenarios and absolutely recognize them. My goal is to have my students see the mathematics occurring con
stantly all around them, and as being innately important and truly complementary to their lives. 

Remember to send in any submission you would like to share with others-we value your contributions and 
see tremendous value in our collective understandings, ideas and practice. 
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Conversation Starters: Issues in the Field ----- -------

Developing a Passion for Mathematics 
Through History 

Armand Doucet and Jata MacCabe 

This article highlights an interdisciplinary collabo
ration from secondary school that begins in a history 
classroom . The teacher Armand Doucet invites stu
dents to delve into areas that they are pas sionate 
about. Jata MacCabe, a student, is passionate about 
mathematic s. Upon hearing of this initiative, an invi
tation was extended to share their story with the 
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readership. The coau
thorship enriches the 
value. Armand's writ
ing (in italic s be low) 
will introduce the 
context and the back 
gro und with regards 
to Pa ssion Projects. 

Jata will then share her experience with the project 
and what it meant to discover that she wanted to 
continue pur suing mathematics as a career path. 

My goa l as a teacher in the classroom is to develop 
skills intertwined with cur riculum content. Social and 
Emotional Leaming (SEL) and 21st -century skills need 
TO be developed not haphazardly, but purposefully. For 
this TO happen, the culture and design of my classroom 
and how I approach cur riculum outcomes and stan 
dards, as well as skills development, is with a combina
tion growth mindset (Carol Dweck) and design thinking 
process ( IDEO-Tim Brown ). I try to foster and develop 
diverg ent thinking (Sir Ken Robinson ) in students who 
will embrace the problems of the world instead of fear
ing them because in reality: "The world doesn't care 
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what you know. What the world cares about is what do 
you do with it" (Tony Wagner). 

So, I believe that connecting the curriculum to what 
the students are passionate about is a great way to 
develop my classroom. With Passion Projects students 
realize the joys of teaming again by following their 
own path. As you can see in Jata 's statement below, 
when allowed to pursue their own goals in education, 
students struggle at first. I try to let them explore 
before giving them stricter guidelines for their cre
ative piece. We conference in order for them to dis
cover what it is they would really like to pursue. As 
they embrace the core problem of their Passion 
Projects, resiliency precedes enthusiasm and then 
enthusiasm leads to pride as students create and 
subsequently showcase their prc~jects. History comes 
alive as students gather information and collaborate 
with the intemational community. The experience is 
unique to each student. Tony Wagner (Creating In
novators) states, "the most important thing is allow
ing students to ask questions and then give them the 
space to find the answers." 

With Passion Projects students reali-::,e the joys 
of learning again. by following their own path 

With Jata, she •,vanted to pursue something in math 
and women's rights. Her project revolved around 
proving that women played a key role in World War 
II with Bletchley Park and this was one of the main 
reasons that the Allied forces had won the war. At 
first, she researched a lot on Bletchley Park's role 
itself, realizing that Mavis Batty played a major part . 
As her project progr essed, she decided to create her 
own Enigma scavenger hunt. This go t her looking at 
the way the code breakers were using math to break 
codes and build the Enigma machine. She ended up 
being able to utilize her precalculus class to help her 
develop the scavenger hunt and Enigma machine 
(which was made up of tinfoil and some boxes). 
However, what she really developed was an under 
standing of how math, as well as history,; are both 
connected fmm a perspective of the skills that are 
needed such as problem solving, critical thinking and 
creativity. Those higher order skills were pushed to 
the limit as she conrinuously tried, innol'ated and 
ultimately created her supportive creativ e piece, 
namely , the scavenger hunt. 

Giving students like Jata a chance to pursue their 
passion, math in this case, in combination with other 
subjects like history, within a safe environment to take 
a chance on a proje ct, analyz e, improve and tr;,· again, 
gives them the opportunity to realize if they truly want 
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to chase down those dreams in the future. Jata 's proj
ect garnered attention from CBC once we posted the 
results on social media. They attended her presenta
tion, interviewed her and it was shared over 200 times. 
Also, she received praise from Sue Black, OBE and 
computer scientist, who was one of the people who 
helped to save Bletchley Park. Sue was able to share 
with Jara her connection ·with Mavis Batrv, having 
known her before she passed away. All these things 
combined to solidify for Jata that she wanted to con
tinue pursuing math and that it was going to give her 
numerous avenues for an interesting career. 

That, I believe, is my job as a teacher, to help 
students develop skills while.finding who they are so 
they can succeed in the future. You can visit my tem
plate for this type of classroom and other Passion 
Project examples at www.lifelessonleaming.com. 

The idea was to connect something we 
were passionat e about to a revolution 

in modem history. 

My approach to history has always been imper
sonal. Dates and names have never stuck in my head 
for longer than they took to go in one ear and out the 
other. I was kind of into that Roman unit, but my 
friends tell me watching Gladiator doesn't actually 
count as studying. I was obviously not looking forward 
to an entire semester of memorization and regurgita
tion of a subject I didn't particularly care about. 

Within the first week of Mr Doucet 's class we were 
introduced to the Passion Project. The idea was to 
connect something we were passionate about to a 
revolution in modem history . I was terrified. That very 
helpful premise narrowed the pos sible topics down to 
relatively everything, and the only concrete thing I 
understood was the deadline. When Mr Doucet sug
gested researching code breaking during World War 
II, I finally had some small lifeline to grasp on to. This 
was a way to explore my passion for mathematics in 
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a course that I would have otherwise loathed. Besides , 
what kid isn't intrigued by spies and code breaking? 

For almost the entire history of the world, battles 
have been the epitome of concrete and physical. Obey 
him, protect them, bash and whack the enemy. The 
major action occurred directly on the battlefield; you 
simply had to roll with the punches as they came
literally. Espionage had always been field agents 
infiltrating enemy divisions , overhearing important 
information and accessing critical document s. How
ever painstakingly won , this information hardl y ever 
majorl y impacted the outcome of a battle. 

Communication was slow and unr eliable; a mes
senger could be dela yed or a letter could be inter
cepted . Even if the information should have reached 
someone who might have been able to act upon it, 
the information was often as unreliable as the methods 
to send it. In matters of life and death , confusion is 
not always the preference. Our modem history course 
taught us of major innovation s that were catalysts for 
revolution. 

Very few modern innovations had such a profound 
effect on military communication, and the world, as 
radio transmi ssion. Durin g the Seco nd World War, 
communication was decidedly less tangible. Encrypted 
messages could pass throu gh brick walls, over enemy 
camps and across borders. In a game of interceptions, 
the best encryption won. As tensions and conflicts 
mounted, it was clear that the Germa ns had it. 

In a game of interceptions , the best encryption 
won. 

Originall y, the Enigma machine was a commercial 
product designed for businesse s or firms to encrypt 
their financial data. The creators were quick to see 
the machine's potential military use and began ap
proachin g federal governments with the product. 
Ironi ca lly, the encryption machine s were even 
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presented to the British government, who chose not 
to invest. The German governm ent was intere sted in 
the product , however. After ramping up the security, 
the German Enigma resembled the simple commer
cial product solely on a superficial level. The machine 
had a standard German keyboard, like a typewrit er, 
and an additional alphabet with illuminated keys. It 
included a series of rotors that encoded letters and 
rotated with each additional letter. It also had a 
switchboard that added an extra layer of security by 
switching the coded letters for other-seemingly 
random - letter s. By changing the settings of the ro
tors every night at midnight , the Germans had created 
a nearl y invincible fortress of security. In a total 
blackout of informati on, the Allied forces would be 
subject to almost certain defeat. Britain 's Government 
Code and Cypher School's base for Axis decryptions 
was at Bletchley Park. 

At Bletchley Park, mathematics and problem 
solving meant lives saved. 

Perhaps the most famous name to come out of 
Bletchley Park is Alan Turing . Before the war, the 
Polish had deve loped a meth od of deciph erin g 
Enigma codes with the use of "Bomba" machines. 
The se function ed by checking all possibilitie s using 
a series of sheets. The machine was slow, inconsistent 
and fickle, but it was progress. After being introduced 
to the Bomba , the concept that a machine could do 
the quantitati ve work of a human mind would stay 
with Turing for the rest of his life . Turin g was a theo
rist, but he couldn't achieve his objective of creating 
a more efficient version of the Bomba alone. He and 
Gordon Welchman combined with an Oxford engi
neering team and created the first Bombe machine . 
It was not precisely a computer as one still needed to 
feed the machine a section of code guessed at manu 
ally, but Bomba machin es could check thousand s of 
possibiliti es in minutes. 

In high school, math seems almost completel y 
unrel ated to the world at large. You can barely step 
into a precalculus classroom without hearing "How 
will this help me in the real world?" We all want our 
hard work to mean something more than a numb er 
on a test. It was amazingly coincidental that while I 
was researching how probabilit y was used at Bletch
Iey Park, we had ju st begun our Combinatoric s and 
Prob ability unit in precalculus. At Bletchley Park, 
mathematics and problem solving meant lives saved. 
Churchill believed that the work conducted at Bletch
ley shortened the war by two years. Many others 
believe that the war could not have been won witho ut 
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the park. It is often said that Bletchley was present at 
every famous battle in the Second World War, stealth
ily swaying the balance. 

The most confusing part of this project was the 
creative part. For mine, groups of five had to use a 
tinfoil and pool noodle Enigma machine to decipher 
the location of their next checkpoint. It was exactly 
The Amazing Race and it certainly wasn ' t life at 
Bletchley Park, but teams had to work together to 
solve problems under pressure, which was my goal. 

The world is composed of dichotomie s. You 're a 
naive child or a sophisticated adult. You're a dreamer 
or a realist. You 're a mathematician or an artist. 
Bletchle y Park unabashedly disregarded these con
straining labels . Academics, translators , debutantes , 
actors, novelists, athletes and even chess enthusiasts 
were recruited to aid their country. Major operations 
included but weren't limited to university students or 
graduates. Some of the greatest breakthroughs during 
World War II were interdisciplinary collaborations of 
many kinds of thinkers. 

This project taught me that I already was a 
mathematician . 

I knew before this project that I wanted to be a 
mathematician. I knew that I loved number s and I 
knew that solving a difficult problem made me irra
tionaJiy happy. This project taught me that I already 
was a mathematician. Math never was about numbers 
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or formulas on a page . Math has always been about 
humans solving problems. All of those countless 
symbols, complex equations and abstract theories 
have been about the human race learning to under
stand and manipulate the world around them. So 
maybe it was weird that I found my passion for 
mathematics studying people and civilizations and 
revolutions, but maybe it wasn't that weird at all. 

Armand Doucet is a passionate and award winning 
educator. leader and business professional with a 
unique combination of entrepreneurial, teaching and 
motivational speaking exper ience. He recently re
ceived the Prim e Minister's Award for Teaching 
Excellence as well as a Meritorious Service Medal 
from the Govem or General. He is the creator of www 
.lifelessonl earning.com which leads the way in plac 
ing skills development on equal footing to curriculum 
content in the classroom. 

Jara Macca be is a self-proclaimed math dork who is 
equally talented in the classroom as on the improv 
stage or rugby field. As a Grade 12 student this year, 
she is looking to pursue a career in math while still 
being passionate about many other subjects. 

Reprinted with permission from Education Notes, 
Volume 48, Number 5 (October/November 2016) , a 
publication of the Canadian Mathematical Society. 
Minor changes have been made in accordance with 
ATA style. 
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Problem-Solving Moment ____ ___ _ _ ___ _ 

Open-Ended Questions 

Lorelei Boschman 

Open-ended questions encourage students to think 
about different methods, representations and possible 
solutions, all the while promoting mathematics un
derstanding and proce ssing. Sharing these possible 
solutions with peers is also a powerful strategy for 
teachers. 

Some open-ended questions are listed below: Can 
you use one or adapt one for your math students to see 
how powerful the conversations/number talk s and 
mathematical thought processes can be through this? 
Is this something that you could build into your weekly 
lessons? Think about having students represent their 
possible solution on a personal whiteboard, vertical 
nonpermanent surface or through a placemat activity. 

Grade 1: You went to the store and bought red and 
blue cand ies. There were more red candies than blue 
candies. How many of each could you have bought? 
How many candies did you buy altogether? How many 
more red candies than blue candies did you buy? 

Grade 3: You write a numb er with tens and ones. 
When you switch the numbers around, your new 

8 

number increases by more than 20 but less than 30. 
What could your original and new number be? Can 
you think of another solution ? 

Grade 4: Write a four-digit number whose digits total 
23. Let your partner check this. What is the greatest/ 
least four-digit number you can make whose digits 
total 23? 18? Create another one for a partner to try. 
Can you pick any number for the dig its to tota l or are 
there only certain number s that would work? 

Grade 5: You buy an item with a $100 bill. You get 
back four bill s and six coins. How much did your 
item cost? 

Grade 7: Add in order of operations to make the 
following true : 5 _ 3 _ 2 _ 2 = 9. Now create one 
of your own for a partner to solve. 

Grade 9: Choose any number that is 10 less than or 
10 more than a certain perfect square number. De
scribe how you could estimate the square root of the 
number you picked and actua lly share what your 
estimate would be. 
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Research Article 

Intersections in Reasoning Within Science 
and Mathematics 

Ashley Pisesky, Janelle McFeetors and Mijung Kim 

Elementary school classrooms are rich sites of 
children's mathematical and scientific thinking. As a 
preservice teacher (Ashley Pisesky) and researchers 
who have taught in schools (Janelle McFeetors and 
Mijung Kim), we are privileged to watch and listen to 
children's excitement as they make sense of a new 
mathematical idea or figure out a scientific way of 
problem solving. Observing colleagues in classrooms, 
teachers often plan in interdisciplinary ways knowing 
that children's 
learning is more 
meaningful when 
they connect ideas. 
With curricula 
packed with con
tent, integrating 
content areas also 
helps to ensure that 
all outcomes are 
addressed in a 
school year. Teach
ers and students do 
not necessarily live 
out artificial dis 
tinction s betw ee n 
co nt ent areas in 
their classroom s. 

With the advent 
of a STEM (science, technolog y, engineering and 
mathematics) approach, more resources are available 
for integrating science and mathematics. These re
sources contain activities students find engag ing. 
However, a critical viewing reveals that much of the 
early implementation of STEM results in activities that 
prioritiz e one subject area over another where either 
mathemati cs serves the scientific ideas with technical 
skills or a mathematic s idea is dressed up in a scientific 
context. This results in a coordinate approach (Babb 
et al 2016) being supported, rather than integrat ion. 
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Additionally , interdisciplinary teaching of science and 
mathematics is not assumed in curricular document s 
written for separate subject areas. 

On one hand, teachers are balancing the expecta
tions and realities of children's learning . While on the 
other hand, resources and curricula provide nominal 
support for integration of science and mathematics. 
We see an area with great potential for growth, given 
thoughtful design of opportunities for children to ex

perience synchronicity 
in thinking across mul
tiple subject areas to 
support integration. As 
there are no boundar 
ies among disciplines 
in everyday problems , 

' children as problem 
solvers do not experi
ence separation or dif
ferences in mathemati 
c al and scientific 
reasoning ; that is, chil
dren's reasoning pro
cesses intersect and 
integrate across disci
plines , seeking an
swers and solutions to 
problems. 

We hoped research-ba sed literature would help us 
find intersections between mathematics and science 
learning . Our main intention was to move beyond 
task s where math ematics and science coexist and to 
examine in finer detail how children think within the 
subject areas. As we reflected and discussed possible 
intersections , reaso ning arose as an interestin g site to 
explore. We framed our inquiry around the question: 
To what extent is the process of reaso ning a po ssible 
intersection between mathematica l thinking and 
scientific thinking in elementary school classrooms? 
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Because of the vast quantity of studies depicting 
children's reasoning both in mathematical and in 
scientific contexts in elementary school, we chose to 
first pursue this inquiry by understanding current 
research literature. The literature review would inform 
our understanding of how reasoning is referred to in 
mathematics and science in order to identify possible 
intersections. 

Reasoning as Characte rized in 
Curricula 

To understand any intersections that may exist 
between science and mathematics, we needed to know 
how researchers were discussing reasoning in both 
subjects independently. The Alberta program of stud
ies is a good place to look for working definitions 
regarding reasoning. 

According to the mathematics program of studies, 
"mathematical reasoning helps students think logi
cally and make sense of mathematics" (Alberta Edu
cation 2016, 6). While the benefits of students using 
reasoning are explicit, what defines reasoning is 
ambiguous. Reasoning, rather , is characterized by the 
actions students carry out in the process of reasoning 
and problem solving. For example, "analyze observa
tions , make and test generalizations from patterns .. 
. . use a logical process to analyze a problem, reach 
a conclusion and justify or defend that conclusion" 
(2016, 6). Broad in nature, these actions could be 
woven throughout all of the content strands as chil
dren describe and support their mathematical 
thinking. 

A commonality berween both 
characterizations and emphases is that of 

problem solving. 

Similarly , the science program of studies has no 
direct definition of reasoning, yet comparable lan
guage describes the qualities of reasoning. For ex
ample, the science "program provides a rich source 
of topics for developing questions, problems, and 
issues, that provide starting points for inquiry and 
problem solving" (Alberta Education 1996, A.2). As 
developing critical thinking skills is a main goal of 
science education, the science program of studies 
clearly emphasizes critical thinking with "evidence." 
The importance of evidence is shown in General 
Learner Expectations as follows: "critical-minded
ness in examining evidence and determining what the 
evidence means" and "a willingness to use evidence 
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as the basis for their conclusions and actions " 
(p B.24). The program of studies clearly emphasizes 
critical thinking and evidence-based reasoning as part 
of scientific thinking . 

A commonality between both characterizations and 
emphases is that of problem solving. In the problem 
solving process, children observe, collect data and 
information, analyze, and generalize with and for pat
terns. Interestingly, even though the science program 
of studies provides a similar characterization as to the 
definition of reasoning in the mathematics program of 
studies, the term reasoning is never formally defined. 
This might speak to some of the issues that arise when 
disciplines use different subsets oflanguages that have 
similar definitions . 

Reflecting on the characterizations of reasoning 
from the respective programs of studies only gave us 
a general starting place. To continue in our inquiry on 
reasoning as a possible intersection between scientific 
thinking and mathematical thinking in children, we 
needed to locate more finely nuanced descriptions of 
reasoning. Framed by the curricular understandings of 
reasoning, we undertook the following inquiry. 

Inquiry Process 
Much has been written about reasoning in both 

mathematics education and science education. To 
begin, we scanned a few seminal readings in both 
mathematical thinking and reasoning (for example, 
English 1997; Mason, Burton and Stacey 2010; Polya 
1954) and scientific reasoning and argumentation (for 
example, Erduran and J imenez-Aleixandre 2007; Kuhn 
2010; McNeil! 2011; Osborne, Erduran and Simon 
2004) to contextualize current research. 

We then searched for current journal articles in 
databases , such as JSTOR, EBSCOHost, ProQuest, 
ERIC and the University of Alberta library catalogue . 
The search terms , in combination with either mathe
matics or science , included elementary , reasoning , 
argumentation and proof. The list of articles was 
substantial, and eventually searching with various 
keywords did not produce any new articles beyond 
what wa~ already collected. 

To collect a manageable group of readings in each 
discipline, we delineated the bounds for searching 
through the following selection criteria. Our selection 
focused on journal articles and excluded conference 
proceedings and books, as articles are usually the venue 
through which researchers share their most current 
findings. We looked for peer-reviewed reports of em
pirical studies published in academic and professional 
journals. To use the most recent research available, we 
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used a date range of 2,000 to the present. In the end, 
we used about 40 papers for this literature review. 

We did the initial analysis by reading all the papers 
to see how reasoning was defined and discussed 
within each discipline to ascertain the range of ideas. 
We found that researchers explained their understand
ing of reasoning through various examples that pro
vided insight into characterizations initially outlined 
by them. We kept detailed notes on what type of 
reasoning the researchers explored, how they defined 
it, how they observed children developing reasoning 
and noteworthy findings. Throughout the reading and 
summary writing, prominent words began to emerge 
and were used to categorize articles. For each cate
gory, an overall analysis was written. 

Major Themes of Mathematical 
Reasoning 

After reading about 20 articles focused on math
ematical reasoning, we identified 10 general themes 
regarding how researchers discuss reasoning in math
ematics. These general themes can be sorted into two 
broader categories: processes of reasoning and forms 
of reasoning , depicted in Table 1. 

Processes of Forms of Reasoning Reasoning 

Conjecturing Deductive 
---

Justifying Inductive 
-

Specializing Plausible 
- --

Problem solving 
By analogy and 

metaphor 
-

Creating proof s By contradiction 

Table 1. Ten themes within two categories for 
mathematical reasoning . 

I 

Processes of reasoning encompass the ways in 
which children engage in acts of reasoning , also 
described as the verbs of mathematical reasoning 
(McFeetors and Palfy 2017). Conjecturing and justi
fying are integral processes often explored in litera
ture. Form s of reasoning refers to logical chains of 
statements and their structural aspects that are conven
tions within mathematics leading to proofs. Interest
ingly, Polya' s early work on deductive (demonstra
tive) and plausible reasoning has maintained high 
importance in recent literature. Rather than exploring 
all of the themes below, we describe two themes from 
each category that represent the best possibilitie s for 
inters ection between mathematical rea soning and 
scientific reasoning in elementary school classrooms. 
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Processes of Reasoning 
Conjecturing can be defined as offering "a state

ment which appears reasonable, but whose truth has 
not been established" (Mason, Burton and Stacey 
20 I 0, 58). Often children will express a conjecture 
based on a pattern that is emerging in their mathemati
cal thinking, some initial sense they are making of a 
mathematical problem akin to a guess or hunch. Shar
ing a conjecture with others allows for investigation 
that could lead to justification or modification, where 
mathematical reasoning "often begins with explora
tions , conjectures" (NCTM 2009, 4). As a specific 
example for classrooms, Houssart and Sams (2008) 
had upper elementary school children play Lines, a 
game similar to Connect Four. One student pointed 
out a good starting place and conjectured about the 
value of the move, "because it's right in the middle 
and we could go up across, diagonal, loads of different 
ways" (p 62). Even though many students were not 
convinced initially, by the end of the sessions they 
had tested the conjecture sufficiently to show that 
they had a better chance of winning with a central 
start. Interestingly, Lane and Harkness (2012) noted 
that when students skip the process developing con
jectures through exploring the problem context, they 
are unable to justify solutions convincingly. These 
examples demonstrate that it is important for children 
to form initial conjectures, evaluate the conjectures 
and continue to modify or offer new conjectures to 
lead toward convincing solutions to mathematical 
problems. 

Justification is another key process in children's 
use of mathematical reasoning. In fact, many re
searchers refer to reasoning interchangeably with 
justification. They state, "mathematical reasoning .. 
. involves justifying" (Thom 2011, 234) or define 
reasoning as "the ability to justify choices and conclu
sion" (Johnsson et al 2014, 20). Staples, Bartlo and 
Thanheiser (2012, 448) see justification as "an argu
ment that ... uses . .. mathematical forms of reason
ing," while Mason, Burton and Stacey (2010) see it 
as convincing yourself and others of why a conjecture 
or solution works all the time. As a specific example 
for in Grade 6 classrooms, Mueller and Maher (2009) 
used tasks with Cuisenaire rods , which focused on 
fractional relationships among the differing length s. 
The researchers elicited justifications from students 
by asking, "How can you convince the whole class?" 
(p 112). In one instance, students defended their 
answers of why a rod of length 9 did not have any 
corre sponding half lengths by lower and upper 
bounds: "The yellow is a little bit more than a half , 
and the purple is shorter than a half' (p 113). By 
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contraction, "Here is not a rod that is half of the blue 
rod because there are nine little white rods; you can't 
really divide that into a half , so you can't really divide 
by two beca use you get a dec imal or remainder " 
(p 113). Thi s example demon strates that elementary 
school children are capable of ju stifying their thinkin g 
and need their teachers ' support through que stioning 
to regularly express their reasoning in many ways. 
Additionally, the way justification s are con structed 
and expre ssed warrants more discussion in the fol
lowing section . 

Forms of Reasoning 
Deducti ve reasoning is one of the defining forms 

of math ematic al rea soning, typicall y de scribed as 
being able to draw a conclusion from pre-establi shed 
facts (Reid 2002a). The promin ence deductive reason
ing plays in mathematics as a discipline is not surpris
ing as it is the prima ry form of constructing proof s 
(Flegas and Charalampos 201 3; Reid and Zack 2009). 
Moving beyond a broad categorization, Reid (2002b) 
describes different types of deducti ve reasoning, such 
as "simple one-step deducti ve reasoning ... multistep 
deductive reasoning . . . [and] hypothetical deductive 
reasonin g" (pp 235-36). While the first two types 
refer to the complexity of chains of reasoning , the 
last type signals making inferences from the hypoth
eses generated during problem solving (Stylianides 
and Stylianides 2008). Furthermore, Komatsu (2016) 
empha sizes the importanc e of deductive thinkin g in 
student s by explaining , "deductive guess ing can be 
regarded as an authentic mathem atical action because 
. .. it [ can] overco me counter-examples" (p 159). 

... elementary schoo l children are capable of 
ju stifying their thinking and need their teachers' 
suppo rt through questioning ro regularly express 

their reasoning in many ways. 

Rea soning by counter-examples is not an exhaus 
tive approach to proving, so the shift in students· use 
of deductive guessing in the reported research showed 
a shift in students' invocation of reasoning within 
problem solvin g. ln other words, children show more 
sophistication in their reasoning as they move beyond 
using counter-example s to justify a conjecture toward 
creating chains of reason ing using establi shed facts. 
The observable impro vement in reasoning help s to 
further the idea that deducti ve reaso ning is an essen
tial skill that students should be developin g. As a 
spec ific exa mpl e for classrooms, Wanko (2009) 
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introduced a variet y of Japane se puz zles into his 
classroom to help foster deductive rea soning. He 
explain s the value of using these puzzle s in that "when 
students learn to provide deductive argument s for 
their puzzle-so lving strategies, they are laying the 
foundation for good mathematical practic es" (p 271 ) . 
This statement empha sizes the essenti al nature of 
deductive reaso ning in the mathematics classroom. 
Puzzl es, like Sudoku, require student s to use given 
information with completed cells and rules for place
ment s to fill in the missing cell values. 

... children show more sophistication in their 
reason ing as they move beyond using counter

examples to justify a conjectu re toward creating 
chains of reasoning using established facts. 

Plau sible reasoning, as complementary to deduc
tive reas oning , is important to solving mathem atical 
probl ems and is a component of reasoning in daily 
life . Plausible reasoning (Polya 1954) is based on 
explorations that do not follow a prescribed pathway, 
is bound up with conjecturing throu gh use of infer
ences, acknowledge s personal knowing, coincides 
with mathematical thinkin g, and does not demand the 
same rigour and aim of absolute certaint y as in deduc
tive reasoning. Leading to developing mathematical 
ideas, plausible reasoning incorporate s generalizing 
throu gh pattern-n oticin g within inducti ve reaso ning 
while relying on connections made to similar struc
tures within analogic reasoning . Put in another way, 
Poly a (1954) states that "it is reaso nable to try the 
simplest case first" and how "even if we return even
tually to a closer examin ation of more compl ex pos
sibiliti es, the previous exa mination of the simplest 
case may serve as a useful preparation" (p 194 ). The 
following example further demonstrat es this, wherein 
Sumpt er and Hedefalk (2015) analyzed pre school 
children's reasoning throu gh play. Wh en a young 
child suggeste d mea surin g the height of a rock, the 
children collect ively offer reasoning based on infer
ences. For exa mple, "Yes, but the house is bigger than 
the rock" (p 5). Or where a conclusion is offered based 
on measuring as evidence, " It is bigger than me any
way [walks and stands next to the rock and looks up , 
using her own body as a measure]" (p 5). The informal 
reasoning implied by plausible reasoning is a wonder
ful start ing place in the early years of elementary 
schoo l, where children can be asked to provide de
fenses that are connected to their experiences and 
reasonable to the problem-solving context. 
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Major Themes of Science 
Reasoning 

Forms and Skills of Scientific Reasoning 
Several prominent themes emerged from the lit

erature on science reasoning, and we have selected 
the most comprehensive descriptions and definitions. 
One major theme is deductive reasoning, which is 
also described as a means of reasoning in mathemat
ics. Deduction, as a key skill for scientific reasoning 
(Van der Graaf, Segers and Verhoeven 2015), is often 
discussed with a hypothesis-based approach in sci
ence. For instance, researchers emphasized hypothetico
deductive reasoning whereby deduction is combined 
in an overall process of reasoning alongside hypoth 
esizing (Chen and She 2015; Lawson 2008). 

When studenis rnade a hypothesis, they were also 
challenged to give their reasoning a;1d, where 

appropriate, to provide evidence to support their 
statements, that is, deductive reasoning. 

. The process of hypothetico-deductive reasoning 
m classrooms occurs when students make a hypoth
esis based on their experiences and knowledge to an 
unknown situation, deduce what would happen if their 
hypothesis was correct, design a test based on the 
deduced ideas and finally test it to verify or falsify it. 
If it is false, they will make another hypothesis. Lei 
et al (2009) explicitly states that "scientific reasoning 
ability . . . focuses on ... reasoning skills such as the 
abilities to . . . formulate and test hypotheses' ' (p 586). 
The skills of scientific reasoning, such as hypothesiz
ing and fair testing, are essential components of un
derstanding scientific reasoning as an entirety, be
caus e they aid in describing the big picture of 
scientific problem solving and knowledge develop 
ment. As a classroom example, Tytler and Peterson 
(2003) asked students to hypothesiz e which whirly
bird would fall and spin faster. The whirlybirds had 
three different wingspans: short, medium and long . 
When students made a hypothesis , they were also 
challenged to give their reasoning and, where ap
propriate, to provide evidence to support their state
ments, that is, deductive reasoning. Deductive reason
ing is also described as a reasoning skill that scientists 
often engage in (Wassennan and Rossi 2015). 

Inductive reasoning is used to describe and discuss 
scientific reasoning and is often mentioned with refer
ence to observed patterns. Lawson (2005) viewed it 
as a primary component of scientific reasoning. 
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Wasserman and Rossi (20 IS) explain the significance 
of induction in scientific reasoning by describing how 
"one of the primary modes of reasoning in science is 
induction" (p 23). Wasserman and Rosi (2015) also 
found that "science teachers .. . were more prone to 
us[ing] inductive methods of reasoning" (p 32). 
Duschl (2003) further supports this by stating that 
"scientific inquiry ... [is] an inductive process." A 
classroom example is an electric conductor and indi
cator activity. Students test various materials, such as 
a wood stick, metal spoon, nail, plastic pen, paper, 
rubber band and so on, in an electric circuit to deter
mine that metal materials are conductors (induction). 
This approach is common in hands-on science in
quiry. This science concept through inductive reason
ing often continues to develop with deductive reason
ing when teachers provide everyday materials, such 
as a key, a coin or a metal glass frame, and ask if the 
items would pass an electric current or if wearing 
rubber gloves would be safe during electricity repair. 
These further questions will help develop students ' 
deductive reasoning (for example, the key is metal, 
metal is a conductor , conductors pass electricity , 
therefore, key passes electricity). 

The collaboration of claims, evidence and 
justification in argumentation empowers 

students' scientific reasoning . 

Another key theme to explain science reasoning is 
argumentation, which is a means through which 
scientific reasoning is developed . For example, it is 
seen as an essential aspect of "prompting scientific 
reasoning" (Driver, Newton and Osborne 2,000; 
Duschl and Osborne 2002; Roberts and Gott 20 I 0). 
Argumentation is used to develop and evaluate claims 
based on data and evidence. When students encounter 
conflicting claims, they need to search for evidence 
to justify which claim is more convincing to reach an 
agreement or conclusion. For instance, when students 
propose two conflicting claims : (I) platypus is a 
mammal, and (2) platypus is an amphibian, they need 
to find sufficient evidence to justify their conclusion. 
The collaboration of claims, evidence and justification 
in argumentation empowers students' scientific rea
soning (Osborne, Erduran and Simon 2004). 

The Essence of Scientif ic Reasoning : 
Evidence 

In the process of scientific reasoning, linking 
theory and evidence, that is, understanding the co
variation between theory and evidence is critical 
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(Kuhn and Pearsall 2,000). For instance , in hypothesis 
testing, students use scientific data or information as 
evidence to support or refute their hypothesis. In an 
inductive approach of scientific experiments, a con
clusion must be drawn from data collected, that is, 
evidence-based data analysis. In the processes of 
argumentation, a claim must be justified with evi
dence to be persuasive and convincing. Thus, 
"argument[ation] in the science classroom ... can 
help students develop science skills . .. [such as] us
ing evidence to defend a point of view" (Thier 20 I 0, 
70) . In any type of scientific reasoning and prob lem
solving process , students are challenged to connect 
their claims, explanations and conclusions to evidence 
to make their ideas scientific, justifiable and, thus, 
persuasive. So important is evidence in scientific 
reasoning that Tytler and Peterson (2004, 98) state, 
"A key aspect of scientific reasoning is the ability to 
suggest and make judgments about evidence." Mc
Neill and Krajcik (2008) also explained the important 
role of evidence in science: "When scientists explain 
phenomena and construct new claims, they provide 
evidence and reasons to justify them or to convince 
other scientists of the validity of the claims" (p 121 ). 
This description of the importance of evidence and 
its role in science facilitates the concept that evidence
based thinking in science is critical. 

Scientific reasoning can be broadly defined as 
intentional coordination of theory and evidence 
(Mayer et al 2014, italics added). As science reason
ing requires one's intention, practice and skills to 
coordinate theory ( claim) and evidence ( data) in 
scientific explanation, for students to think and pro
cess material from a truly scientific perspective, we 
must provide the tools for this to become a reality. 
Helping students to learn evidence -based mean s of 
thinking will help to facilitate this into a reality. Hardy 
et al (20 I 0) discuss the concept of evidence-based 
reasoning (EBR) and how it potentiall y "contribute[s ] 
to the development of individual students' abilities 
in scientific reasoning" (p 198). They categorized 
evidence-based reasoning into three levels : ( l) data
based reasoning-students' ideas (claims and state
ments) are supported by a single property or observa
tion, (2) evidence-based reasoning - students' ideas 
are supported by a contextualized relationship be
tween two or more data or evidence, and (3) rule
based rea soning-students' idea s are supported by a 
generalized relation ship or principle (Hardy et al 
2010). Evidence- and rule-ba sed reasoning are higher 
and more sophisticated levels of reasoning than data
based reasoning in terms of evidence-claim evaluation 
and knowledge generalization and application. An
other notion discussed in the literature is that of 
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scientific literacy, viewed in relation to evidence. For 
example, Brown et al (2010, 124) state how "students 
who are scientifica lly literate should be able to make 
judgments based on the evidence supporting or refut
ing [an] assertion." This only further assists in dem 
onstrating the critical nature of evidence-based think
ing as it is viewed through this definition of scientific 
literacy as an essential component of it. The concept 
of scientific literacy is further backed by McNeill and 
Krajcik (2008), who claim that "students need to be 
able to critically read . .. by evaluating the evidence 
and reasoning pre sented .. . [this] allows students to 
make informed decision s" (p 121 ). That critical and 
evidence-based thinking are integral components to 
thinking scie ntifically is clearly a common theme 
throughout the literature. 

.. for students to think a11d process material 
from a truly scientific perspective, we must 

provid e the tools for this to become a reality. 

Discussion and Reflection 
In elementary mathematics and science classrooms, 

reasoning is an important foundation for students to 
form a significant and thoughtful understanding of the 
processe s that underlie these subjects and to apply and 
develop disciplinary content knowledge. For instance, 
claims and hypothe ses are made, and data and evidence 
are evaluated as plausible or implausible based on 
children's current knowledge (Sadler and Zeidler 
2005). When children's current knowledge does not 
support observed phenomena, such as discrepant events 
or cognitively conflicting situations , they need more 
plausible and fruitful knowledge to explain the phe
nomena in the justification process where teacher s can 
expect conceptual change and development. Because 
of this significance, it is essential to understand how 
reasoning is understood within each discipline, as with 
that knowledge we can begin to develop stronger links 
between the two subjects that can facilitate increasing 
student understanding both in the individual subjects 
and between both subjects. 

Rea soning as it was discuss ed in the mathematics 
literature primarily focused on the keywords that one 
typically may conjure up when thinking about rea
soning from a more standard persp ective- term s, 
definitions and examples of deductive, inductive and 
plausible reasoning were common themes in the 
realm of mathematics reasoning. Some of these key 
words and definitions were also demonstrated within 
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the literature on scientific reasoning, in particular , 
deductive and inductive reasoning . In the discussion 
of deductive rea soning in science, hypo the sis is a 
key idea whereby students' hyp othesis testing often 
includes deductiv e reaso nin g. As a distinction within 
the commonality of deductiv e re aso ning is that in 
mathematic s con structing a pro of is see n as the pur
po se of deductiv e reasoning. From the literature , we 
found conjectur e in mathemati cs and hypothesi s in 
science seem to share some degr ee of commonality 
where student s mak e a claim base d on their pri or 
experience s, observation and knowledge to explain 
what is going to happen in an unknown situation. 

... we can begi11 to develop stronger links 
between the nvo subje cts that can facilitate 

increasing student understanding. 

Inter estingly , the prevalent theme of the topic of evi
dence and the essential role that a variety of authors 
viewed it to ha ve in scientific rea sonin g, and how the 
und erstanding of reas onin g with an empha sis on 
evidence was not preva lent in the literatu re on math
ematic s rea sonin g. How ever, although evide nce was 
not necessa rily a common th eme that arose in the 
math ematics literature, other keywor ds were often 
referenced, which have similar meaning to evidence, 
such as ju stificati on through specific exa mple s and 
spec iali zing to convince with a smaller problem . We 
believe that even though the literature refers impli c
itly to the co nce pt of evidence in the mathematics 
literature, the idea of evidence may be a commonality 
these two di sciplin es share ab out reaso ning , and one 
that dese rves further explorati on to benefit future 
teachers and students. 

Overa ll, co mmonaliti es of math ematical and scien
tific reasoning lie in the area of observi ng, analyz ing 
and justif ying in a probl em-solving process. To under
stand and solve the probl em, children observe, collect 
data (evidenc e) and analyze the observed data to come 
up with answers. In math ematic s classrooms, teac hers 
commonly use conjecruring andjustffi cation to explain 
this problem -solving proc ess , and in sc ience class 
rooms , teacher s use the term s mak ing claims, seeking 
evidence and justification . In thi s problem-solvin g 
process, inductiv e, deductive, hypo thetico-deductive 
and plausible reasoning are comp lexly intertwined, yet 
whichever reasoning students call on, their solutions 
must be ju stified with evidence. Even though students' 
mathematics and science reasoning share many com
monalities, in literature review, they are explained with 
different terms and language; thus, it seemed they were 
separate cognitive skills in childr en's thinkin g. 
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Reflection 
In thi s section, we share our reflections on children's 

reasoning in elementary classrooms based on our own 
perspectiv es and experienc es as a pre service teacher 
(Pise sky) and teacher educat ors (McFe etor s and Kim ). 

Ashley Pisesky 

Thes e findings have been very helpful to me as a 
preservice teacher, and they would aid other elementary 
school pre service and current teacher s. For example , 
the time-int ensive les son planning was a challenge 
while completin g my practicum s. Since elementary 
school generalist teacher s are responsible for instruct
ing about five subjects daily, lesson planning becomes 
overwhelming; few explicit cross-curricular connec
tions bet wee n the subject s are taught in post secondary 
preparation. Having more explicit connections specific 
to the school subjects demon strated that this kind of 
prepar ation may have made lesso n plannin g easier. 
Some of the mathematics and science lessons may have 
been linked together, using one lesson and one time 
block to instruct both sets of content. 

The focus should be on the processing that 
students are engag ing in. 

Alongside this , students would benefit from having 
more of the subjects linked across the curriculum . I 
was a stron g believer of thi s throu ghout my practi
cums, and I often looked for ways to link student s' 
learning. However, many of the links that I found 
were more sup erficial in natur e, such as how doing 
writing in science class link s bo th language arts and 
science . Alternatively , linkin g content in subj ects, 
such as a learni ng outcom e in math ematic s and in 
science , may also be viewed by some as more of an 
arti ficial connection. Although it is goo d to point out 
the two similarities and to reinfo rce one subject 
throu gh another, a fundament al missing link bet wee n 
subj ects at a deeper level in order to better understand 
and facilitate student processi ng is curr ently a deficit 
that should be included in preservice teacher training. 
A prim e exa mple of how this could be bett er inte
gra ted into pre se rvice preparati on is the research 
gat hered throu gh thi s literat ur e review. With STEM 
being an increased foc us in schools, both in the class
room and in extracurricular activities, it is esse ntial 
that teachers know and und ers tand the deeper mean 
ing as to why and how the se subj ects are related to 
one another in order to better implem ent learnin g in 
the classroom. From my experie nces, a better under
standin g of how stud ent s engage in the proc ess of 

15 



reasoning in both subjects will help to foster greater 
understanding in both. I therefore belie ve that linking 
the subject s of mathematics and science with students 
in the elementary classroom is something that not 
only could be but should be reasonably practised by 
preservice and practising teacher s. 

One revelation from this process was when I dis
cussed the intersections between science and mathe
matics reasoning with my supervisors. Janelle and 
Mijung mentioned that in science reasoning we discuss 
the hypothesis-verification process to develop reason
ing, but mathematics reasonin g is developed through 
the use of conjectures. They proceeded to explain that 
conjectures and hypotheses essentially point to the 
same phenomenon ; however , they are each used in 
their respective field. I think that this is something that 
should change in the future, as we look toward creating 
more cohesive and comprehensive learning opportuni
ties for students. We should use both words inter
changeably in both fields so that students do not get 
left behind in the language of the topic. The focus 
should be on the processing that students are engaging 
in. If we allow this to be the focus of teaching and 
learning, we will see increased student understanding 
in both domains. We will reduce the disparity that exists 
between students who excel in each domain but 
struggle in the other. All of these are important effects 
that students would benefit from. 

Janelle McFeetors and Mijung Kim 

Rea soning in general involves logic thinking. 
When children encounter a puzzling question, they 
try to find solutions by retrie\'ing and reorganizing 
theirthoughts, experiences and knowledge . We educa
tors want to support students in constructing reason 
able solutions developed through logical thinking 
processes. Through various pedagogical strategies, 
educators strive to enhance children' s thinkin g and 
reasoning processes, which help them construct solu
tions , which also develops knowledge application. 
For instance, in mathematical problem solving, chil
dren learn to conjecture, specialize.justify and create 
proof, and in scientific problem solving , they learn 
to evaluate and justify claim s with evidence to draw 
conclusions. In this process , children's knowledge is 
reflected, examined and developed to solve the current 
probl em. However, often the particular terminologie s 
for these cognitive actions are used in a way that teach 
children to see reasoning as if they were different and 
isolated within content areas. We seldom question 
what children do differently during conjectur ing in 
mathematic s class and hypothesi zing in science class
rooms. Children try to make sense of the current situ
ation at hand (for exa mple, a pu zzle, question, 

16 

discrepant event and so on) using their knowledge , 
experience s and creativity to come up with a possible 
explanation, which is conjecture in mathematic s and 
hypoth esis in science. We acknowledge these termi
nologie s are unique in each disciplinary tradition, 
thus need to be acknowledged and respected. Yet 
when separately taught to preservice teachers and 
further to children in classrooms, they could become 
confusing and seemingly isolated cognitive processes. 

Reasonin g in general involves logic thinking. 

In this study, we teacher educators looked at math
ematic s and science reasoning not from a subject 
disciplinary lens but from the perspectives of a child 
and a teacher who might not distinguish reasoning 
processes in two different subject areas. We believe 
there is a need for understanding how reasoning in 
mathematics and science could be integrated and 
taught. such as in STEM-oriented classrooms. In a 
STEM approach, students are engaged in problem 
solving, which requires integration of knowledge and 
skills among different disciplines and the boundarie s 
of disciplines often disappear. Once the problems are 
identified and goals are shared in the problem- solving 
community, disciplinary traditions and knowledge 
and reasoning skills are all complexly intertwined 
and integrat ed in collective levels. Student s create, 
justify, evaluate and negotiate their ideas to reach the 
best solutions to problems. Which mathematical 
reasoning and scientific thinking do students use in 
a STEM problem-solving process? One might find 
this question difficult and not necessary as children's 
reasoning and problem -so lving process are inter
twined and integrated without the boundarie s of 
subjects, which motivated our interest in this study . 

To illustrat e, we offer a specific example of a 
STEM approach, where students are challenged to 
solve a problem, such as building a boat with material 
and time constraints. The boat needs to meet with 
certain criteria, such as ( 1) holding a certain weight, 
and (2) reachin g a certain point as fast as possible 
when a fan is blowin g. In this problem-solving situ
ation, students must understand the relationship of 
density, buoyancy, geometrical shapes, friction of 
materials. measurement of distance and loading 
strategy. To prove their design, they would test their 
boat with a certain load and a fan blowing on water. 
When the load gets heavier, they would conjecture 
the maximum load before it sinks. In thi s problem 
process , childr en's reaso ning is complexly inter
twined with vario us types of reasoning. Thus, it is 
neith er po ss ibl e nor meanin gful to indicat e 
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mathematical and science reasoning separately. An 
implication for classroom practice is that mathematics 
and sc ience content be address ed simultaneously 
through intriguing problems for students, where 
reasoning is elicited in their action s and disco urse . 
Rather than labelling these actions with discipline
specific terminology, teachers can celebrate the un
derstandings students develop as they offer tentative 
explanations, explore the context and ultimately 
justify their ideas . This is where we feel the gap exists 
between theory of cognition and everyday practice. 

During our reading and conversations, we ques
tioned how we could develop more integrated ways of 
teaching. We reflected on our own classrooms in our 
teacher education program in subject-specific curricu
lum courses and our own teachin g at the university. 
We recognized that it is also very isolated as we per
petuate distinction s using different terms for similar 
reasoning processes. This led us to examine the termi 
nologies of reasoning that we use in each discipline 
and how we introduce them to preservice teachers. As 
we realize that students in schools and citizens in ev
eryday life integrate knowledge and skills without 
disciplinary boundarie s similar to a STEM approach, 
it was worthwhile que stioning how reasoning is dis
cussed in research, curriculum and in our own classe s 
as an initiative of developing an integrated approach 
for mathematic s and science teaching . 

As a result of this inquiry, we have more questions 
and challenges as we start to reflect on our own cla ss
rooms at the university. The current teacher education 
program has perpetuated the separation between sci
ence and mathematics through its subject-based pro
gram design. Also, as the specific terms of reasoning , 
such as conjecture and hypot hesis, are the means of 
communicating among educators and resea rchers 
within the subject disciplines, they will be continuously 
used in the communities of mathematics and science 
education. As we realize the need for an integrated 
approach in today' s classrooms, how we introduce 
these term s without creating confusion and resistance 
becomes a challenge. Creative and collective effort s 
will be required in further conversations. 
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Teaching Ideas 

Leibniz 's Heuristic Derivation of the 
Product Rule and Quotient Rule 

Indy Lagu 

The standard derivations of product rule and 

quotient rule are algebraic and involve adding zero 
in a clever way. These proofs are mathematically 
correct, but not pedagogically illuminating. We 
present Leibniz's heuristic derivation of product 

rule. A heuristic derivation of quotient rule , based 
on Leibniz's idea, is also given. While not math
ematically rigourous, we believ e an approach based 
on these ideas to be pedagogicall y superior. 

Introduction 
Let x = 100 and y = 100,000. Then xy = 10 million . 

Now let x 1 = 97 (3 per cent less than x) and y 1 = 
101,000 (1 per cent more than y), and think about 
the following question : 

Is xy greater than X1.Y1? 

It turns out that x 1y1 = 9,797,000, so xy is greater. 
In fact, xy is greater than XJ.Y 1 by 2.03 per cent. 

That relative difference , 2.03 per cent, is a bit 
suspicious, and looks a lot like the sum of the rela

tive difference in x (-3 per cent) and the relative 
diff erenc e in y (I per cent). 

As it turns out, that coincidence ha s an explana
tion, and that explanation gives us a heuristic proof 

of the product rule and of the quoti ent rule. The 
following is essentially Leibniz's derivation of 
product rule. 
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Product Rule 
Given two numbers, x and y, change x by Ill and 

y by l'iy . Now, the difference between the product of 
the new x and y and the old x and y is 

6(.xy) = (x + Ill) (y + l'iy) - .xy, 

and a routine calculation shows 

6(.xy) = ytll + xl'iy + (l'ix)(l'iy), 

and hence 

~(xy) /1x 11y ( tu 11y ) 
-- = - +-+ - · -

xy X y X y . 
(1) 

Now if the relative changes in x and y are small, 
the third term in equation ( 1) is negligible and we 
have 

~(.xy) tu !1y 
--z - - +- · 

X)' X y (2) 

In other words, the relative change in a product is 
the sum of the relativ e changes in the factors . 

Using this heuristic , the product rule is almost 
immediate . For functions , the analogue of equation 
(2) is 

(jg)' 

(f g) 

f' g' 
- + -! g ' 

and multiplic ation by.fg yields 

(fg ) '=f'g +fg', 

which is the product rule . 
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Quot ient Ru le 
Since the rela tive change in a product is the sum 

of the relative changes in its factors, it stands to reason 
that the relative change in a quotient is the difference 
of the relative change in the numerator and denomina
tor. In fact, this is true. We leave it to the reader to 
verify that 

11(xly) 

xly 

y 

y + !1y 
-- -- --

X y + !1y 

Therefor e, if the relative changes in x and y are small, 
one obtain s 

Mx ly) 

xly 
:::C,-- - --

X y 
(3) 
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The continuous analogue of equation (3) is 

(fig)' J' 
--- =-
(! I g) f 

g' 

g 

which is equivalent to the quotient rule. 
To be sure, our derivations (or should we say Leib

niz's derivations) are not mathematically rigourou s. 
We would argue the standard proofs presented in 
calculus classes are not entirely rigourous eitHer, since 
they rely on an intuitive understanding of how one 
calculates limits, rather than definitions involving 1: 

and o. We believe Leibniz's idea has greater pedagogi
cal value. 
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Backing Up and Moving Forward in 
Fractional Understanding 

Angela T Barlow, Alys on E Lischka, 
James C Willingham and Kristin S Hart/and 

A well-crafted opening problem can provide preas
sessment of students 'fraction knowledge and assist 
teachers in determining next steps for instruction. 

After watching a demonstration lesson that exposed 
students' misunderstanding s regarding division of frac
tions, a teacher shared this sentiment: 

When I read a standard, I think about what that 
standard says I have to teach and I find a way to teach 
it. I don't think about how far I need to back up. 
(Pamela, a Grade 5 math teacher) 

In a discussion of the lesson among colleagues, two 
key ideas surfaced. First, standards such as those pre
sented in the Common Core State Standards for Math
ematics (CCSSM) (CCSSI 2010) "identify the end goal 
of a unit of instruction that encompass es more than a 
skill that may be taught in one or two lessons" (Barlow 
and Harmon 2012, 500). Second, carefully crafted word 
problems provide a mean s for identifying students' 
misconceptions (Barlow 2010) and guide the teacher in 
knowing how far to back up along the path of the learn
ing trajectory. This process of backing up begins with 
using responses to a word problem to identify categories 
of student s' understandings in relation to the expecta
tions of the standard and using this information to make 
instructional decisions . In some instances, students will 
provide evidence of meeting or exceedin g lesson expec
tations; instructional decisions , therefore, will need to 
advance their thinking. Instructional decisions for other 
students, who are working toward lesson expectations, 
should help them connect prior knowledge to new con
cepts. Students who are lackin g fundamental under
standings require instruction aimed at filling gaps in 
prior knowledge. The purpos e of this article is to dem
onstrate this backing-up process- by examining catego
ries of student work taken from a carefu lly crafted 
problem-and suggesting instructional decisions. 
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The Backing-Up Process 
Use students' responses to a carefully 

crafted word problem to identify categories 
of understandings and to make instructional 
decisions. 

1. When students exceed expectations, 
instructional decisions should advance 
their thinking toward an identified end 
goal. Build students' understanding , 
perhaps by using a different problem 
context or by using numbers that are more 
complicated. 

2. When students meet lesson expectations, 
they are ready to begin exp loring the new 
concept. Guide group discussions to 
attend to key aspects of the context to 
allow students to move deepl y into the 
concept. 

3. When student s are working toward 
meeting lesso n expectations, 
instructional decisions should help them 
connect their prior knowledge to new 
concepts. Supply supportive task s that 
will prepare students. 

4. When students lack fundamental 
understandin gs, aim instruction at filling 
in gaps in students' prior knowledge 
before expecting them to work toward 
the lesson expectations. 
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The Measuring Scoops Problem 
To begin thinking about the backin g-up process , 

we present a problem used in a profe ssional develop
ment project that elicited students' fraction under 
standin gs. The first author created the Measuring 
Scoops problem using a problem-creation framework 
(Barlow 20 I 0) with a goa l of engaging students in 
interpreting the remainder of a division problem that 
involved repeated subtraction of a fractional quantity. 
The problem , which follows , is significant in term s 
of CCSSM content standard 6.NS. l (CCSSI 2010). 

Chef Frederick is mixin g ingredi ents to bake a 
dessert . His recipe calls for 2 1/2 cups of sugar. 
The only measuring scoop that Chef Freder ick has 
measures I /3 cup. How many measurin g scoops 
of sugar will Chef Frederick need ? 

In thinking about this problem, several key features 
emerged that we considered important in terms of its 
ability to meet our instructional goal: 

• Students are likely to be familiar with measurin g 
scoops and will relate to the context of the 
probl em. 

• Measuring scoops repre sent different fractional 
amounts and can support students in counting with 
a fractional amount as the "unit." 

• By using 2 1/2 and 1/3, students can represe nt the 
problem in a variety of ways, includin g drawing s 
and manipulative s. 

• The remainder of 1/2 can be identified visually, 
supporting students in making sense of the remain
der. More specifically, they can see that the remain
der is half of what they are counting. 

To solve this problem, we anticipated stude nts 
representing 2 I /2 cups with pictur es or patt ern 
blocks. Recog nizing that the y need to know how 
many scoops of size 1/3 cup are in 2 1/2 cups, students 
would divide their cups into thirds (representin g the 
scoops) and then count the scoops or third s. We ex
pected a rich discu ssion rega rdin g the remaining 
parti al scoop's value . ls the remaind er l /2 or I /6? We 
ant icipated encouraging students to think abou t what 
they were counting to support makin g sense of this . 

In our profe ssional development project, we use 
demonstration lessons as a means for enhancing 
participants' knowledge of content and instructiona l 
strategies. During a demonstration lesso n, one project 
team member teache s a lesson while the project par
ticipants observe . For this demonstration lesson, the 
first author impl emented the Measuring Scoo ps 
problem in a participant' s fifth-grade class of 20 
students. About 50 project parti cipants observed the 
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lesson. Although the problem aligns with a standard 
from the sixth-grade curriculum, we felt it was ap
propriate for the fifth-grade class , given that the lesson 
occurred near the end of the school year. In addition, 
we were interested in the idea s brought by student s 
who had not yet been taught the standard, which 
would likely not have been the case had we been in 
a sixth -grade classroom. 

Although the Measuring Scoop s problem was 
designed to support students in interpreting the re
mainder of a division probl em involving fractions, 
the student work it generated supplied vita l insights 
into students' understandings. This analysis of student 
work led Pamel a to express the sentiment shared at 
the beginnin g of this article. Next , we will share thi s 
student work and demon strate how the problem sup
ported project staff and participants in thinkin g about 
the backing -up process . 

Examining Student Work 
Considering the purpose of the backing -up process, 

we delib erately made the choice to engage students 
in solvin g the Measuring Scoops problem even 
though they had no prior instruction on interpreting 
the remainder in fraction division. Thi s allowed us to 
preas sess stude nts· under standing s on the topic and 
gauge their read iness to learn , which is the intent of 
the backin g-up process . Although previou s student 
experien ces included working with models as well 
as the algorithm for dividing fractions, we did not 
expect to have student s who would meet the expecta
tion of interpretin g the remainder in fraction division . 
Doin g so at this time would result in students exceed
ing our expec tation s for this lesson. Ideally , we ex
pected students to make sense of the context of the 
problem, generate appropriate repre sentations of the 
quantiti es involved, and select a reasonable approach 
to solve the problem. In reviewing student s' responses 
to the problem, we found it useful to group the stu
dent s' work into four categories: 

I . Exceeding lesson expec tations 
2. Meeting lesson expectations 
3. Working toward lesso n expectations 
4. Lackin g fundamental understanding 

We begin with an example of students who ex
ceeded the lesson expectations and then move through 
the remaini ng categories. 

Exceeding Lesson Expectations 
Alth ough students had not received instruction on 

the topic, we unexpectedly had a few student s who 
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were able to correctly interpret the remainder in the 
Measuring Scoops problem (see Figure 1 ). The se 
students correctly modelled 2 l /2, separated it into 
1/3 pieces (the scoops) and correctly counted 7 1/2 
scoops. By correctly interpreting the remainder in 
this way, students exceeded our expectations for the 
lesson. We hypothesized, however, that the problem 
context supported these students with interpreting the 
remainder. Therefore, a teacher might offer these 
students the opportunity to interpret the remainder in 
a division problem in a different context, perhaps with 
less simple numbers. In this way, students would be 
able to engage in reasoning and recognizing patterns 
and thu s build understanding. 

Meeting Lesson Expectations 
In general, students who meet the lesson expectations 

are ready to begin thinking about the new content con
tained in the standard (that is, the interpretation of a 
remainder). For the Measuring Scoops problem, stu
dents who meet the lesson expectations should demon
strate their ability to model fractions and use the fraction 
model s to solve a division problem. Student s began by 
drawing models for 2 1/2 and 1/3 (see Figure 2). Next, 
they drew 2 1/2 again but this time divided the wholes 
into thirds and labelled each third. Although they did 
not label the remainder with 1/6 in the model, we see 
on the right side of the poster that they used 1/6 in their 
check as well as in their solution statement. In thinking 

about this remainder piece, however, students did not 
attend to the problem context or the unit being counted 
(that is, thirds or scoops). As a result , they did not 
present evidence of meeting the expectations of the 
standard. They are ready, though, to begin thinking 
about interpreting the remainder. A teacher might use 
this example to facilitate a whole-class discussion re
garding the meaning of the remainder for the Measuring 
Scoops problem. Such questions as the following might 
be useful in guiding this discussion. 

• How can we deal with the fact that Chef Frederick 
has only a 1/3 scoop if he needs 1/6 of a cup of 
sugar? 

• How can you report your solution in terms of one 
unit? 

• What are you counting? 

Working Toward Lesson Expectations 
In some instances, students who are working toward 

lesson expectations will provide evidence of possessing 
foundational understanding s but an inability to connect 
these to the problem context. Such students are not 
ready to think about the new mathematics contained 
in the standard but rather need support to be ready to 
learn it. For the Measuring Scoops problem , students 
must be able to model division of a whole number by 
a unit fraction as well as division of another fraction 
by the unit fraction. Figure 3 pre sents an example of 

Figure 1. Students had not been 
instructed on interpreting remain
ders. Nevertheless, some met lesson 
expectations, exceeding what the 
authors anticipated. 

Figure 2. Although this work shows students' alterna
tive interpretation of remainders and their readiness to 
interpret remainders, failure to attend to the problem 
context and the unit being counted show a lack of evi
dence of meeting expectations of the standard . 
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~ igure 3. Fo-r-;,1e Measuring Scoops problem, stu- --·-1 
dents must be able to model division of a whole num-
ber by a unit fraction as well as division of another 
fraction by the unit fraction. 
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Figure 4. This student work fails to accurately model 
thirds. 
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this; students demonstrated 2 divided by 1 /3 but 
were unable to extend this to modelling 1/2 
divided by 1/3. The statement on the right side 
of the poster reads, "So far, Chef Frederick 
needs 6/3, but we need to figure out the measure 
for 1/2 in 1/3 (thirds)." This statement indicates 
that students were attempting to think about how 
many one-thirds are in one-half. However, as 
they attempted to find their solutions, students 
appeared to have gotten lost in their computa
tions and models. 

A teacher might ask questions concerning 
what the students were attempting to count dur
ing their fraction-by-fraction division or ques
tions leading to a different model by which 
students might make sense of the problem. 
Follow-up tasks involving fraction-by-fraction 
division on appropriately marked grids may help 
these students progress in their thinking (Battista 
2012) and eventually become ready to attend to 
interpretation of the remainder in fraction 
division. 

Lacking Fundamental 
Understanding 

Most classrooms will inevitably have stu
dents who lack fundamental understandings, 
which prevents them from being able to mean
ingfully engage in the intended topic. The ability 
to accurately model fractions is fundamental to 
modelling and solving division problems. On 
the left side of Figure 4, students have correctly 
modelled 2 1/2 and incorrectly modelled 1/3. 
lnterestingly, the sentence on the right asks, 
"How can you make a third to a half?" indicating 
that they recognize the goal of the problem (that 
is, determining how many thirds are in 2 1/2). 
Their inability to model thirds, however, seems 
to be a stumbling block for beginning the solu
tion process. 

For these students, returning to basic under
standing of fractions is essential. The introduc
tion or reintroduction of manipu latives, such as 
pattern blocks, and returning to visual modelling 
of fractions can allow students entry into this 
problem (Battista 2012). However, expecting 
students to make sense of fraction operations , 
such as those represented in the Measuring 
Scoops problem, is unreasonable without first 
addressing these fundamental gaps . 
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Anticipating Roadblocks in 
the Backing-Up Process 

The goal for using the Measuring Scoops 
problem was to preassess students' readiness 
for interpreting the remainder in fraction di vi
sion by eliciting and understanding students' 
thinking. When examining student work in 
this way, though, a "roadblock" may some
times be encountered if the work does not 
clearly align with one of the previously de
scribed categories. In these instances, addi
tional questioning of the students is needed 
to better understand their readiness for inter
preting the remainder. To help the reader 
anticipate potential roadblocks, we describe 
two examples in which students' work pro
vided inconclusive evidence about students' 
understandings or misunderstandings related 
to the division of fractions, in general. In both 
cases, students produced work that held the 
poten6al for modelling division of fractions, 
but to draw conclusions regarding their un
derstanding of fraction division would require 
too many assumptions on our part. 

Anticipated Roadblock One 
In some instanc es, students get lost in their 

work and lose sight of the problem goal. We 
see this in Figure 5. Here, students began by 
representing the problem with a bar model 
twice. They correctly drew and labelled thirds 
as well as sixths . In the process, though, they 
seem to have forgotten that they were count
ing thirds (for scoops) . Instead, they began 
"putting the third s back together" and an
nounced that their answ er was 2 1/2. In re
viewing this work, it was problematic for us 
to determine what these students understood 
about fraction divi sion and the remainder, 
making it difficult to categorize the work. 

Anticipated Roadblock Two 
A second roadblock involves students gen

erating algorithmic statements using the num
bers in the problem without considering the 
problem context. In Figure 6, students appear 
to have petformed numerous calculations with 
the numbers that have been extracted from the 
problem. They began by subtracting 2 1/2 
minus 1/3 in multiple ways. Then students 
began repeatedly adding thirds, arriving at 
2 1/3, for which they then drew a bar model. 
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Figure 5. Sometimes students lose sight of the problem 
goal. The authors had difficulty determining from stu
dents' work below what they understood about fraction 
division and remainders. 

Figure 6. This work focuses on calculations with ex
tracted numbers but shows no evidence that students 
considered the problem context. 
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Although their calculations appear to be correct, they 
have not provided evidence of ability to model division 
with fractions and to begin thinking about the meaning 
of the remainder . We could even hypothe size that these 
students did not recognize the problem as one involving 
division. However, the work alone does not clearly 
indicate an appropriate categorization. 

Backing Up as Formative 
Assessment 

This use of student work as formative asses sment 
and as a driving force for instruction supports both the 
Teaching and Leaming Principle and the Asses sment 
Principle described in Principle s to Actions: Ensuring 
Mathematical Success for All (NCTM 2014). Assess
ing student work in this fashion allowed project par
ticipants to see the reality of students' understanding s 
of fraction-related concepts and to think about instruc
tional strategies that would support student learning 
within each category of student work (that is, exceeding 
lesson expectations, meeting lesson expectations, 
working toward lesson expectations and lacking fun
damental understanding s) . We began by po sing a 
problem beyond students' current knowledge that al
lowed for multipl e solution methods , provided op
portunities to connect to prior knowledge and promoted 
productive struggle . By doing so, we 

embrace[d] a view of students ' struggles as oppor
tunitie s for delving more deeply into under standing 
the mathematical structure of problems and rela
tionships among mathematical ide-as, instead of 
simply seeking correct solutions. (NCTM 2014, 48) 

As project staff and participants considered stu-
dents ' work within each category, we acknow !edged 
that the final goal of understanding for all students 
could be accomplished only through incremental 
movement. Determining the instruction and interven 
tion needed to facilitate this movement is one of our 
prin1ary roles as mathematics teachers. This assessment
driven proces s for making instructional deci sions is 
crucial in advancing our students' understanding of 
fractions. By starting with a carefully crafted problem , 
we were able to identify student understandings and 
misconception s and make instructional choices by 
which we could guide student s to our goal. 
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Common Core Connections 
3.NF.l 
5.NF.7 
6.NS.l 
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An Architecture Design Project: Building 
Understanding 

Sarah B Bush, Judith Albanese, Karen S Karp and Matthew Karp 

Seve11th-grade students investigate area, surface area, 
volume , proportional thinking , number sense and 
technology. 

Middle school students need relevant, meaningful 
contexts to apply emerging mathematical ideas . In 
this project, through the context of an architecture 
investigation, sevent h-grad e students engaged in 
mathematics involving area, surface area, volume, 
ratios and proportional thinking, number sense, and 
technology integration. Students, working in mixed 
ability groups, were given an occupant scenario , 
which they used to build a home designed to meet 
the needs of their unique resident s. After initial 
drawings of plans fo11owed by critiques from a 
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practising architect, they finalized designs and car
ried out mathematical tasks related to their plans. 
As a culminating event, student groups presented 
their home plans to local stakeho lder s, including 
peers, an architect who designed the school building, 
the district's mathematics curriculum specialist, and 
teachers from the school, who provided valuable 
feedback. Throughout the project, student s com
pleted a math log to record their mathematical 
thinkin g . Our project was tested in two seventh
grade classes taught by one of the authors . 

This project aligns primarily to one cluster in the 
seventh -grade geometry domain of the Common 
Core State Standards for Mathematic s (CCSSM ), 
which is to " so lve real-life and mathematical 
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problems involving angle measure, area, surface 
area, and volume" (CCSSI 2010, 7 .G.6, 50). The 
appendix (online) describes specific alignment to 
both sixth - and seventhgrade content standards as 
well as connections to solving real-world and math
ematical problems in ways that connect to two 
seventh-grade domains: ratios and proportional re
lationships, and the number system. Additionally, 
this project addresses two of the Common Core's 
eight Standards for Mathematical Practice (SMPs). 

SMP 4, Model with mathematics, states that 
"Mathematically proficient students can apply the 
mathematics they know to solve problems arising 
in everyday life, society, and the workplace" (p 7). 
Students also accessed SMP 5, Use appropriate tools 
strategically, employing technology to build their 
architectural designs. Furthermore, NCTM' s Prin 
ciples to Actions: Ensuring Mathematical Success 
for All describes eight high-leverage Mathematics 
Teaching Practices that guide teachers to effectively 
implement instruction. This activity provides an 
example of Practice 1 and Practice 7: 
• "Implement tasks that promote reasoning and 

problem solving ." As students engage in this proj 
ect, which allows for a variety of solution strate
gies, they must reaso n mathematically. 

• "Support productive struggle in learning mathe
matics" (NCTM 2014, 10). Students authentically 
wrestle with using design technology to create 
home plans that are responsiv e to the needs of 
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Figure I. Students had to work within 
these project constraints. 

Directions: The following is a list of con
straint s that your group needs to be aware of 
when designing your home . Your design must 
have the following: 

• One story-no basement 
• Between 2,000 square feet , ±20 per cent 
• At least 15 feet from the road 
• At least 15 feet from all propert y lines 
• Front door 
• Back door 
• Kitchen 
• At least 1 bathroom 
• Use standard conventional dimensions for 

doorways, hallw ays, ceilings and so forth. 
• A closet for each bedroom 
• Do not consider electricity, heat and 

plumbing 

- - -- - - - - - - --· 

occupants as well as conforming to established 
building constraints. 
Because this transdisciplinary project was an 

authentic convergence of design, art , aes thetics, 
engineering, community planning and mathematics, 
the teacher had to move between the realm of the 
mathematics and other subjects to truly address 
objectives from each field of study. Transdisciplinary 
teaching supports students in 

exploring content areas by foregrounding a prob
lem or issue using multiple inquiry processes, 
which naturally connect the disciplines through 
the problem to be solved . (Herro and Quigley 
2016, 2) 

You will notice that as a truly integrated project, 
it is neither a mathematics project that touches on 
some small aspect of engineering nor an art project 
that touches on a trivial aspect of mathematics-it 
is a blend. Therefore, in some sections of the work 
described below, the focus will, for example, shift 
to design. We have found it important in our work 
that middle school students witness how learning 
can truly cross over into multiple disciplines, as this 
is what they will experience in the real world. 

Introduction and Brainstorming 
On the first day of this exploration, students 

watched a video in which the architect on our author 
team provided hom e-design constraints (see Figure 
1). Some elements of community planning and 
design were easily understood, but some required 
more detail, such as the description of public versus 
private space. To get students thinking, the architect 
asked, "Where would be the ideal location to posi
tion the bathroom in the home?" and "What distance 
from the front door of your hou se do you want to 
make your bedroom ?" When considering the con
nections betwe en interior and exterior spaces, he 
asked students to reason about "Which actively used 
rooms might have windows to look out into the 
neighbourhood and "What would you want people 
to see if they looked into your house from the street." 

Next, students were placed in groups and given 
a uniqu e occupant scenario card (see Figure 2) and 
quiet time to individually brainstorm and create 
initial conceptual plans for their homes (see Figure 
3 for an examp le). At this point, students were not 
yet focused on the precise dimensions of each room. 
Day I concluded with students working in groups 
to discuss the responsiv eness of their individual 
sketche s to the hyp othetical residents ' needs and to 
work on questions in their math logs (see Figure 4 ). 
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Figure 2. Each student group received a unique occupant 
scenario card. 

Scenario A: Your challenge is to design the ideal space for a 
family of four. This family includes a mom and dad in their 
40s, a daughter age 7, and a son age 9. 111ey also have a pet 
pig. Mom likes to do yoga , dad likes watching sports, the 
daughter wants to be a scientist and the son loves to play 
basketball. Their pet pig needs a place to stay cozy outside, 
but the family would also like a designated space in the 
house where the pig could stay. 

Scenario B: Your challenge is to design the ideal space for 
a newlywed couple. They have two cats and a cockatiel. 
She needs an office space in the house, and he wants a man 
cave. He also has a motorcycle. 

Scenario C: Your challenge is to design the ideal space for 
three elderly sisters. One sister has a walker, and one sister 
loves to cook. They all think they are the "ruler of the 
house" and deserve the biggest space. 

Scenario D: Your challenge is to design the ideal space for 
three college students-two males and a female. The fe
male wants her privacy. All three of them are avid road 
bikers and have a combined five bike s and accessories. 

Scenario E: Your challenge is to design the ideal space for 
a family of three, soon to be four. The couple already has a 
four-year-old boy and just found out they are expecting 
another boy. They are very musically inclined, and they 
want the four-year-old to learn how to play the piano. 

Scenario F: Your challenge is to design the ideal space for 
a couple who have grown children. Although they have 
been empty nesters for the last five years, they recently 
found out that their daughter and granddaughter, age 13, 
are moving back in. The teenager is not excited about mov
ing in with her grandpar ents. 

Scenario G: Your challenge is to design the ideal space for 
two brothers. One play s the drum s, and the other is an exer
cise enthusiast and has lots of equipment, including 
weights. Both work out of the home with technolo gy jobs 
that require workspace and the ability to e-conference. 

Scenario H: Your challenge is to design the ideal space for 
a young couple with newborn twin girls. Both parents work 
long hour s, so the husband' s mom is moving in with them 
to help out. The couple wants to make sure the husband' s 
mom has a small kitchenette in or near her bedroom . 

Scenario I: Your challenge is to design the ideal space for 
a single man. 

- --- -----··- ----------- - -- -- ---
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In question I, students tapped into em
pathy in considering the occupants' 
needs. Two student responses highlight 
how the scenarios played a critical role 
in their design decisions for the proposed 
residents: 

Our occupants had 5 bikes, so we 
knew that we'd need a garage. Also, 
since the people are college students, 
we inferred they would require study 
space. The girl got her own room for 
privacy, and we had to incorporate a 
large living room for parties. Since there 
are 3 people, they would probably need 
a laundry room for all their clothes. 

The occupant of the house needs 
includes the man that lives there who 
is handicapped and enjoys gardening. 
This scenario influences our design 
choices because we can 't use stairs 
and there has to be a big backyard. 

Question 2 required students to ex-
plore the mathematics as they thought 
through such project constraints (see 
Figure 1) as room dimensions and square 
footage. Students were challenged by 
how to handle the "extra inche s" in the 
calculations of square feet. When a mea
sure was 18 ft IO in by 23 ft 11 in, they 
realized after discus sion that finding the 
area was made easier by converting those 
measures to decimals. Students used the 
Internet to find standard conventions for 
such dimension s as length and width of 
doors, width of a hallway and area of a 
laundry room. 

Creating SketchUp 
Designs 

For two days, student groups fine
tun ed their original paper-and-pencil 
designs using SketchUp (2016) software 
to simulate the authentic work of an ar
chitect . Students reviewed several tutori 
als about Sketch Up to help them under
stand how to effectively use such features 
as th e dimension tool (fin d tutorial s 
under the Sketch Up website's Learn tab). 
Groups ' Sketc hUp desi gns were based 
on the best idea s from each individual 
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sketch. At the end of these two day s, I--
student group designs were sent electroni- Figure 3. This sample student plan involved scenar io G. 
cally to the architect, who then provided 
written feedback to strengthen their final 
hom e designs (see Figure 5). SketchUp 
is free software that can be downloaded 
onto either Windows or Mac. Teacher s 

()Ha~·i -- - oc rf "0 9 ,..., ~ 

may also wish to explore other free soft-
ware , including GeoGebra or Tinkercad 
design software. Although creatin g the 
group de signs by using so ftware that 
help s students visualize the house thr ee 
dim ensionally has many advanta ges, thi s 
project can be completed effectivel y with 
gro up des igns constructed usin g paper 
and pencil. 

Although creating SketchUp de signs 
were a key part of this project , the math 
ematics could get lost without explicit 
attention to focusing on students' think
ing . Therefore , students were also respon
sible for completing questions 3---6 in their 
math logs. Question 3 sparke d the most 
inter esting discussions . Some groups had 
difficult y recalling the meanin g of surface 
area, which provided an opportunity to 
review this key concept. For some groups, 
we brought out a three-dimensional (3-D) 
solid of a rectangular prism and asked 
student s to imagine it as a bedroom: 
"What part s of this figure would we need to paint if 
we were painting the walls and ceiling ?" and "How 
could you dete rmin e how much paint you need ?" 
Although some students immediatel y wanted to use 
the traditional algorithm for findin g surface area, 
instead, we asked student s to consider "What makes 
se nse?" as highlight ed in the following typical 
discussion: 

Teacher: What do you really need to paint in this 
bedroom ? 

Stud ent 1: Four walls and the ceiling. 
Teacher: How is this different from finding the overa ll 

surface area of a 3-D solid? 
Student 2: We don't need to paint the floor ; we only 

need to paint five sides total. 
Teacher: Is there anything else we need to account 

for? 
Stud ent 3: The door and windows. 
Teacher: Good thinkin g; how could your group ac

count for the fact that you aren ' t painting the door 
or window s? 
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Student J: We could find the area of this wall (the one 
acro ss from the wall wi th the door) and then sub
tract the area of the door. 
Some student s also started to confu se surface area 

and square footage. While calculating the surfa ce 
area of the bedroo ms, student s referred to the origi
nal list of co nstraint s and started to panic , thinkin g 
that because their surface area was more than 2,000 
square feet that they had excee ded the constraint of 
2,000 square feet± 20 per cent for the hous e. Again, 
using the 3-D solids as well as the classroo m space 
as example s, we held discussions about the differ
ence between surface area (such as in question 3) 
and square foo tage of a room or entire home . 

As students continu ed to test and retest whether 
their overa ll home design was between 2,000 squar e 
feet ± 20 per cen t, we found it intere sting how stu
dents mad e sense of± 20 per cent. Th e conversa tion 
below display s evide nce of students ' mathema tical 
sense making : 

STUdent 1: What is "± 20 per cent"? 
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Figure 4. Students worked on their Math Logs 
throughout the project. 

I. Describe your consideration of occupant needs. 
How did your scenario card influence your 
design decisions? 

2. What will be the dimensions of your actual 
house? The total square footage? 

3. Suppose you wanted to paint the walls and 
ceiling of all the bedrooms. What is the surface 
area of these spaces? Explain your thinking. 

4. You may consider getting air conditioning and 
base the size of the air conditioner on the 
amount of space it must cool. What is the 
volume of each room in your house? 

5. Formulate a rationale on how and why your 
home fits the needs of your occupants. What 
particular features did you include as a response 
to your scenario card? 

6. As you work on your prototype in Sketch Up, 
how did you use the Sketch Up tools? Describe 
your thinking using mathematical words, 
drawings, and symbols. 

7. Who will be responsible for each part of the 
presentation? What questions should you be 
prepared to answer (e.g., consider your audience: 
the architect, the principal, and so on)? 

8. During your presentation, how will you explain 
to the stakeholders the important mathematics 
related to your design? 

9. How did the feedback from the architect change 
your thinking about your design? Be specific. 

10. Architects often consider the surface area to 
volume ratio of a house using the surf ace area of 
the home exterior and the volume of the entire 
house . What is this ratio for your group's hou se? 
Show all work for finding both the exterior 
surface area and volume, as well as the ratio. 

11 . What ideas did you gain from being critiqued 
by the stakeholders and fellow classmates? 

I 2. Describe the challenges you faced adhering to 
the constraints of the project. 

13. What essen tial mathematics must architects 
kno w to do their job? 

14. If you were hirin g an architect to design you r 
hou se, what mathematics questions wou ld you 
ask to determine if he or she was qualified for 
the job? 
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Teacher: It means it is acceptable to have 20 per 
cent more or 20 per cent less than the 2,000 
square feet. 

Student 1: How would I know how much that is? 
Teacher : Good question. How would you figure 

that out? 
Student 2: Could we try 2,000 multiplied by 

20/100? 
Student 3: Oh , that would be 400 becaus e 4 + 4 + 

4 + 4 + 4 = 20, so 20 per cent of 2,000 would 
be 400. 

Teacher: Interesting; so what range of square feet 
could you have? 

Student 3: 2,400. 
Teacher: I agree that is the max. 
Student 1: Oh, so you could have anywhere from 

I ,600 to 2,400 square feet. 
Teacher: Let 's go back to the idea of 4 + 4 + 4 + 

4 + 4 = 20, so 20 per cent of 2,000 would be 
400." Can you say more about your thinking 
here? 

Student 3: Out of 100 per cent, which is five 20 per 
cents, so I knew out of 20, there are five 4s. The 
4s and the 20s would be the same thing as the 
400 and 2,000. So 400 + 400 + 400 + 400 + 400 
= 2,000. 

Teacher: What do you call a relationship that is not 
the same but that has the same scale (trying to link 
their thinking to proportional relationships ). 

Student 2: This is like simplifying a fraction. 
Student 3: When you take the fraction 

400 4 
2,000 20 

As students grappled with the se var iou s math
ematical concepts, they were able to work 
throu gh question 3 (see Figure 6). As they moved 
to the next question , student s had less difficult y 
finding the volume. As students worked on ques
tion 5, they fine-tuned their previous ideas from 
question 1. On question 6, students describ ed 
their selection and use of tool s (see Figure 7), 
which connected mathematics, art and engineer
ing design concepts. 

Preparing for Project 
Culmination 

Students spent two days completing th ese 
tasks: addressing archit ec t feedback to finalize 
their home designs, responding to questions in 
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- - ---------their math Jogs and creating their prese n
tation s. Architect feedback was in the 
form of genera l consi derati ons for design, 
in every case resulting in student s improv
ing their hom e design throu gh multiple 
iterations. For exa mpl e, one gro up re
ceived feedback about their kitchen being 
only about six feet wide . After we 
prompted this group to get a yardstick and 
measure six feet, they qui ckly realiz ed 
that thi s mea surement "wo n' t work be
cause you need enough spac e for coun
ters, an oven and to walk through pa st 
someone." Architect feedback also fo
cused on design and proportional thinking 
(see Figure 8), causing students to recon
sider and impro ve some of their previou s 
respon ses in their math Jogs. 

Figure 5. The architect gave students feedb ack to 
strengthen their final home designs. 

- -- - - -- -- ---- --- -- ---
- -~ - - --

Once designs were finali zed, groups 
worked to complete que stions 7-14 in 
thei r math lo gs. Some qu estions were 
designed to help organize student s' pre
sentation s, and other que stion s called for 
student s to summ arize change s made 
from the archit ect's feedback. Quest ion 
10 allowed us to formatively reassess 
students' und ersta nding of surfa ce area 
and volume; we found that as the week 
progress ed, student s had gained a better 
conceptual und erstandin g of these ideas. 

Figure 6. The computatio n belo w is a sample stud ent 
response to question 3. 
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Finally, student s created PowerPo int 
pre sentati ons guided by a template (see 
online) that includ ed needed presentation 
components. 

Vo1-t1i\'.~Bf-: s4.'.l8+6'Ll 8<'.) +lj l . lZ+W/~)2 
~,4.oB + ?S:'). (p -t-5 / .12 + 111. 02 "lf'loO. ?;2 +-F Presentation Day with 

Final Reflections 
On presentation day, group members set up stations 

that were visited by peers, an architect who designed 
the school's buildin g, the district's math ematics cur
riculum specialist and teachers from the buildin g. 
Group s were also given tim e to view classmates ' 
pre sentation s. As they critiqued their peer s' work, 
they compl eted feedback sheets that included "a plus 
and a wi sh." Student feedba ck showca sed a new 
understandin g of architecture and inclu ded these 
comments : "The kitchen is too long and skinny," "I 
would have the man cave separate from the Jiving 
room," "They should have expla ined more how they 
found the dimen sions, etc," and "More open space is 
needed from kitchen to living room." 
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The stakeholder s and teacher then evaluated stu
dent presentations usin g a checklist aligned directly 
to the assig nment. Durin g the prese ntat ions , we 
found that students were abl e to clearly articulate 
their mathe matical understanding along with their 
reaso ning for their design decisions . 

After the presentations co ncluded, the architect 
gave feed back to help improv e the overall designs. 
He suggested that student s could measure the dimen
sions of their own home so that they could better 
und erstand the typ ical ratio between the area of a 
kitchen and a living room. Another sugge stion was 
co allow students to look at blueprints of a house to 
deepen their under standing of scale and proportions 
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Figure 7. Ques tion 6 answe rs connec ted mat hematics , art 
and eng inee rin g. 
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Figure 8. Architect feedback helped student s impro ve 
previous math log responses. 
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before using Sket chUp . Follo wing the 
presentations, students reflected on what 
they had learned from this project (sup
port ed by Math Log que stion s 11- 14) . 
These culminatin g question s addresse d 
several take-aways, including the advan
tages of continuously using feedback to 
make iterative improvement s to one' s de
sign. To tie the work to the mathemati cs, 
student s were asked to articul ate what 
mathemati cs architects muse know, ques
tions 13 and 14 (see Table I ). 

A Meaningful Context for 
Integrating Technology 

Thi s Architecture Design Projec t pro
vided a meanin gful conte xt for working 
with area, surface area, volume, ratios and 
proportional thinking , numb er sense and 
the int egration of technolo gy. Student s 
were motivated and engaged , and they 
greatly valued the video information and 
feedback from a practising architect. The 
practi sing architect on our author team 
emph asized to students the importance of 
bein g able to use Sketch Up and other 
technology tools as an important skill for 
their futur e careers in the 21st century. In 
addition to the focus on mathematic s, this 
transdisciplinary project incorporated key 
element s of engineering design, art and 
technolo gy, and it offered an avenue for 
the classroo m teacher to showcase the 
work of her students to multiple stakehold
ers. We are hopeful that reading about this 
project inspires other middle-grades teach
ers to explore architecture and integra te 
mathematics with other content areas in 
support of authentic mathematics applica
tions in concert with individual s working 
in the se professions. 

33 



Table 1. Student responses to questions 13 and 14 focused 
on the mathematics that architects must know to do rheir 
jobs . 

13. What mathematics do 
architects need to 
know to do their job 
well? 

Ratio , area, surface area , 
volume, width, length, 
height , thickne ss (of walls) , 
dimen sions and so on. 

The essential mathematics 
architects must know how 
to do their job is how to 
find the square footage , 

: volume and making the 
room s the right size for its 
occupants. 

14. What mathematics 
questions would I ask 
an architect to deter
mine whether he or 
she should be hired 
for the job? 

• What are the dimensions 
of the house ? 

• What is the volume of 
each room? 

• How would you scale the 
: house in a model ? 

• How do you find 
dimensions? 

• How do you find the 
surface area? 

• How tall do doors need 
to be ? I 

I 
1------ ------~c--- -- -- I 
• Square foot How big do you think the 

1 
• Cubic foot master bathroom should be ! 
• Conversion between in relation to the master 

! 
measurements bedroom ? j 

• Ratio s 
- -- -- -----!--- -- ------~ 

They need to know stan- What square footage and I 
<lard dimensions and the volume would meet the 
height walls should be in standards of the area (plot ! 
relation to people. of land) the house wi ll be 

built on? ~ -- ----- - -- - - -'----- - ---- --~ 
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Instruction and Learning Through 
Formative Assessments 

Teachers Can Use Rich Mathematical Tasks 
to Measure Students' Conceptual Understanding 

Michael J Bosse, Kathl een Lynch-Da vis, 
Kwaku Adu -Gyamfi and Kayla Chandler 

Assessment and instruction are inteJWoven in math
ematically rich formative assessment tasks, so employing 
these tasks in the classrooms is an exciting and time
efficient opportunity. To provide a window into how these 
tasks work in the classroom, this article analyzes sum
maries of student work on such a task and considers 
several students' solution strategies to exhibit the useful
ness of these tasks in assessment, learning and teaching 
in the classroom. This article also provides some guid
ance on implementing these tasks in the classroom. 

The literature is replete with descriptions, uses and 
effects of rich mathematical tasks . These tasks draw 
on students' prior understanding; create conceptual 
connections among mathematical ideas; provide stu
dents with the opportunity to engage in activities that 
require them to attend to precision, use tools appropri
ately, model with math and critique the reasoning of 
others; provide interwoven assessment and learning 
experiences; direct students' attention to precise math
ematical concepts rather than skills; engage student s 
to creatively investigate and communicate concepts ; 
and provide teachers with opportunities to assess stu
dent understanding, misunderstandings and gaps in 
knowledge (Arbaugh and Brown 2005; Boesen, Lith
ner and Palm 2010 ; CCSSI 2010; Henningsen and 
Stein l 997; Herbst 2003; Smith and Stein 1998). 

It is commonly recognized that formati ve assess
ments provide opportunities for teachers to assess 
student understanding through "evidence of students' 
reasoning and misconceptions to use in adjusting 
instruction" (NCTM 2013, para 1 ). However, through 
well-designed formative assessment tasks, students 
can also learn the mathematics inherent in the task. 
Thus, formative assessments through mathematically 
rich tasks can have multifold effects of assessing 
student understanding and misunder standings and 
discovering gaps in student understanding; providing 
information through which teachers can adjust in
struction; offering student feedback to support their 
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own learning; and being an engaging task through 
which the mathematics at hand can be encountered 
and learned (Black and Wiliam 2009; Clark 2011; 
Hobson 1997; Long, Clark and Corchran 2,000; 
NCTM 2013; Pryor and Crossouard 2008). 

In concert, rich mathematical formative assess
ments possess a number of recognizable characteris
tics . They address conceptual understanding of pre
cise mathematical concepts recognizable by both the 
teacher and the student; assess student understanding 
of particular mathematical concepts and also serve 
as springboards through which the associated con
cepts can be investigated and learned; can be gener
ated to address any grade-appropriate mathematical 
concep t ; can be differentiated quite easily to address 
students of differing ability levels; often address 
Krutetskii's (1976) three processes of reversibility, 
flexibility and generalizability; and are solvable 
through multiple heuristics. 

A Sample Task and Classroom 
Context 

The task shown in Figure 1 was designed to pin 
point student conceptual understandings and misun 
derstandings regarding constructing and comparing 
function models (CCSS.Math .Content.HSF.LE .A.2) 
(CCSSI 20 I 0). While seemingly straightforward and 
unambiguous, this rich task encompasses numerous 
notions associated with the concept of polynomials, 
including the definition of polynomial functions and 
their continuous nature; the role of the leading coef
ficient and the degree of a polynomial on the graph' s 
extreme behaviours; the definitions of factors , linear 
factors and a factored polynomial; the graphical ef
fects of roots of odd and even multiplicity; and the 
association of zeros, roots, factors and x-intercepts 
between the polynomial function and its graph. 
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Beginrung with concepts from introductory algebra, this task 
intersects precalculus through the generalized solution 

y = K(x - a )odd (x - b )°' 0
" (x - c )odd(x - d) m" 

where K e: R+ and a, b, c, de: R. 
This specific task addressed three of the basic processes 

identified in Krutetskii 's ( 1976) model of mathematical 
abilities (that is, reversibility, flexibility and generalizabi l
ity). It required that students reverse their thinking about 
polynomials and factoring in a direction counter to what 
they typically experienced during instruction ; flexibly solve 
a problem in more than one way and under stand more than 
one solution; and generalize from specific cases to make 
deduction s from given or known facts . 

Below is a trun cated graph of a polynomial (All 
the behaviour near the x-axis is shown .) Ther e 
is no sca le for the y-axis. Write the equation of 
a polyn omial function that would produ ce this 
trun cated graph. 

/\
0 I 

\ . 
I I 
\) 
d 

) 

Figure I. This is an example of a mathematically rich 
formacive assessment task . 

This mathematical I y rich formative assessment task was 
selected for a number of reasons. All students were from 
the same high school class under the same teacher and had 
previously investigated polynomial functions and graphical 
and algebraic representations in their high school precalcu
lus class. They had all experienced identical content, in
structional practices and extended problem-solving chal
lenges. The task served as a means through which student 
knowledge, gaps and misunderstandings could be observed. 
The cla-;sroom teacher assessed the task as both challenging 
to most students and doable by all. 

All students were given up to two hours to comple te the 
three tasks; most took less time ( 10 to 90 minute s), as they 
were either able to solve the problem quickly or struggled 
to persevere through the problem-solvin g process. Students 
were primarily left alone to demonstrate what they knew 
and to learn through the activity while the researchers ob
served student work and assessed student understanding. 
The findings and summari es are addressed below in two 
parts: assessment and learning. 

Assessment 
The following are syntheses of narrative accounts of 

students' activity as they worked independently on the task. 
Th ese summari es abbreviate much fuller tran script s; 
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omitted material s were deemed as not furtherin g the find
ings. (See Bosse, Adu-Gyamfi and Chandler [2014] for a 
more detailed description of the associated study.) 

Student l holds a course grade of C. The teac her 
believe s that he will be able to do the task , albeit with 
a struggle. Tryin g to create a correct graph, Student 
I un successfully uses trial and error, entering values 
and polynomial functi ons into the calculator . He doe s 
not know what "trun cated graph" means and strug
gles, unnece ssarily , to predict the beha viour of the 
graph above and below the x-ax is. He claim s that 
polynomials are in the form .x1 + 2x + 3 and does not 
und erstand "polyn omial in factored form." Through 
trial and error, he unsucce ssfull y plug s numb ers in 
for a, b. c and d into 

y = ax 3 + hr + ex + d. 

He claims that a graph is the answer to a problem, not 
the beginnin g point. After he is shown (x - a), (x - b ), 
(x - c) and (x - d) as factors, he is unsur e how these 
are connected to the graph . When he is told that 

y = (x - a)(x - b)2(x - c)(x - d)2 

represents a possible solution, he trie s to rewrite it in 
the form 

px'' + qx 1
•
1 + ... + rx + s 

and shows no und erstandin g that the leading coeffi
cient has to be positive. Throughout, he is continually 
frustrated. 

Although the teacher expected him to struggle some, 
she expected him to do better . She was surprised that he 
struggled with the vocabulary, linear factors and poly
nomials and that she had not seen this before. 

The rema inder of the work of Student 1 (beyond the 
summary provided) demonstrates that he perc eives the 
polynomial function and graph as mostly disjo inted and 
unconn ected. He does not recog nize zeros on the grap h 
and doe s not under stand the correspondin g (x - _ ) 

binomial in the factored form of the pol ynomial or 
consider the far-left and far-right behaviour of the graph 
in respec t to either the degre e of the pol ynomial or the 
sign of the leading coefficient. He reco gnize s "polyno 
mial" only in the form y = px 3 + qx 2 + rx + s . Altogether, 
this stud ent has sign ificant gaps in his knowledge that 
were revealed to the teache r through the implementation 
of thi s task . The teac her recog nizes that much effort 
will be needed to brin g him to sati sfactor y unde rstand 
ing and that most concep ts will need to be readdressed 
in novel ways . 
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Student 2 holds a course grade of C. The teacher 
believes that this student will be quite successful 
with the task. Student 2 writes down expressions 

(x + 2)(x + l 2)(x - l)(x - 2"), 

(x + 2)(x + 1)2(x - l)(x - 2)2, 

and - 3x' + -2x 2 + 2x + 3, 

superficially analyzes them, and then attempts to 
graph the function. She struggles as to whether a 
and b should be represented by -a and-b. She repeat
edly attempts to graph polynomial s entered in 
general form and some in factored form. She rec
ognizes that the roots are squared at a and c, but 
does not know how to represent that condition in 
factored form. She tries values for a, b, c and d in 
polynomials of the form ax' + bx 2 + ex + d. She 
remember s that a, b, c and d must be inside paren
theses , but does not remember how to do this. She 
claims her confusion is because they are variable 
and not numbers. She struggles to determine if the 
linear factors should be (x - a") or (x - a)2 and 
decide s on the example 

(x + 2)(x + 12)(x - l)(x - 22). 

Her continued investigation (with numerous brief 
pau ses) is full of inquisitiveness and problem solv
ing, without any semblance of frustration. 

The teacher is relatively plea sed with the stu
dent's work but is surprised by her lack of under
standing linear factors, positive and negative roots, 
and the position of the exponent. 

lbrough this and additional work (beyond the tran
scripts provided), Student 2 recognize s a number of as
pect s of the graph itself, including the far-left and far-right 
behaviour of graphs of polynomial functions; the associa
tion of zeros, roots, and x-intercepts between the graph 
and the equation; and the nature and effects of roots of 
odd and even multiplicity. However, the specific nature 
of linear factors together with their multiplicitie s remains 
an obvious gap in her knowledge ; she is unsure if the 
factors should be (x - a) · (x - b) or 
(x + a) · (x + b ), and she is confused regarding whether 
the exponentiation should be inside or outside the pa 
rentheses. Notably, she attempts to map a, b, c and d 
from the graph to the equation without understanding 
the interconnection of zeros and intercep ts on a graph 
and zeros and real roots of a function. While this student 
has significant gaps in her knowledge, they are less so 
than for Student 1, and the teacher comes to better un
der sta nd preci se concepts with which the student 
struggl es. Now the teach er recognizes the particular 
concepts that need to be addre ssed to complete the stu
dent 's under standing. 
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Student 3 has an A+ average in the course. The teacher 
expects that he will fully master all the concepts in these 
tasks. Almost immediately, Student 3 recognizes that 
the polynomial is of even degree (at least 6) with a posi
tive leading coefficient. He claims that a, b, c and d 
represent the zeros of the function and write s 

y = (x - a)(x - b) 2(x - c)(x - d) 2, 

then rewrites the expression as 

Y = e (x - a )00d(X - b )"'"(x - c )odd(x - d) even, 

where e > 0. 

Student 3 has a strong under standing of mathemati
cal concept s embedded in this task. He fluently under
stands both representations and can communicate such 
without effort. The context of the problem immediatel y 
directs him to the structures that are most important in 
both representations. Through observing this student 
perform the task , the teacher recognizes that she has 
not sufficiently challenged the student in respect to his 
ability and current understanding. She decides to pro
vide him additional mathematically rich tasks targeted 
to additional concepts. 

Assessment Summary 
As seen in some summaries, the teacher was sur

prised at the under standing , misunderstanding s and 
knowledge gaps that she was able to observe through 
student work and communication on the task. Even 
though these students had pas sed her previous tradi
tional assessments on thi s topic, she was surprised by 
the degree to which they struggled in general and on 
which concepts in particular. Specifically, she was 
pleased by the tar geted way the task revealed individu
alized preci se concept understanding among the stu
dents and prescribed similarly precise and differentiated 
instruction to help each and all be successful. 

Learning 
The following excerpt describes Student 2's 

progres s. 

Approximately 45 minutes later , Student 2 realize s 
that the polynomial has to be raised to an even power 
to produce the correct left and right behaviour, but 
she does not know how to use parentheses to ac
complish thi s. She decides to graph 

y = (x + - 3)(x + -l)( x - l )(x - 3) 

and other such cases. Throu gh protracted trials , she 
reco gnize s that 

y = (x + 3)(x + l)( x - l)(x - 3) 

impli es 
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y = (x - a)(x - b)(x - c)(x - d). 

After more investigation, she recognizes that the 
graph reveals some single and some double roots; 
struggles to know which are which; recognizes the 
need to distinguish these through (x - b2

) or 
(x - h)2; writes 

(x + 2)(x + 1)2(x - l)(x - 2)2; 

and after more thought and experimentation, re
writes this into 

(x - a)(x - b)2(x - c)(x - d) 2 

and finally to 

(x - a )odd(x - b ren(X - C )odd(x - d)"' n. 

The teacher is pleased that the student learned 
through only one task within one class period, since 
after days spent previously covering the associated 
mathematical topics in class the student had not 
gained sufficient understanding. 

This student received no assistance from the teacher 
or the interviewer, but was given sufficient time to work 
through the investigation. Fortunately, since she ~ad 
previously experienced time-intensive problem-solving 
tasks, she was able to persevere through this task. ~e 
progression from Student 2's previous transcript~ to this 
transcript (over the total span of about 90 minutes) 
demonstrates a growth from misunderstandings and 
knowledge gaps to understanding most of the associated 
concepts. Moreover, the concepts learned are n?w 
strongly interconnected both within each representat~on 
and between the two representations, rather than beillg 
treated disjointedly. Altogether, the teacher was pleased 
at the rapidity, efficiency and thoroughness of the stu
dent's learning and credited this success to the nature of 
the mathematically rich task and the protracted time 
allowed for its investigation. 

Learning Summary 
While Student l's extensive misunderstandings and 

knowledge gaps significantly slowed his learning of the 
concepts, extended transcripts reveal that he learned 
many of the mathematical concepts, but at a slower pace 
than Student 2. The teacher was pleased with the learning 
of Student 1, but she stated that she believed that if a 
simp ler version of the task had been provided before 
this one, the students would probably have done better 
on both tasks. The teacher decided to create concept
similar tasks that would scaffold to this type of example 
for this student (for example, begin with quadratic func
tions). Additionally, the teacher decided that she would 
allow this student to work with another student on some 
future tasks to simultaneously scaffold his learning and 
diminish his frnstration. Since Stud ent 3 was already 
familiar with most of the mathematical content 
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associated with the task, the transcripts show little gain 
in understanding. The teacher decided that she could 
create parallel tasks (using transcendental functions) to 
challenge this student and lead him to more advanced 
concepts. 

Implications for Instruction 
As demonstrated above, the mathematically rich for

mative assessment task served its dual purposes of assess 
ing student understanding, misunder~tandings a.nd 
knowledge gaps while providing them with an effective 
learning experience. As students responded to the task, 
their understanding and connections of mathematical 
concepts deepened. Through these tasks, teachers can 
assess much more than whether or not students can answer 
questions or perform mathematical calculations; stu?ent 
conceptual understanding of numerous embedded notions 
can be assessed, and teachers can use that information to 
plan further instruction. 

Students with greater gaps in understanding tend to 
learn much from rich mathematical tasks, albeit at a slower 
pace than others. Initially, they balk at these unusual tasks 
in which they are not given explicit direction on how to 
complete the task or what the correct response may be. 
However, as these tasks become more common, students 
will wann to them. For these students, it may be best to 
initially scaffold their experiences by using versions of 
tasks that are differentiated for their specific needs before 
employing more complex tasks. These students may nee~ 
to complete a greater number of these tasks than may therr 
classmates. Since these students are often more prone to 
be frustrated in problem solving and have difficulty per
severing in such, care must be taken to not break their 
spirits. Thus, it is valuable to limit the duration of the tasks 
initially and increase the duration of tasks as is tolerable. 
Allowing students to work with others, rather than inde
pendently, may also help them avoid being overly 
frustrated. 

Students who are comfortable with more advanced 
mathematics should be given tasks that also meet their 
needs. Most mathematically rich tasks are easily modified 
to be deeper and more challenging. These students o~en 
enjoy such tasks. Students can be given these tasks pnor 
to instruction on particular topics; they can learn through 
these tasks, sometimes even independently of an instruc
tor. Also, students can be asked to create and solve their 
own rich mathematical tasks, leading to tremendous 
learning experiences. 

What to Expect in the Classroom 
Mathematically rich formative assessment tasks may 

seem more difficult initially than traditional classroom 
instructional questions, particularly if they are seen as 
unusual or unfamiliar. These tasks address or assess 
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Selecting the Mathematical Tasks 
For any mathematical topic at any level, rich mathematics tasks are available . We provide additional 

examples applicable to high school. For each example, a variation differ entiates the problem to be eithe r 
more or less mathematically complex. 

1. The following functions are equivalent, but in 
different algebraic form s. What information 
regarding the function is revealed or hidden in 
each of the forms? 

fi.x) = 2x2 + 3x + 1 
g(x) = x(2x + 3) + I 
h(x) = (2t + l)(x + 1) 

To make the task simpler: Provide options such 
as showing the function is a quadratic ; showing 
its factors; revealing its roots; revealing its y
intercept; showing that it is concave up. 

2. Explain why the accompanying function and 
graph are inconsistent. 

(x -2 )2 (x + 1) 
fi.x) =- -- - 

x2(x + 1) 

To make the task simpler : Use polynomial 
function s. 

precise mathematical concepts and cau se students to 
think more deepl y about the mathematic s at hand and 
the interconnectedness amon g mathemati cal concept s 
and representati ons. Although student s may balk at 
these tasks at first, many students quickly come to enjoy 
the challenge and heartily participate in cla ssroom 
discu ssions. 

Classroom tim e mu st be planned for stude nts to 
struggle with and lea rn throu gh a math ema tically rich 
task. Combining formative assessment and instruction 
focused on conceptua l understanding can break the 
cycle of skills-ba sed instruction, assessme nt, follow-up 
instruction and further assessment. Teachers must place 
some tru st in students as lear ners and commun icate 
high expectations to them . As student s work through 
the se tasks, their conceptual understandin g can grow 
at an exception al pace . When students show significant 
misund ersta ndin g or knowledge gaps, teachers can 
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3. For fix) = 2x + 3 and g(x) = (x - 3)/2, we find 
that j(g(x)) = g(f(x)) . Is it usually the case that 
j{g(x)) = g(fix))? Explain why or why not. 

To make the task more complex: Explain neces
sary conditions forfi.g(x)) = g(ftx)) to be true. 

4. For _x + _ = _x +_, fill in the blanks 
such that the equatio n has one solution; no 
solution; an infinit e set of so lutions. 

To make the ta sk more complex: Create an 
equation including a quadratic and a linear 
function. 

5. Without converting the graph belo w to an 
equation, explain everythin g you can about the 
graph and its re spective function. 

5 

5 

To make the task simp ler: Use a polynomial 
function. 

interv ene with instruction directed at particular con
cepts and scaffold understandin g while not forfeiting 
tim e globa lly addr ess ing concepts that students may 
have mastered. 

There is a delic ate balanc e between allowing stu
dents to persever e throu gh the prob lem-solving task 
and providi ng them assistance before they becom e too 
frustrated and shut down. Classroo m teac hers mu st 
know their student s well, adju st the task or the time 
allotted for the ta sk appropriat ely for individual stu
dent s and the clas s, and kno w when to intervene . We 
recomme nd that th ey allow learning to happen organi
cally and not provide hints too quickly ; jumping in to 
assist skews interpret ation s regard ing what students 
know or learn . 

Most of these tasks are exce llent fodder for collabora
tive assessment and instruction. This practice elicits rich 
communi cation and dia logue among students, giving 
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teachers greater access to student thinkin g and giving 
students access to greater learning . Teachers also enjoy 
students' robust mathematical dialogue. 

The most obvious question for any teacher may now 
be, "But I have 30 student s in my classroom! How can 
I possibly do this?" First, no one educational practice
even using mathematically rich tasks-is a panacea for 
all student learning. These tasks should supplemen t, 
and not completely replace, other instructional tech
niques. (See sidebar, Selecting the Mathematical Tasks.) 
Second, novel instructional techniques take time and 
practice to master. Third , when initially using these 
tasks, it may be beneficial to try them as either instruc
tional or assessme nt tasks rather than integrating both. 

We hope that this brief introduction to rich mathemati
cal formative assessments will evoke interest in these 
tasks and encourage teachers to try them in their class
rooms. The authors have used these tasks with great re
sults. We hope others see their worth and enjoy them also. 
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Math Competitions. __ __ _ __ _ _ _ ____ _ 

Alberta High School Mathematics 
Competition 2016/17 

Part 1 
l. If it is I 0:00 AJ\1 on a Tuesday, which day would it be 2016 hour s later? 

[a) Tuesday (b) Wednesday (c) Thursday {d ) Friday {e) Saturda y 

Solution: 
Since ZOI l) == :12 >< 9 x 7 = .lZ x 7 x 2,1. 1he mt~wt·r isl 0:00 Al\-1 011 a 'Hwsda~r (12 we<•ks from tbt~ original dnyj. Tlw answer is 

lal. 

2. If x > O. x 'f; 1. and (log2 x) 2 = log4 x, then: 

(a) 0 < X <] (h) I < x < 2 (c) 2 :'::: X < 4 (d) 4 $ X < 00 (c) the situation is impossible 

Solutlun: 
·nw cq11ation can be writlt'll <1<; (log2xi2 "' ~ Jog2 x. nml since x tc l, th i~ t'qllation is equivakni- to log2 x = ! with the 
solution.r = v2E 11.21. 'Ib~ an~w<'ris tbJ. 

3. A ring of IO grams is 60% gold and 40% silver. A jeweller wants to melt it down , add 2 grams of silver and add 
enough gold to make it 70% go ld. How 1rnmy grams of go ld shou ld be added? 

(a)4 (b) 5 (t:) 8 (d)9 (e) more than 9 

Solution: 
Let x !w the gr.mis of gold which should ht• added. Then 

}_ ,c- 10 X 'Jf} +~ 

10 10+2+x 

Sol\'ing the.· equation o,w obraim. x = a. 
Altf'matfre .sol111io11: The original ring contaim -1 g or siln ir and f, g of gold. The rww ring will con t.iin ~ + 2 = (, g of silver. 
which musr accoun t for :mu;, of the• tnral. Th1.1.~ the new ring mu~I weigh n K J,{! = 20 g. uf which tlwrefor!' zn-H>·:!=-8 g 

must he added gold. The nns-wer is 1~·1. 
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4. A quadrati c polynomial f (x) = ru2 + hx + c, where a.band c arc integers, satisfies /(2) = 4 and f (?.) = 9. TI1e 
numb er of such polynomia ls is: 

(a) 0 (b) I (cl 2 (d ) 3 (cl mor e than 3 

Solution: 

lJsing the ~ivcn ni nditin n Wl' get ·1a + 2/1 + c ,_ 4. 911 +JI,+ r· = q from whid1. ~oh ing for J,, r in ll'm1, of n. nnt • ob tain!. 
/, '- ::.( l - nl. r· =-(i(a- l l. tlrnt is. intinitdy many .intc'gt'r sollllions. Tlw a11s1wr i,; (('). 

5. For any integer n, the expression n2 + 3n + 2 cannot assume the value 

(a) 0 (h) 2 (c) I JO (d) 375 (c) 420 

Solution: 
.'-,inn~ r/ + :in-t· 2 =-(11-+ l )(11 + 2l ii mu,t bl· eh·n. Thu, . :17:, i~ 1wt ,1nai11nhll'. Th(· othl' r four numb(: r\< in th e~ list fan be! 

acra iw:d using 11"' - 1, r, = 0, 1z = ') und 11 :- 19. rc·spL'nivdy. Till' ,m~WL·r is (d .i. 

6. 1\vo straight lines with nonzero x and y-intercepts have the following property : the x -intcrcepl of the first 
line equals the y -inler C<:'pt of th e second lin t', and the x-i ntercepl of the second lin e equals they-intercept 
of the first line. If the slope of the first line is m, then the slope of the secon d lin e is 

(a) m (b) - 111 (c) (d ) (e) none of these 
m m 

Solution : 
II is gi\' t'll 1hat if (a.()) and (fl, l>l lie on th<' fir~t lirw tlwn 10, aJ and f /7. OJ Ii<· 011 tlH' <;t•cm1d linr. T lw slnpPs ol i!)(' lilws arc 

then rn = -/J!a and -al/, = I Im. Tf'SJ)L'ctivt>ly. Tlw .trl"iWPr i~ lt'J. 

7. Th e angles of a triangl e wh en measured in degrees are all pri me numbers. The small es t pos sible size of the 
larg est ang le is: 

(a) 61° 
Solution : 

(b) 67" (c) 79° (d) 81.J0 (c) the situation is impossibl e 

Let ,\ 5 H s <.' bt · th e mcas\lll '~ in <legr~es oftbP ;mgl, ·~ o f t:,.Al3C Since A+ H+ C = l 80° one of th e angle'>should OP<:Wn 

and lwncr A = 2·~. On tlwotherhnnd, J-;"f\'' = u-c: 5 2C. lwnn· C :-..g~J~. Sinn•H9hprimc, w<'n 111 takt> H = C = 89°. A "'2<· . 

ThP an,wN ji; (d) . 

8. How many three-digit numhcr s can be writte n nfter 52:1 to yield a six-dig it numb er ,,vhi ch is divisible by each 
of 7, 8and 9? 

(al 0 (b ) 1 (c) 2 (d)3 (e) 4 

Solution: 
Sine ,•, . ll ,1nd 9 arP p,1irwis, • r'l'lmiv ,,ly prinw . th<' ,ix -digit numbt·r mlht h .. ;i nrnltiplt• of7 y H x \-l '- 5(J4. \'\·lwn ~z39q9 

is dividl'd liv 504, tlw rt·mairnfr r is :l ·J:1. lo gt'I ,1 muhiplt · or :,ll-1. \\'<' .,uhtran 3-1:, from /199 to obtain 6:ifi. This js om· of 
lh l' am,wcJc;, aud 1n:-have :i~:si;:;r;"" "i" 8 " !I , lll:\11. \\'e c-.m gl'l anL,tbcr ,m,,n,r hv ~uhrr.icting r,0.1 from b!:i6 Ln obtain 

I ~>2. and \W ha \'L' :,:!:-:! 152 == 7 x fl x !l y I O:lr\. Thi, ,ubtr.icti un cannot he repL'a led \-\'itliout rN luring Lhl' difforl'nt:e bP]O\\ 
S:!3000. I knn : 6:,o an d l.:i2 are the ouh po~sil>IP ,ul,\\l' r~. 

Afr,,mmh·e Sulmio11: Th<' six digit 1111111b<"r ,..hmrld ha\'C' ttw Int 111'.if).'}111,·lwn·· 11 h :1 pmitl\ ·1· intq,Pr. Th<' ronditions nf the 

prnhlem Iii ad to rtw irwqn ,11 it~ :o2'.l l 00 < :ifl111 ~, :,:,:19\lH or equi\',1i1't1t ly I 038 <: 11 ~ 10'.l'l, ,md lwn cP 11 '- 1038 or 11 == ·, O'.·Hl. 

\Vith tlw sf' two l'nhws of 11. oni- Dht:1ins nrn thrP t·-diµit n11mb('1~ IM\·ing th<· n·qu(',H•<l propertie s. The :mswer is (c l. 
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9. \'Vhen x4 + .r~ + xJO + x 17 + x 100 is divided by x 1 - I rhe remaind er is 

(a) x+2 (b l x+ 3 (c.J2.x+3 (d) 3x + 1 (eJ 3x +2 

Solution: 
The rl'rnain<lcr must be .. 1 first degrn· polynumial Ax+ Band if Q(x ) is the quotient th<'n 

x'1 + x,; .. t x·io + XF + ~.HIO = Q(x)(x 2 •· I)+ ,lx ~ B 

for any rt'~1l x. T:1king x =-± I in the almH• c4u.:11iDll \W ob tain A+ B = 5 and -A+ B == I hcm ;c !\ .:-2, B = 3 and thu~ the 

rl'maindcr is 2x + 3. The ans\\'N b !C'). 

10. Let D be an arbitrary poi nt o n the side BC of the equilateral triangle ABC. Point s E and F arc on AB and AC 
resp ectively so that f) E .L A B and /)F .LAC and E1, Fi are points on BC such that E E1 .L BC and F F1 .L BC. 
If E1 Fi has length ½ then the len gth of BC is 

2 
(a) -

3 

Soluti on: 

4 
(b) -

5 
(c) l 

3 
(d )-

2 
(e) y'3 

Let BC = a. We haw DE1 ::: DJ:cu.,,30'; = '? DE and DF1 = DFcus30 '' = '} Dl·: ht•JJn' E 1 r 1 = ¥CDfl+DFJ. On r.lwother 

hand VF An+ l)f' ,AC = 2Art>,1( ,\B(.'J tlrn t is. n(l)J :'+ [)F) = !'.:{1 and hen,r. /)/:'+ DF ==-~.T herefor(', ;;1 h = '.'.f. Sinre 

E1 Fi =~ WC Ulll<;f hm ·P a = f 'nw ano;wcr is ia). - . 

11. A box cont a ins two red balls, two green ball s and two yellow ball s . If you randomly remove thre e b alls from 
the bo x. without replacement, what is the probability that you have removed one of each colour? 

I 
(a) -

8 

Solution : 

2 
(b) -

5 

l 
(c) -

2 

4 
(d ) -

5 
(e) none of these 

111ere art• a total uf ((l = 20 possibilities and only Hare favourabll •. The requested probability is ,Jh "" f The an-;wcr is (bl. 

12. Let f: IR - ~ be a function such :.:f( x) + (I - x)f(- x ) = x2 + x + l for any real number x . The great est real 
number M for which f (x) ~ M for all real numh crs x , is 

3 
(a) -

4 

Solution : 

5 
(h) -

(j 

7 
(c) -

8 

lf x b replnc:t'd hy- ,t in tlw giv('n cq11a1ion tlwn 

-xf C-xi + 11 +x lftxJ = .12 -x+ 1. 

9 
(d) -

10 

II 
(c)-

12 

Using 1.hl' given l'4uution and the one 1hat is oblai1wd abovl', 01w obtain~ by !-Ubtrattion 1hat {(-x) = f{x l + 2.t. so 
xf(x) + 11 - x)tffx) + 2x:, = s 2 + x + I ,\lld thu, 

·, ·, ( l )L l I 
(\X I= x- + X + I - 2Xi 1 - Xi= 3.r ' - -~ +] =-:l X - - + -
· 6 12 

::ind henrt ~ f f. \·) 2: ,H. Jf. r"" A then WC' get f ( ~) ::. H. ·nw answ er is !el. 
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I:-l. In a school's math dub, the number of diffcrrnt 3-pcrson commit tees that could be formed containing two 
girls and o nc boy is 2016 more than the number of different :1- person committees containing rwo boys and 
one girl. The numhcr of girls in the club is: 

(a) I (h) 63 (c) fi4 (d] 20]6 (c) not uniquely determined 

Solution: 
[,:•t m. 11 tknote the munbL·r vf f,'irls and rt''.J)Pdi\·dy boys in tlw clnh. Tlw condition nf tlw prohkn1 is 

(
. 111) (n) . ,, 

".~ -Ill 
2 

"':'OJfi <-=-:> 11111(111-11)=-2x20Jbccb'.lx6 -lcc;tx:l-Y7 

Let k = i111, 11.) b(' the gre,lle;.1 conmwn dirisor of m, 11. Sin re/.:: is a (fo·i~ur of 112, 11, ,n - n. thn1 /,/ will lw a divisor uf 

i' x 32 x 7 '-= ml/( m - nl hence k E. i] .2.4:. If J.:"" .I the t>nl\' ronw·nil'tll ..,oJutions an:_, 111 • 64, 11 ·= l ,md n1"' l\.i, 11 ""GJ. 

otherwise m > i;:1. wllkh is not possible. lf k =-2 then m-=- 21111 .11 = 2 ri1 with i 1111, 111) -= l. ancl IIIJ nil rllJ - 111 l := 8 x 
fl x 7. No com·,'11.ient integt'r n1h1cs ror 1111,ni nm lw found in this ca;,,• . Similarly. if k = 4 tl1(;'t1 Ill:. ,11112, n ::, 411~ with 
(m;, n:,:)"' I, am! the rquation nm be sirnplifil'cl 10 111;,11;; m ! · 11;,i =, ii .x 7. whkh does not lwve integt'r solutions. 

Alten1111iue Solwio11: The sohnions of the equutiwn urn( m ··- 11) ,,. :!G" :12 x 7 ean be found usinb auoth('r approach. Hnst 
01w nm remark hy i\c;rvi i11eq1ialitv that 

· Ji -t !fl _. Tl l tn~; 
4032 .,. 11111(m - 111 ::Sm(-----·- - ) = -··-

2 .·1 

henn• m:i 2: ·1 bl 2H and 1hus 111 2: .?.G. On the utht'r hand if m > b-1 tbt·Jl 

(·i·l - Ii~\=- mn(m - 11.i > <H 11(64 - u)j 

6'.~ > ntf>-.J - 11) = (11 - lH11-(i'.1i > n 

n11d thus 11 > b3, which is 1101 po ssibll' -;im:e m 11(111- 11] "'G3 · b4. 

\\'e ronrlu (ic• th.it m £ 12fl,J2.3fi ,42, 1B. :,(i,iD, r~li. ·nw only nmvf'nient \'alu<' i<-m"" G-1 \\'hirh g.ivPs tlw equation 11(1il -

1fi - G'.1 ,t1Hl lwnn:; 11 ::: I , 11 =· (\]. 

Tlw <1riswcr i-. (ci. 

14. The product of all real number s x th a t arC' solution s of thC' equati on t· x 2 + x + ~11 x2 + x + 3 = 3 is 

(a) -26 (bl -24 {cl 4 (d )2 0 (e) 26 

Solution: 
Tlw funninn ful cc ( 'x~1 ~x+ 1. CE: ['ti~ Jl)('f(';Jsing !wnre f(f(f) J = l = f(l) = [ that lt>ads to the rnncl11,inn that the 

n·al ~nlmimi~ ol the given Pquation a nd \t~·:: _;_::'.l .-.. 3 an· lhl ' ,nnw . Thi· ~olutions of ttw last equation an ' Just the 

~olminn::, of the quadrnric t'quarion x'i + x -24 = 0. for 1vhich tlw prndll r t ()f the snl11tion:-, h -2•1. ___ ,_,,_ 
Alrenwril ,c Solution: I ,d y ~ (.ix~+ x + J tlwn tlw gin·n l'(Jllalion nm he writWll a , 

and then x 2 -~· x -· 24 =-()_ The :m~wt•r h i bi 
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15. The area of the trapezoid ABC f) with AB II CD, AD l. AB and AB= 3C D is equal to 4 . A circle inside the 
trape zoid is tangent to all of its sides. Th e radius of the circle is 

y'} 
(a)-

5 

Solution: 

v'3 
(b)-

4 

J3 
(c)-

3 

/) E C 
r r ; , _T..;..'-, F 

,. t / rt _l'>,. 
!/ \ /,. \' .. 
t r I_.. \ "' r 

11 
(d)~ 

2 

11 r--- -t o i -....,., 

rt~>,.i ,:<~/ .:~~ 
il r <; Y R 

Using t)w notations from tlw above di::igram and tJw ronditiOll'- from th(' problem one obt.iin~: 

]tr+ x) =rt _r = J "'.l.,· + 2r 

;111c.l 

Hence 

? 2 '> ' / 
(x+y)~ = ,1r +{(r+yJ-[r+xl)~ = ,\T=r~. 

x(Jx + 2 rJ ::c r 2 = x = !:. 
:l 

nnd eons1•que-ntly y c..1r. ()n lh<' other hand the nrca nf tlw rr::tJH'7oid :l/JCI) i!; 4, rhus 

(r+x-1 r+,rlr=4. 

Suhstiruting for x = ~ ,md y = :1r we gN r::. Y. 'lhl: an~wer is (d). 

(e) none of these 

16. A quadrilateral is called convex if its diagonals inter sec t inside the quadrilateral. A convex quadrilater al has 
side kngths 3, 3, 4. 4 not necessarily in this order, and its area is a po!-.itive int eger. The numb er of non
congruent convex quadril atera ls having the se properties is: 

(a) 12 (h)24 (C) 28 (d ) 35 (e) none of the se 

Solution: 

(i) Assume rhat the sides of the quadrilat l'rnl arc of ll'ngths :-;,4,3,4. ill this urc.lL•t. The quaclrilntl'ral is a parallelogram 
lW it is con\'exJ . Lt'I a E: W. 9" i he the measure in radian!> of an angll' of thl' p,uall<'logr:1m and Sits are>a. Tiwn we have 

5 
S = ]2$ina = sina= .. -. 

12 

Sincell< sin a~ I there, are t\\'elv t• rnnvt'llient intt•gni.l n1Jut!S of S. namely J ,2.· · · .12, mid thus twdve distinet values CJf 
". ·111erefore wt, gt'! twelve 11011-congrut·nt p,:irnll(•logrnm~ with arei'I a posi ti\•(• integer. 

I ii) Assume that Thi.' sides of the q uadrib leral an: uf lenglhs 4 ,·l.J.:l, in this order. Lt•l u bt· t.he mL·a~un• in radi :ms of 

lht· angle bl!tWCt'n two sidl!s oflengtli~ -1.111d 3. The q11<1drilateral b nm1·e:-: if a E (/J,nl \\'itli sin/l == ~;. . :'\o le !ht• tht · 

lower limit /l for the angle u ucnm, \\'hC'n the> ,;ides of ll'nglh 3 arc both un tht• ~umt• lint• and hen<"e, lht · quadrilatcmil 
dcg<:neral C>s to an isost('ks triangle uf ~lde~ 4,U,. 
A~ uhow , Ollf! obtains sin a "" ;'1. If a£ [ g, rr) thE'tt' an• l2 integer \'a ltH·~ f'<,r S for wh ich WP g\' l !Wl" )H' disriocr values for a 

and hem :e one obtains l\n•ln! noo- rn11l'(rt1('ut ~u~1tlrih1ternls. If n f' [p. i) 1ht·r1 ~in {i < sino < l -= \' < ,inu < l = 
v'!D < S < l~. There are four illll·gt•r valut•, for Sin ( vr63, 12] and rhu~ four c.listim:l ralucs for ,r E (JJ, i) ~ud1 that sin a = 

·f for \\'hich on<' obtains fou r Jton·rongntt·nl coiwex g11<1dri1;1t(·rak Tlw m1mbN nt rc·qucstcd cotWt'X qti.idrilat~·rals is 
.12+12+4=:28. 
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Al1ernari1•f Appru(lch: TlHi lnrg(•st p;1ralklog,ram of ~ilk\ iii the order \,1 ,J,·1 i:-. c!C'arly 1he r(•ctangf(' ia!- ir Ji.is Jargt•s1 
altitude ) of .ir(•,t 12. ,11\d ~o other [.1arall1!logra11b in 1hi~ fom ilv tan ha\·t· area~ l ro 1.1. Similarly the quadrilaterals with 

~idt>s in the urdc ·r 4 A.::i.:-i arl' all composed of two rnngrncn! triangles with m·o of the ~icll·~ being 4 and 3, \dth arc,, at 
most 6, so the largt'st surh quadrilntPrnl will nlso haw ,m·a 12. A-; tlw ,111glC' hetwc·en tlw sides ·1 and 1 hec-ornc•, grPatPr 
thnn 90°'. 11·<! gc•t 11 moH· c-,rn,·px qnadrilatrr;ils of arc;1 1 l!1 l l. \\'h<'n thi~ nng1£' i, less th nn YO<,. wt• stay c:onv1•x ,F, long.,, 

tlw t\1·n sidr.s ul'lc•ngrh 3 <lo n ot align. 1·d1ich ktppens wlwn 1lw quadrilar!'ra] ht>rOJn('~ :in i~n-.n·k~ rri,ing!P of sidi •s •l.'1 ,fi 

of ;m•,1 ,'i:i:i < H. Tht1:<l\'l' gl'l four 111orecomc\ quadrilaternb of ureas !S.!l,10 and 1 la!< 1-vdl. fora Iota] of 28. Thc,111:.wcr 
is (<.:1. 

Part 2 

Problem J 
Suppose for some real numb ers x, y and z the following equation hold s: 

2x2 + y2 + :::,2 = 2x (y + ;:). 

Prove we must have x = y = z. 

Solution : 
lkwriting tlw Pqua1io11 gin's Lr - yl 2 + (X - .:)2 "' /J i111plying x =-.I' and x =-.:. 

Alrn11rilil'e S()/utio11: The gin•n NlWtlion can lx· rt•\uitten ai- ?x~ _ .. ~[y ·• .::ix,.. I y~ + .::::.!) e:c 0. ;1ml hc11c·t' 

.. ----:;----.-, -- .,- ,----., 
2[y+ .zl ± \' ' 4(y + .:::1--Bty-+ .:::-J y+ ;.:± \'. -ly-.z)-

x =--- - _., _____ .......... --·-· -· -· ... _ .. ___ ---- =- "---·---··-------·- _,. ... _ . 
4 2 

Sinn• x 11111, 1 lw re;1I. i.r- .::J~ < O \\·hic-h nwan, y =.::.and tl1<'n x =-¥ =· y. 

Problcm2 
Two robots R2 and 02 arc at a point O on an island. R2 can trave l a t a maxim um 2 km /hr and 02 a t a m aximum 
of I. km/hr. There are two treas ure s located on the island, an<l whichever robot gets to eac h tr eas ur e first gets to 
keep it (if both robots rea('h a t reasure tit th e same tim e. nei the r one c.111 keep it ). One treasure is located at a point 
P which is l km west of 0 . Suppo se that the seco nd trea sure is located at a point X which is so mewhere on the 
straight line throu gh P and O (but nut at 0). Find all such point s X so that R2 can ge t both treas ur es, no matter 
what 02 doe s. 

Solution: 
lJsi11g Carte~ian cor,rdin,tt£',;, wr put O ,_ (O,Ol. /' = r- J ,Ol ancl X ,_ /.\,OJ for sonw rt•al numlwr x I 0. The treasurr lon1ted at 

point l' will b<: dt•n otcd /'. ;ilJ(J similar!:, fo r the trea~11rt' k>c.ill'd a t X. Fir~t rl(ltc tlml if x < 0, then R2 can tr:ivd west i11 a str, ii!(lll 

line and get bo1h twa~url.'s, <me after the ot}u;r, bl'l'ore IJ:!. :-,;m,· ~uppo~t· 1ha1 -~ > 0. 

lai If R:! 1r1wd.,· we ,,1 t!/ a 11w.xi111111n speed r<, 11/c( 1111 fJ wu/ 1!1t·11 n:111ms cml to uid: 11p X, it ncc•tb J..!.J,.tl = ~~l hour s . D2 

ha~ no ch,1tH'L' to gt'!/•, lwnct· ir shnt1!d t.rawl east fnr al Jcasr .r hmir~ and 11T w pit:k up X. H ½:!.<.I' or<~q11i\·ak;1tly x > 2, ft! 
,,ill g<'I both trt'il!'>ltres. 

(l,J If RZ tmt :d, e(I.,/ at <I 111axi11111m speed ru 11ic/.: up.\'. mu/ 1lw11 Tf!lums U't'S{ ru ;,:et P, it lll' l'd~ a ,!+.:~=...l. = .::'.~:l hours . 02 

should tr,wcl we st tr, pirk up I' , for which it need~ at l,·;i-;1 ,,1w hour. If ;'.~_l < I or equirnlemly x < !, . H2 ~,·ii) gPI h.oth trea~im •s. 

!rl If x E i~ .2) tlH'rl' is no winning ~Jratq. ,•y for H:!. ·1 hi\ i, t•qt 1h·;i)f'nl ~n ~ho\\'ing th :11 nlwnys U2 ~-an pn•v•·nt H:! g,·tr ing hnth 

treasure~. He; : is D2 's siratt•gy: wlfil R2 ie1s one nr:11srm ·. lJ:! mol •c., so !h(lf ir., pu~irio11 i.,· alcrnys 011 tl,e ot/1e1· side of t/1,· poi11r 
Ofivm fl::'.~ 1•ositiun, lull 01 lwlfrl1e di.,tw?Ce {roll/ n 1/1111 fl:! 1~,. lllH .T H2 ge1, 1,m· of the 1.n:a,L1rt·~. R~ b ,tl h·.'ii~l twice a~ for from 

the other lrca~ure th-111 DZ: then D2 !wad~ straight lo tlil' oilier tre.i~ure and gel~ 1lwr(• before H2. 
If x = 2 or .r = ~ . /)2 rnn pn•1't'nt R2 to gC't hotll trc·a~ures b,· tl',ing 1h£' samt' ;trntegy as nlim ·t•. In th h ca,e both rnbors reach 

one rrcasu rc at the sa nw time , !'>O nC'ithPr 01H ' ran 1.-,·,·p ir. 

From [;i).(hl a1id 1c1 WP cond11dt' that H:.-'. ha~ \tral<'giP, lu gf'1 bo1li trt•;h1m ·, nu m at ter wh.it 1)2 dn1·s if ;rnd nnly if x E: 

(- co.OJ U (0. ½) U l~,<X>l. 
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Problem3 
One or more pie ces of clothing arc h anging on a clothesline. Each p iece of clothing is held up by eith er 1, 2 or 
:~ clothespin s. Let a 1 denote the number of cloth espin s holding up th e first piec e of clothing . a2 the number of 
clothe spin s holding up th e second pie ce of clothin g, and so forth . You want to remove all the clothing from the 
line. oh eyi ng the follm,ing rules: 

(i) yCJu must remove the clothing in the order that the~' are hanging on th e line; 

(i i ) you must remove either 2, :-i or 4 clothespin s at a time, no more. no less; 

(iii) all the pins holding up a piece of dolhing mu st be removed at the same time. 

Find all sequ ence s a 1, a 2 , ... , a,, ot" any length for which all the clothing can be removed from the line. 

Soluti on: 
Wl' claim that the dothing cun be rt'mcwt'd for all sequences t!.(ceµl for 1, IJJ, 13131, and so on; th,H is, the t·xn·ptional se
quc,ncc,s are> of till' form 

a1.az, .. . ,a 11 =-l,'.l.1.3, ... , l.:l. J, 

whe re tlw I':, and 3\ alternall', st,uting anti c•nding \.;,.ith I. Call such ,1 ~cqt1cnct , a /Jad sequence. 

If flJ . tt2, ... , an =· l ,3, 1,3, .... 1.3 . .l. 1lwn in your first ~tcp you am fnH:ed ro n•mo\'l' thl' fir:-! two pit•ccs. u~i11g l. rmd :l pins 
rt·t;pectivdy, becaw,(• rou numot fC'uwve ju..,t ont' pii1 and can not fl' lt!OVl' 5 pins at a time. This cont inues rig ht tc, tlw en d , till 
there is only one pin lefi. whi ch you canno l rt·movc. Thus a ll t.he had st·quencc~ n'sult in clothing left on the line. 

l':m-.· we prove that ,my mH1-b,1d ~tx1uc11tc a1. a:~ .. .. ,al/ can be remnwd. Of cour st' the l-digit st>quenc<• I !which i~ bad ) 
cannot b(• remuved , while the no11-bad ~l'<Jlll'IICl'S 2 and J can bt'. \h· proceed by induc1ion. Choosl! a 11011-bad sequence 
n 1• a2, . .. • a,, of l \, 2's and :rs, and suppose that nll ~honrr nun-had ;;rq111·11cc~ can be 1einn\ ·cd. 

If 111 = 2 or 3, and the s('q11u1n · a~. liJ, . .. .r1 11 is nu! bad. thl'11 IH' rem ove flJ by itself, anti !he remaining se4m•nct' c.in be 
removed by induction. lf a1 ::: 2 or 3, and rhc· r.-maining :wq1wn,.e ti-.!_, a ;;, .... (In is bad, then Wt' removr a, and a 2 =- I lwhir h 
add up ro 3 or 4 l. nnd the• rt·maining ;.,·qw.:nr<' a:i- .... n,, is not bad so ,.in be rcmovc•d by induction. 

If a1 = l. and the '-t'<lllt'JlCt' a;{.<q, ... , a,: is not had , th<·n we remove. ,.11 and ri;! (which n<l<l 11p to 2. '.l or-l l. and the rerm1ining 

sequence can lw n.•mon.>d by induc·1 ion. H GJ = I and llw .,equenc-£' 11:i, t1,1, .... a 11 i;; had , and a:! = I or 2. then"'" remnn : ni , n2 

and u~ :: J (which add up to cl or 4) , and t)w n •n1;1ini11g sc>qm·nn• can hv nmioved by indut:t:ion. Flnally. if a1 =-I and tlw 

s<'q11e11c(' '7•1. n,1 •... , nn is bad. and al "'· :l, tlwn tht' ~cquence a1. er.,_, .. . , a,, i~ in lac! bad, whic-h is il contradirtion. 
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Problem4 
ABCD is a conv ex quadrilateral such that L BA C = 15\ L CAIJ = 30°, L.A DB = 90° and L.BDC = 45° . Find L ACB. 

Solution: 

C 

l.C'l AP=- a. then DB= t1,VF := 4,l!E::: fl(l - -t),All,,.. av,.:! . .0.,1£:B b.. ~irnih.r to L:i.CFD thu ~ {J//._ = h_:·
1_11• and henu· 

,''l y:l '" - ,.-,., 

I JC -=. a ,':!; / i;. J n J:,.H {)<~. hy u~i ng c-o~i,w law \W gc>t 

1) ' J ' ,I , ") ,t2,a~4\,•J1 ') v2-t \{t, \.~ :> 
Be- "" JJW -t· })<: · - Zf)B · £>C:cos4:i" =-,r +-·--·· -·-···-- - -:!_a---·------- · -- = 2a · 

,J 2 2 

thus HC.,., n/J. whkh k•ads to D/lB( · b isusrc les, lH·nc <: LB(.' ,1"" ~H,1C,... l '.i". 

Problem 5 
Find the minimum value of Jx+ 4y + 7zJ where x.y, z arc non-equal integers sati sfying the equation 

(x- y)(y-z)(z - x) = x +4 y+ 7z. 

Solution: 
Han inkgt•r 111 is n multiple uf 3 ll' t u-. write> m "' .//3 . lf .r. _r. z h:iw diffen·nt n•malnder~ when tlwy are di\ ·idc>d by :l. rlwn 

xc-.//3+ r1, y =-../1:l+ rz.;; = .11 ,l + r~ wherc' !q . r2.1·::l-.. W, l.?l. O,w obtain\ that .1 +•1_r+7.:: ~a.,/f:l+ ri + r2 + r;; =.lt:~wh ilt> 

[x-- yJly ..:JL:--.n =-[ •. /13+ q -- r~)[ .. 1(3+ ,-~ 1.1•[ .. H:1 .. rr · r1J = .. /fl+ f r1 -· r~Jf r'.!- n1llr:1 -ri) -f;; .lt:\ which bucontradktiun. 
Thereflirl' al k(i,t tw o rcm,iindt :i,; are L'qual and ht>mT 

'.!!(.r·- y)(y ·- ;:;)(;;- ,r) =-·:, :\!(x + ·l_r-,. 7.::l -== :l !l.r + y+ z) = ;l j (r1 + r2 + r;\!. 

Since two of rhe n•mainder~ are l'lj u.il. :iilri + r2 + qi if and 0111,· if all tltrce re111aimkrs an· equ:,J. Ther<:fon· 

27!(x-y)(_r-;:H.;:· - .\'/ ~ 27 'x+- 1_r+7.:. . 

Take x -· y ... :lt4. y "';:; + 3/J and x+ ~y + 7;: "'' 271.-wlil'n· 11, /1. I. ;m• illl('gN~. Sinn• x. y,.:: are di,1i11t't. one obtains that no ne 
nf tht' intrg ('r~ n. !1 nr a+ his <'<Jlial t'n 0. Hy n~ing the se' nntation,. tlw gi\('Jl ,'quation ,.1 - yiiy - ;:tr;: - x) "" x + 4y + 7 z can ht• 
wri tten "" --al,(a + hi '"" k . ft i~ cka1 th:11 :J.:, ?' 2. Tht' vah11• J;j =-2 could l)p nhtaint•d it" WP take a '- 1, I> "' 1. for wfo('h Wt' gt•t 

.\ = 0, y =--'.l mnt:::. '- -h. \Vr C"onclude that ilw 111inim11111 \:1lu1• of \X + ·1 )' + 7.:::1 i, 2, -2 =-'.>•1. 
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Calgary Junior High School Mathematics 
Competition 2016/17 

Part 1 

A 1 If you place one die on a table. you can see five faces of it (the front, back, left, right 
and top). If you stack two dice on a tahle, then t he number of visible faces is nine. 
In a stack of thre e dice. th e number of visible faces is thir teen , and so on. How many 
dice do you need to stack on a table (in a single stac k) so that the number of visible 
faces is 101? 

c::;::;;=====--=::;~r· 
J 

A2 What is t he perimeter (in cm) of the following figure? 

8cm 
' 

6cm r 

h 

A3 Th e int eger 5 has the propert y th at it is pr ime and one more than it (i.e .. 6) is twice 
a prime (6 = 2 x 3) . Th e next integer with this property is 13. since 13 is prim e and 
one more than it (i.e., 14) is twice a prim e (14 = 2 x 7). What is th e next integer 
after 13 with this prop erty? 

A4 Srosh can jog at 10 km per hour in sunny weather and at 6 km per hour in rainy 
weather. She jogs 20 km in 3 hours . How much time (in hours) during her run was 
it raining ? 
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A l 

25 

A2 

28 

A3 

37 

A4 

49 



A5 A number is multip lied by ! and ~ is then added . The result i::; divided by ~ and 
finally the origina l number is ::;ubtrncted. What is the answer? 

A6 In thP game of pick leball. the winner scores 9 points while the loser gets between 0 
and 8 points (inclusive). Ruby plays 6 gam es and gets a tota l of 50 points. \Vhat is 
the smallest possib le number of games she won? 

A 7 ivlary is 24 years old. She i::; twice as old as Ann was when Mary was as old as Ann 
is now. How old is Ann? 

A8 A belt runs tightly round three pulleys. each of diameter 40 cm The centre of the 
top pulley is 60 cm vertically above the centre of the second pulley. which is 80 cm 
horizontally from the centre of the rightmost one. 

\ \That is the total length in cm of the belt? 

Rncm. ------

Solution. The straight portions of the belt have lengths 60 cm .. 80 cm .. and (by 
Pythagoras's theorem) 100cm. The curved portions comprise the c:irc:umfcrence of 
one of the pu lleys . length 40rr cm. Total 240 +-±Orr= 40(6 + -;r) = 365 .663706 ... cm . 

A9 Rahat has a jar with ten red balls. ten blue balls. and ten yellow balls. He picks 
one ball at random and put .sit in his pocket. Tl1E'n he picks another ball at random 
from the remaining 29 balls in the jar. \\"h at is th e probabilit:v that the two balls 
Ra hat selected have different colour ? 

A5 

A6 

A7 

A8 

A9 

1 

2 

18 

40(6 + rr) 
or 365.6 

20/ 29 
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Part 2 

B 1 In the game Worm. Alice and Bob alternately connect pairs of adjacent dots on 
the shown grid with either a vertical line or a horizontal line. Subsequent segments 
must start where the previous one ended and end at a dot not used before , forming 
a worm. The player who cannot continue to build the worm (witho ut it int ersect ing 
itself) loses. 

For examp le. if Alice's first move is al a2. Bob may then continue with either a2 
- a3 or a2 - b2. Suppose Bob plays a2 - b2. and Alice then plays b2 - c2, followed 
by Bob playing c2 - cl. Then Alice will win with the move cl - bl since Bob has 
no remaining moves to continue building the worm . 

3 . .... .. . ... .. . . 3 . ...... . ....... . 

. . 
2 . ... ..... ........ . 

. . . . . 

1 • ··· ... . ... · • 

2 rn: Bobl : Allce2 : 

.... . "' 
Q.I : .c 
u : 0 
·- a, 
l:;j_ .... .... : Alice 3 

a b C a b C 

Th e Grid Sample Game : Alice wins 

If Alice plays first. can she always win if she plays well enough? If so, how? 

So lut ion. Alice can guarantee a win if she plays well enough. For example , Alice 
could first play a2 - al , and Bob is then forced to play al - bl. Alice then plays bl 
- cl forcing Bob to play cl - c2. Alice then plays c2 - c3 forcing Bob to play c3 -
b3. Alice then wins with either b3 - b2 or b3 - a3. 

Other solutions are possible but may require case work. 
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B2 We say that a 2 by 5 rectangle fits nicely into a 9 by 9 squarC' if the rectangle occupies 
exact ly ten of the little squares in the 9 by 9 square. 

52 

The diagram on the right shows the 9 hy 9 square ,Yith two non-overlapping rectan
gles nicely placed in it. 

(a) How many 2 by 5 rec ta ngl es can you fit nicely int o a 9 by 9 square wit hout 
overlapping? The mor e rectangl es you succeed in fitting into t he square. the better 
your score will be . 

Solu t io n. Th e maximum number of rectangles that can nicely fit into a 9 by 9 
square is eight. One suc h configurntion is shown below. 

(b) Show how to fit some 2 hy G rectangles nicely into a !J by 9 square so that no 
further 2 by 5 rectangles can be fit n icely into th e 9 by 9 square . The f ewer rectan gles 
you use . th e better your sco re will be. 

So lution . The minimum number is three (one can justify why two is not poss ible 
by considering the cases of two horizontal rectang les . two vertical rectangles or one 
hori7,0ntal and one verti cal rect angle . then ana lyzing th e empt y space left over). On e 
soluti on demonstrating that three is possible is shown be low. 
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B3 ( a) "\.\'rite 2017 as a sum of two squares of positiYe integ ers. 

So lution. On e ::;olution is 201 7 = 81 + 1936 = 92 + 442 (in fact . it can he shown 
tha t this solution is uniqu e) . 

In order to reduc e trial and error. consider the following observations: 

• Since 2017 is odd. one squa re must be odd. the other even. 

• Odd squa res Pnd in 1. 5 or 9; even squares in 0. 4 or 6. Therefor e the two 
squares must end in 1 and 6. 

• An exploration of numbers then gives the answer. Alternatively. one can not ice 
that odd squares are 1 more th an a multipl e of 8 and since 2017 is one more 
than a multiple of 16. the squares must be of the forrn (4x) 2 and (8y ± 1)2

. 

• Thus , (4x) 2 + (8y ± 1)2 = 2017 implyin g x2 + 4y 2 ±y = 126 . Then x and y are 
of th e same parit y. both odd, or both even with y singly even. 

Alte rna t ively, one could compute a table of squares . subtract each from 2017 and 
check if the result h; a square number. 

n n:z 

1 i 1 I 
2 4 
3 9 
4 16 
5 25 
6 36 
7 49 
8 64 
9 81 

2017 - n~ 
2016 
20 13 
2008 
2001 
1992 
1981 
1968 

r: 19o3 
1936 

check 
not a square 
not a square 
not a square 
not a square 
not a square 
not a square 
not a square 

" not a squai e · 
is a squar e 

(b) Writ e 2017 as a difference of two squ a re::; of positive intege rs. 

So lu t ion . One solution is 2017 = 10092 - 10082 (in fact. it can be shown that this 
solution is unique) . One method to deduc e this is as follows. 

2017 = 2017 X 1 

( 1009 + 1008) X ( 1009 - 1008) 

10092 
- 10082 

B4 Gr eg and Jo ey decide to race each other on an 800 metr e track. Since Jo ey is faster 
than Greg. the two decided to give Greg a head sta rt. In the first race . Greg was 
given a 20 metro head start. however. Jo ey st ill won and finishe d 2 8econds earlier 
t han Greg. In th e second race . Greg was given a 38 metre head start. and thi s time 
Greg won and finished 1 second ahead of Jo ey. Assuming bot h Gr eg and Jol' y ran at 
uniform spe eds in bot h races. determine the speeds (in metr es per second) of both 
runn ers . 
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Solution. The answer is that Greg runs at 6 metres per second and Joey runs at 
6.25 metres per second. 

Solution 1. Suppose Joey ran 800 metre s in t seconds. Then Greg ran 780 metres 
in t + 2 second:; and 762 metres in t - 1 seconds. Since Greg ran at uniform speed 
in both races (by a!>sumption). we have 

780 762 
t+2 t-1 

Cross-multiplying gives 780(t- l) = 762(t + 2). thus. t = 128. This implie s that Joey 
runs at- 800/128 = 6.25 metres per second. and Greg runs at 780/ 130 = 6 metres 
per second. 

Solution 2. Suppose Greg runs at x metres per second. Then Greg finished the 
first race in 780/x seconds and the second race in 762/ x seconds. Jo ey finished the 
first race in 780 

- 2 seconds and the second race in 762 + 1 seconds. By assumption. 
T. I • 

Joey ran at uniform speed in both race s. and since he ran 800 metres in each race 
he must have finished both races in the same amount of time. Thus, 

780 _ 2 = 762 + 1. 
X :r 

This impli es, 780 = 762 + 3x . hence. :r = 6. 

Thus , Greg finished the first race in 130 seconds and the second race in 127 seconds . 
This impli es that it t akes Jo ey 128 seconds to nm 800 metres. that is. Joey runs at 
6.25 metres per second. 

B5 Every day Tom puts on his socks. shoes. shi rt. and pants. Of course he has to put 
his kft sock on before his left shoe. and his right sock before his righ t shoe . He also 
must put on his pants before he puts on either shof' . Oth erw ise he can put th ese six 
articles on in any order. In how many orders can he do thb'? 

Solution. Suppose th at Tom puts his socb and shoes on in t he order (sock. shoe, 
sock. shoe). Ther e are only two ways to do this. uamdy Tom sta rts off with either 
his left sock or hi:; right sork. an d then he has no choice for the other thr ee items . 
The11 he must put his pants on eitlie-r before he puts on the first sock or immediately 
after. so he has two choices for when he puts on his pants. Thi s gives 2 x 2 = 4 ways 
to put on everything but hi:; shirt in this case . 

Suppos e instea d that Tom puts his socks and shoes on in the orde r (sock , sock . shoe , 
shoe). He aga in has two choices for which sock he put s on first. and this tim e he also 
has t wo choices for which shoe he pub on first. so he has 2 x 2 = ..:1 ways to put on 
his socks and shoes in this casE-:. He can put on his pants either before the first sock. 
or between th e two socks. or immediatdy after th e second sock. so he has 3 choices 
for when to pu t on his pan ts. Thus he has -1 x 3 = 12 wa, ·s to put on everyt hin g but 
his shirt in this case. 

Thu s Tom ha s 4 + 12 = 16 ways to put on cYen-thing hut his ::;hirt. He can put on 
his shirt at any tim e . so he has 6 choices for that (befo re the first sock. after the last 
shoe, or anywher e in between) . So the tota l number of ways he can put on all six 
it ems is 16 x 6 = 96. 

------ -- --
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B6 A straight line is drawn across the equilateral triangle ABC of side-leng th 9. cutting 
the sides AB and AC at points F and E, as shown . \Vhat is the length of CD? 

A 

B 

Solution. Let G, H and I be the feet of t he perpendiculars from A, F and E . 
respective ly onto BC. 

A 
,/\ 
, ' \ 

;3/ ' \ 
I ' 

~/:,, \ G 
/ -......_,__ \ 

/ ...__, \ 

~/ ; I ~<\ }:_,' 
I ~', 

.' I \..._,~ 

/
/ I \ ,3 ,, 

; I \ : '-._,__ 
; \ ·1· ...____ 

'-------------'--- '..._, . :::::-,, 
B H G I C D 

Then BG = ½BC= ~- Triangles BH F and EGA are similar triang les, thu s . 

BH 
BG 

BF 
BA 

-+ 
EH 
9/ 2 

6 

9 

implying BH = 3. Finall y, ID= HI= ~- thu s , ED= 12 impl ying CD= 3. 
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Edmonton Junior High School 
Mathematics Competition 2016/17 

Part 1 

1. A 4-digit number uses each of the digits 3, 4, 5, and 6 exactly once. If the digits are placed randomly, what is the 

probability tha t the 4-d igit number is a multiple of 6? 

1 
A. -

6 

Answer: D 

Solution : 

B. 
1 

3 
C. 

2 

3 
D. 

1 

2 

5 
E. -

6 

There are 4 x 3 x 2 x 1 = 24 ways to write a 4-d igita l number. The 4-digital number is already divisibl e by 3 
regardless of the positions of the digits. To be divisible by 6, the number must end with either a 4 or a 6. There 
are 3 x 2 x 1 = 6 ways to wr ite the first thre e digits. This gives the probability of 2 • 3 • 2 • ! = .!.. 

4•3•2•1 2 

2. Two analog clocks run at the correct rate of speed. Both clocks show the correct time 

when it is 9:45 PM However , as the hands on one clock run forward, the hands on the 

other clock run backward. When will both clocks next show the same time ? 

A. 4:15 AM B. 3:45 AM C. 3:45 PM D. 4:15 PM E. 9:45AM 

Answer: B 

Solution: 

Since the two clocks run at the same speed, the two clocks wou ld display the same time exactly 6 hours later. 
This gives 3:45 PM. 

3. Cellphone company Apple ha s no monthly fee but charges: 

• Local calls at $0.10/min, plus 

• Long Distance calls at $0.50 /min , plus 

• Text Messages at $0.20 /text beyond 75 texts, plus 

• Data at $10 /GB past 3 GB. 

Cellphone company Banana charges $125 /month for unlimited usage. 

Jaime's typica l use per month is : 

• Local calls: 500 minu tes, plus 

• Long Distan ce calls: l O minutes, plus 

• Text Messages: 250 

• Data: 5 GB 
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Based on Jaime 's usage, which statement is true? 

A. Jaime saves less than $200 /year using compan y Apple. 
B. Jaime saves more than $200 /year using company Apple. 
C. Jaime saves less than $200 /year using company Banana. 
D . Jaime saves more than S200 /year using company Banana. 
E. Both companies would charge Jaime the same amount. 

Answer: A 

Solution: 

Using Jaim e's data usage , we have 500(0.1) + 10(0.5) + 0.2(250 - 75) + 10(5 - 3) = 50 + 5 + 35 + 20 = 
$110. Each year, Jaime saves 12(125 - 110) = $180 using company Apple. 

4. It will take me 2% of 8 hours to finish folding my laundry. It will take me 55 % of 20 minutes to unload the 

dishwasher. Which task will take me longer to complete , and by how many more seco nds ? 

A. Folding laundry by 84 seconds. 
B. Folding laundry by 54 seconds. 
C. Unloading the dishwa sher by 84 seconds. 
D. Unloading the dishwasher by 54 seconds . 
E. Both tasks take the same amo unt of tim e . 

Answer: C 

Solution: 

Folding laundry requires 0.02(8)(60)(60) = 576 seconds. Unloading the dishwasher requires 0 .55(20)(60) = 660 
seconds. Unloading takes longer by 660 - 576 = 84 seconds. 

5. 1 started a game with an even number of points, and played 3 rounds . In the first round , I lost half of my 

points. In the second round , I won back twice the number of point s that I had started the game with. l ended 

the third round with half the number of point s that I had started that round with . I ended the game with 15 

points. Which de scribes how the number of points f ended the game with compares to the number of points I 
started the game with? 

A. I ended the game with half the points that I started the game with. 
B. J ended the game with double the poin ts that I started the game with. 
C. I ended the game with 3 more points than what I start ed the game with. 
D. I ended the game with 3 less points than what I started the game with. 
E. I ended the game with the same number of points that I started the game with. 

Answe r: C 

Solution: 

Start of round Win or lose End of round 
2n 
2n n n 

n 4n Sn 
5n 2.5n 2.5n = 15 

Start of the game = I 2 points. Therefore , Jaime earns 3 more points than the start of the game. 
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6. Given that the formula for the Volume of a Sphere is: V = G) rrr 3 

A cube has the same height as the diamet er of a sphere. The Surface Area of the 
cube is 2 16 cm 2. Rounded to the nearest whole cm3, how much larger is the volume 
of the cube compared to the volum e of the sphere ? 

A. 96 B. 103 C. 108 D. 127 

Answe r: B 

Solution: 

The length of one side of the cube is Ji¥ = 6 cm. 

The difference in volume is (6 x 6 x 6) - ~(rr)(3 3
) = 103cm 3 

3 

E. 216 

7. A package contains 4 chocolate, 3 vanilJa and 3 lemon cupcak es . How man y chocolate cupcakes , 

represe nted by x, must be added to the package so that it will contain 60% chocolate cupcakes? 

Which of the following equation s could be used to solve this problem ? 

x- 10 60 x+ lO 60 X 0 .6 x 
A. B. C. = 

x-4 100 x +4 100 x +lO 1 

x +4 60 X 
D. - - = E. X + 10 

x+ lO 100 0.6 

Answer: D 

Solution: 

The total number of chocolate cupc akes wo uld increase by 4 while the total number of cupcakes also increases 
. number of chocolat e cupcakes x+4 60 . . 

by 4. The proportional statement ----'-- -- - ----'--- = -
10 

= - gives the correct expression . 
total number of cupcakes x + 100 

Part 2 

8. Each person in a room shook hands onc e with each other person in the room. ]fth e total number of 

handsha kes was less than 1000, then what is the most numb er of people that could have been in the room? 

Solution: 

Total number of hand shake s is best dealt with using the series (n - 1) + (n - 2) + (n - 3) + ... + 3 + 2 + 1 where 
n is the number of people in the gro up. For example, ifn = 5 peop le, there wou ld be 4 + 3 + 2 + 1 hand shakes in 

total. Pairing the front and back eac h time yie ld a sum ofn . There are exact ly n;i pairs givin g a sum of n (n;1) . 

Solving the inequalit y n (n;1) < 1000 , we haven = 45 . 
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9. The sum of two rational numbers is l. Amy add the larger number to the square of the smaller number. 

Beth add the smaller number to the square of the larger number. What is the difference of the two values? 

Solution: 

Let the larger of the number be n and the smaller number be (1 - n). 

We have (n + (1 - n)2) - (n 2 + (1 - n)) = (n + 1 - 2n + n2) - (n 2 + (1 - n)) = 0. 

l 0. Although Jen has no savings , she wants to earn enough money in 4 months to buy a puppy. On the first 

month , Jen earns half of the total cost. On the second month, Jen earns one-third of the amount she still 

needs. On the third month, she earns $80. After 3 months, she has earned 75% of the total cost of the puppy. 

How much money must Jen earn in the fourth month to have enough to buy the puppy? 

Solution : 

Let n be the cost of a puppy 

. .1n n n 1 
We have the equation -= - + - + 80. Solving for n yields n = 960. Jen needs to earn - x 960 = $240 

4 2 6 4 

11. Xiang's age is 10 less than the sum of Yvonne 's age and Zoe's age. The ratio ofXiang's age to Yvonne 's 

age is 3:2. Zoe is 2 yea rs older than Yvonne . What is the sum of the ages of the three people 4 years from 

now? 

Solution : 

3y 
Let Y be Yvonne's current age. It follows that x = 2 and z = y + 2. 

Solving the equation 
3
: = y + (y + 2) - 10, we have y = 16, x = 24 andx = 18. In 4 years, we have 20 + 28 + 

22 = 70. 

12. What is the sum of the interior areas, to 

the nearest unit2, of the letters used to 

spell the word "MA TH"? 

Solution: 
M = 21, A = T = 18, H = 22. 
The total area = 79 unit 2 

. . - . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . .. . . . 
. . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . 
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13. What is the area , in square centimeters, of an isosceles trapezoid, given the following clues? 

• Its perimeter is 64 cm 

• Each of the 2 congruent sides is 10 cm 

• The difference in the lengths of the parallel sides is 12 cm 

a 

[Jo Solving the two equations a + b + 20 = 64 and b - a = 12, we have a = 16 and b = 28 . 

d = -V102 - 62 = 8 . The area is ( l
6+28

)(
8

) = 176 cm 2 
2 

b 

Part 3 
14. Mary divides by 5 each number from I to 201 7, inclusive . She then adds together all the remainders she 

gets. Find the sum Mary obtains. 

Soluti on: 

When we divide the number 1, 2, 3, ... , 2017 by 5, the remainders have a repeating pattern: I. 2, 3, 4, 0, I, 2, 3, 4, 
0, ... , ] , 2. 

The pattern l, 2. 3, 4, 0 repeats 403 times and ends with 1, 2. The sum is 403( 10) + 1 + 2 = 4033. 

15. How many 4 digit palindromes are divisible by 7? 

Soluti on: 

A 4 digit palindrome has the form abba = a(I 00 I) + b( 110). Since 71! 00 I, we need 71 I !Ob. Thi s is po ssible when 
b = 0 or 7. Sinc e there is no restriction on a except a* 0, we hav e 9 choices for a and 2 choices for b. Jn total, there 
are 9 x 2 = 18 suc h numbers. 

16. Nickels, dime s and quarter s are to be used to make exactly $ I .00 . At least one of each 
type of coin mu st be used. In how many different ways can thi s be done if an even number 
of coins must be used? 

Solution: 

Using a table of values to organize the number of coins, we have 6 ways to make $1. 00 using 
even number of coins . 

25¢ 

1 

I 

1 

2 

2 

3 

10¢ 5¢ 

2 11 

4 7 

6 3 

2 6 

4 2 

2 I 

60 delta-K, Volume 55, Number 1, Jun e 2018 



17. A girl and a boy play the game Rock, Paper, Scissors ten times, where rock beats scissors, scissors beat 
paper and papers beat rock. The boy uses rock three times, scissors six times and paper once. The girl uses 
rock twice , scissors four times and paper four times. None of the ten games is a tie. How many games has 
the boy won? 

Solution: 

Scissors are used ten times altogether. Since there are no tied games, exactly one player uses scissors in each 
game . In the six games where the boy uses scissors, the girl wins two of them when she uses rock, and lose the 
other four games . In the four games where the girl uses scissors , the boy wins three of them when he uses rock , 
and lose the other one . Hence the boy wins seven games. 

18. Of all the whole numbers N from I to 2017 inclusive, how many have the property that there exists a 
number M such that the sum of M and N is equal to the sum of the reciprocal of M and the reciprocal of N? 

Solution: 

Let m, n be the two numbers. We have 

1 1 
m+n= - +

m n 
n+m 

m+n= -
mn 

1 
1= -

mn 
mn=l 

Hence m and n are reciproal of one another. Of the numbers from 1 to 2017, there are 2017 reciprocals. 
Therefore, there are 2017 values for M. 

19. Find a positive integer whose ones digit is 5, and when it is multiplied by 4, the 5 becomes the first digit 
while all other digits shift one place to the right. 

Solution: 

Create a pure repeating decimal x where the positive integer is the repeating block . Then 40x is the same as x 
s 

except with an extra 5 in front of its decimal point. Hence x = 
39 

= 0. 128205. Thus the desired positive 

integer is 128205. 

Alternative solution: 

Divide 5 by 4. The quotient is 1.25. Divide 51 by 4. The quotient is 12.75. Divide 512 by 4. The quotient is 
128. The division is exact but the ones digit is not 5. So we continue. Divide 5120 by 4. The quotient is 
1282.5. Divide 51282 by 4. The quotient is 12820.5 . Divide 512820 by 4. The quotient is 128205. This is the 
positive integer we seek . 
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Mathematical Mindsets 
by Jo Boaler 

Jossey-Bass,2016 
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Reviewed by Ashley Durbeniuk and Terry Freeman 

Math ematical Minds ets, by Jo Boaler, brin gs to 
light the five Cs of learning: curiosity, collaboration, 
connections, challenge and creativity. It allows stu
dent s to see that math is not ju st a black and white 
subject. Multiple pathway s can get learners to their 
final destinati on. In our experience, allowing student s 
to use their own creativity in math gives them the 
satisfact ion of connecting their life to mathematical 
concepts. It also gives them a chance to succee d in a 
subject tha t they may have previo usly fai led. An 
example of this is the linear relations task that intro
duced the idea of linear relations in Grade 9 math . It 
encoura ged students to think outside the box. see their 
own patte rns and express their learnin g in multiple 
ways. Students were given the opportunit y to col
laborat e with one another and share their ideas with 
a tabl e gro up, where student s of all levels of und er
standin g were able to be experts in their own right. 
As a class, they discussed the multiple pathways. 

Th e book discusse s man y nontr aditi onal ap
proaches to the learni ng of math. Boaler propos es 
"Posit ive Norms to Encourage in Math Clas s." These 
norms include (I) everyo ne can learn math to the 
highest levels, (2) mistakes are valuable , (3) questions 
are really important , ( 4) math is abo ut creativity and 
making sense, (5) math is about connections and 
communic ating, (6) depth is more important than 
speed and (6) math class is abo ut learn ing not per
forming. Jo Boaler provide s the research behind each 
of these norms. Mathematical Minds ets is ripe with 
tangible exam ples. Taking on the debate over Mad 
Minut es, the book references an article by Boaler 
entitled "Fluency without Fear ." The artic le discusses 
the stress assoc iated with timed fact tests. She pro
poses coopera tive, nontim ed activities like Close to 
One Hundr ed. This game is a favourit e of many 

62 

students. It strengthens numerical fluency while work
ing with a partner in a nonthreatening environment. 

The Jens of the 5 Cs encourages teachers and stu
dents to interac t with math in meaningful, real-w orld 
situation s. Watching Grade 4 students work on a 
challenge requirin g collaboration, creativity, con nect
ing and curiosity to discover the area and perimeter 
of an alien ship produced an unexpected mathematical 
discovery-how to discover the area of a triangle . 
Thi s activity was what Jo Boaler calls "Low Floor
High Ceiling" tasks. Such tasks engage all student s 
in meaningful ways. Grade 1 students were chal
lenged to discover the cost of a pizza party for their 
class, grade and school. These young mathematician s 
were totally engaged for 90 minutes. "The Power of 
Mistak es" was celebrated. Favourite mistakes were 
celebrated and moved thinking forward. The beauty 
of eac h of these "Rich Mathematical Tasks" is that 
they were carefully crafted so that each student would 
have success . More important, the work and effort of 
each team member contribut es to the final outcome. 

Math ematical Mindsets is not a theoretical dis
course on what could be . Rather, it is thoughtfully 
writte n so that teachers of all grade and ability levels 
can affect positive change in their practice. More 
important, these shift s in practice engage the student s 
and th ey see the beauty of math , how powerful 
strugg le is and how a growth mindset can be fostered. 
Join the revolution and read this book. 

Ashl ey Durbeniuk is the departm ent head of instruc
tion at Al exandra Middl e School, Medicine Hat 
School District No 76. 

Terry Freeman is a learning coach with the Medicin e 
Hat School District No 76. 

delta-K, Volume 55, Number 1, June 201 8 



Website Highlight ______________ _ 

Mathematics of Planet Earth 
http://mpe.dimacs.rutgers.edu/ 

Lorelei Boschman 

Recently, I came across an open source mathemati
cal website that grabbed my attention. It is worth 
exploring for either demonstrative or investigative 
purposes with mathematics students. Below is infor
mation directly from the website. Can you think of 
ways to integrate some of this excellent mathematical 
and scientific work into your curriculum? 

Mathematics of Planet Earth (MPE) is an initiative 
of mathematical science organizations worldwide de
signed to highlight the ways in which the mathematical 
sciences can be useful in tackling our world's problems. 
The exhibition Mathematics of Planet Earth consists of 
modules submitted by the community. It started with a 
competition in 2012; winning modules from that com
petition were presented at the official opening event of 
the first MPE exhibition in Paris in March 2013. 

The modules of the Mathematics of Planet Earth Open 
Source exhibition can be reproduced and adapted by sci
ence museums and schools around the world (https:// 
imaginary.org/exhibition/mathematics-of-planet-earth) 
(scroll down to the bottom to see the "exhibits"). 

Users worldwide from science museums to schools 
can reproduce and utilize the modules. The exhibition 
has a virtual part as well as several material parts. 
Copies of the material parts can be recreated or travel 
around the world, and the virtual modules are avail
able on the basis of creative commons licenses . 

In one way or another, all exhibits are demonstrat 
ing the crucial role mathematics plays in planetary 
issues. The modules cover a wide variety of topics 
such as astronomy, fluid dynamics, the mathematics 
of volcanoes or glaciers and problems in cartography. 

The virtual modules displayed in the exhibition 
come from an international competition organized by 
the initiative MPE, IMU, ICMI and IMAGINARY in 
2013 and 2017. They are of four types: interactive 
modules, films, posters and instruction s to realize a 
physical module . The three winners of the first com
petition received their prize at UNESCO during the 
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MPE Day in March 2013 ; the three winners of the 
second competition received their prize at the MPE 
exhibition at Imperial College London in October 
2017. The exhibition is still under development. New 
ideas and modules are welcome. See the MPE project 
(https://imag inary.org/content/new-mpe-exhibits) for 
more information. 

For more information on the Mathematics of Planet 
Earth initiative , please visit http://mpe .dimacs .rutgers 
.edu/. -
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(I) The Alberta Teachers' Association 

Consent for Collection, Use and 
Disclosure of Personal Information 

Name: __ __ ___ _ __ ______ _ (Please print) 

LJ I am giving consent for myself. 

I- I am giving consent for my child or ward. 

Name: (Please print) 

By signin g below, I am consenting to The Alberta Teachers'Assoc iation collecting, using and 
disclosing personal information identif ying me or my child or ward (identified above) in print and/ 
or online publications and on websites available to the publi c, including social media . By way of 
example , per sonal informati on may include, but is not limit ed to, name, photographs , audio/video 
recordings, artwork , writings or quotations. 

I understand that copies of digital public ations may come to be housed on servers outside Canada . 

I understand that I may vary or withdraw this consent at any time. I understa nd that the Assoc iation 's 
privacy officer is available to answer any questions I may have regarding the collection, use and 
disclosure of these audio-visual records. The privacy officer can be reach ed at 780-447-9429. 

Signed: . -- -- -- - - -~ -- ------

Print name: Today 's date: __ 

For more inform ation on the ATA's privacy policy, visit www. teachers.a b.ca. 

- - --- --- -- ---- ------ ------ -- --------
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Publishing Under the 
Personal Information 
Protection Act (PIPA) 

The Alberta Teachers' Association (ATA) requires con
sent to publish personal information about an individual. 
Personal information is defined as anything that identifies 
an individual in the context of the collection : for ex 
ample, a photograph and/or captions, an audio or video 
file, artwork. 

Some schools obtain blanket consent und er FOIP , the 
Fre edom of Information and Prot ec tion of Privac y Act. 
However , PIPA and FOIP are not interchangeable. They 
fulfill different legislative goals. PIPA is the priv ate sec 
tor act that gov erns the Association's collection, use and 
disclosure of persona l information. 

If you can use the image or information to identify a person 
in context (for example , a specific school , or a specific 
event) , then it' s personal information and you need consent 
to collect, use or di sclose (publish) it. 

Minors cannot provide consent and must have a parent 
or guardian sign a consent form. Consent forms must be 
provided to the Document Production editorial staff at 
Barnett Hou se together with the personal information to 
be published. 

Refer all questions regarding the ATA's collection, use 
and disclosure of per sonal information to the ATA pri
vacy officer . 

Notify the ATA privacy offic er immediately of any in
cident that involves the loss of or unauthorized use or 
disclosure of personal information, by calling Barnett 
House at 780-447 -9400 or 1-800-232-7208. 

Ma gg ie Shane , the ATA's priva cy officer , is your resource 
for privacy compliance support. 

780-447-9429 (direct) 
780-699-9311 (cell, availabl e any time) 

MCATA Contacts 

President 
Alicia Burdess 
alici aburdess@gpcsd.ca 

Journal Editor 
Lorelei Boschman 
lboschman @mhc.ab.ca 

ATA Staff Advisor 
Lisa Everitt 
lisa.everitt@ata.ab.ca 

Complete contact information for the MCATA 
executive is available on the council's website 
at www.mathteachers.ab.ca. 






