Kite in a Square

NRICH Mathematics

ABCD is a square. M is the midpoint of the side AB . By constructing the lines $\mathrm{AC}, \mathrm{MC}, \mathrm{BD}$ and MD, the shaded quadrilateral is formed.

What fraction of the total area is shaded?
Below are three different methods for finding the shaded area. Unfortunately, the statements have been muddled up. Can you put them in the correct order?

Coordinates

1. The shaded area is made up of two congruent triangles, one of which has vertices $(1 / 3,2 / 3)$, $(1 / 2,1 / 2),(1 / 2,1)$.
2. The line joining $(0,0)$ to $(1 / 2,1)$ has equation $y=2 x$.
3. Area of the triangle $=1 / 2(1 / 2 \times 1 / 6)=1 / 24$.
4. The line joining $(0,1)$ to $(1,0)$ has equation $y=1-x$.
5. Therefore the shaded area is $2 \times 1 / 24=1 / 12$.
6. The point (a, b) is at the intersection of the lines $y=2 x$ and $y=1-x$.
7. Consider a unit square drawn on a coordinate grid.
8. The perpendicular height of the triangle is $1 / 2-1 / 3=1 / 6$.
9. So $a=1 / 3, b=2 / 3$.
10. The line joining $(0,0)$ to $(1,1)$ has equation $y=x$.

Similar Figures

1. As line $A C$ intersects line $M D$ at point E, the two opposite angles $\angle M E F$ and $\angle A E D$ are equal.
2. The line $M F$ is half the length of $A D$.
3. Line $A D$ is parallel to line $M F$, so $\angle E D A$ and $\angle E M F$ are equal, and $\angle E A D$ and $\angle E F M$ are equal (alternate angles).
4. Therefore, $\triangle A E D$ and $\triangle F E M$ are similar.
5. Therefore, the line $E H$ is half the length of $P E$.
6. Let $A B C D$ be a unit square.
7. Therefore, the shaded area $\mathrm{MEFG}=1 / 24 \times 2=$ 1/12 sq units.
8. $P H$ has length $1 / 2$ units, so $P E$ has length $1 / 3$ units and $E H$ has length $1 / 6$ units.
9. \triangle MEF has area $1 / 2(1 / 2 \times 1 / 6)=1 / 24$ sq units.

Pythagoras

1. The area of $\triangle D M C=2$ sq units. The area of $\triangle D F C=1$ sq unit. Thus the combined area of $\triangle D F E, \triangle C F G$ and shaded area $M E F G$ is 1 sq unit.
2. $(E H)^{2}+(H F)^{2}=(E F)^{2}$
$E H=H F$
$(\mathrm{EH})^{2}=1 / 2(\mathrm{EF})^{2}$
$\mathrm{EH}=\mathrm{EF} / 2 \sqrt{ }$
3. Areas of $\triangle D F E, \triangle C F G$ and shaded area $M E F G$ are equal, so each must have an area of $1 / 3$ sq units.
4. Area of $\triangle M E F=1 / 2(1 \times E H)=1 / 2(E F / 2 \sqrt{ })$
5. By Pythagoras, DF has length $2 \sqrt{ }$.
6. The total area of the square is 4 sq units, so the shaded area is $1 / 12$ the area of the whole square.
7. Area of $\triangle D F E=\mathrm{DF} \times \mathrm{EF} / 2=2 \sqrt{ } \times E F / 2=\mathrm{EF} / 2 \sqrt{ }$
8. So the shaded area $M E F G$ is equal to the area of $\triangle \mathrm{DFE}$.
9. Assume that the sides of the square are each 2 units long. Thus, $D J$ and $F J$ are each 1 unit long.

Reprinted with permission of NRICH Mathematics. http://nrich.maths.org/8301. Copyright © 19972017. University of Cambridge. All rights reserved.

