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What Problem Are They Posing? Viewing 
Group Problem Solving Through an 

Enactivist Lens 

Nat Banting 

Instructional practices that 
facilitat e deep mathematical 
under sta nding and elicit student 
thinking were thrust into th e 
limelight by the National Council 
of Teac her s of Mathematics 
(NCTM) by two and a half de­
cades' worth of influential cur­
riculum documents () 989, 2000, 
2014). Closer to home , th e 
Western and Northern Canadian 
Protocol (2008) called for similar 
peda gog ical approaches in the 
mathematics classroom, includ­
ing the incorporation of mean­
ingful student discussion as a 
channel for developing mathe­
matical under standing . Group 
problem solving presents itself as 
a key structure for the classroom 
teacher attempting to fulfill these 
curricular man date s. For thi s 
rea son, group work in the math­
ematics classroom warra nts ex­
amination from var ious theoreti­
cal frameworks, each of which 
brin gs different impli cation s for 
employing the structure in the mathematics class­
room. In thi s article, gro up problem solv ing is 
viewed through an enactivist lens, which stresses 
the evolutionary natur e of problem solvin g as the 
learners and the probl em mutu ally define one an­
other. In other words, a problem does not live outside 
of the solvers; it is the interaction between knowers 
and task that shapes the nature of the problem . A 
mathematical problem, then, take s on a plural 
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character as the solution to a provided task may 
involve severa l instan ces of problem drift, where a 
new problem becomes the focus of attention because 
it emerges as a releva nt inquiry in the cou rse of ac­
tion with the evolving mathematical enviro nment. 
A portrait of grou p action is provided to illustrate 
the evolutionary process of comin g to know, and the 
implication s of problem drift for teacher action are 
discus sed. 
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Problem Solving for the Social 
Constructivist 

This shift in the interpretation of a prob lem-solving 
activity is better explained when compared to the 
learning theory through which group problem solving 
is usually supported: social constructivi sm. Though 
there are many branches of social constructivism 
(Ernest 2010), I use the work of Lev Vygotzky ( 1978) 
to stmcture the discussion because of the importance 
he placed on languag e development and his construct 
of the zone of proximal developm ent (ZPD ) as a 
vehicle for its development , both of which are often 
discussed in introductory psycholo gy courses and as 
part of teacher training . According to thi s the ory, 
learnin g occurs when students intern alize subjective 
meanings that fit into their social (and mathematical ) 
worlds. In order to pull learnin g forward, interac tions 
must fall within the learners ' ZPD , a theoretical space 
that consists of tasks a novice could not carry out 
without an expert's guidance. The process of inten­
tion ally supporting learners to go beyond what they 
could do individually is called scaffo lding. Small­
group cooperative work, then , activates students as 
scaffo lds. In other words , it allows students to en­
counter those with more sophisticated knowledge and 
thu s provides scaffoldin g toward an understandin g of 
the mathem atical problem . It is the job of the students, 
throu gh the use of sociall y negotiated language, to fit 
their under standing to invariant s in the environm ent. 
It is the job of the mathematic s teacher to pro vide a 
mathematical environment, in the form of a task to 
be completed, and to mitigate the learners' personal 
meaning of that environment. Teaching, then, is the 
process of diagnosing where in the so lution process 
the learners are and decidin g what assistance will 
allow them to move forward. 

Problem Solving for the 
Enactivist 

Enactivism and soc ial constructivism are not dis­
joint (Reid 1996); both learning theories treat social 
interac tion as the impetus for learnin g. Howeve r, a 
key difference is that constructivism is conce rned 
with issues of fit, whereby learner s use exper ience in 
an environment to construct sense from it. Enactiv ism, 
on the other hand, is "not so much about the invariant s 
within the environment , but about the coordination 
of the knowe r and the environme nt" (Proulx and 
Simmt 20 13, 66). According to enacti vist theory, 
environm ent and cog niti on evo lve alongside one 
another. In the case of group probl em solving in the 

12 

mathemati cs cla ss, the environment con sists of both 
the given task and the other learners working with 
the task. The ac tions of participant s negotiat e their 
way through a world that is not fixed or pregive n, but 
rather one "that is continually shaped by the types of 
action s in which we engage" (Varela, Thompson and 
Rosch 1991 ). The nature of the mathematical task 
that the learner s are operating with and the mathe­
matical knowl edge used to arrive at coherence are 
constantly influencing eac h other. Problem solving 
is thus a proces s of "dynamic co-emergence of know­
ing agent-and -known world" (Davis 1995, 8). Acting 
within a mathematical environment changes the na­
ture of the environment. Thi s allow s the chara cteris­
tics of the task to become prob lematic for the learners, 
and, thus, the environment to trigger further action. 

Problem solvers enter a mathematical environment 
with patt erns of act ion established through their past 
interactions with environments. In other word s, learn­
ers bring their history of viable, mathematical action 
with them when they begin to solve a problem. Inter ­
action with the new environment begin s here. The 
feedback provided by interacting with the structure 
of the new environment shift s the nature of the envi­
ronme nt. Beca use the gro up now has more informa­
tion about the nature of the task, there is further im­
petus for action, which is reciprocated by a shifting 
of the mathematical task. This is the image of evolu­
tionary coming to know, the proces s of bringing forth 
a wo rld of mathematic al significance (Kieren and 
Simrnt 2009; Proulx and Simrnt 2013) where problem 
and solvers concurrently define one another. The task 
is not fixed; it is defined by the solvers. The action s 
of the solvers are not fixed; they are pro scribed by 
the task. Probl em solving , then, involves a fundamen ­
tal circularity between knowers and their environment 
as they mutually spec ify one another (Davis 1996). 
According to enactivist theory, learner s are not ap­
propri ating an individual , subjective meanin g through 
the mechanism of soc ial intera ction , as proponent s 
of soc ial constructivism wo uld contend; rather , 
through their interaction with others and environment, 
learners are bringing forth-enacting-mathematical 
meaning toge ther. 

In order to solve problems , problem solvers have 
the ability to pose "relevant issues that need to be 
addressed at each moment. These issues are not pre­
given, but are enacted from a back ground of action" 
(Varela, Th ompson and Rosc h 1991, 145). In other 
words, the math ematical problem does not reside in 
the task itself ; the structure of the task only triggers 
ac tion. Through an enac tivis t lens, "prom pt s are 
given, not problems. Probl ems bec ome probl ems 
when knowe rs engage with them, when they pose 
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them as problems to solve" (Proulx and Simmt 2013, 
70). That is, the prompt is not thought to contain the 
mathematics to be internalized. Instead, mathematical 
knowledge "emerge[s] from the knower's interaction 
with the prompt, through posing what is relevant in 
the moment" (Proulx and Simmt 2013, 69). Problem 
solving, then, is the process of coordinating intelligent 
action in an ever-changing process of problem posing. 
In order to do this, learners pose the problem that they 
believe will focus their mathematical action toward 
a coordination with the task 's requirements. These 
relevant problems evolve as the group acts with the 
task, and I have termed this shift in the relevant prob­
lem that focuses students' action problem dnft. 
Viewed through the lens of enactivism, learning is 
the process whereby problem solvers redefine their 
action in relation to the shifts in the mathematical 
environment ; it is the process of bringing forth math ­
ematical significance. Teaching, then , is the proce ss 
of providing information, orienting attention and 
coordinating the possible in the mathematical envi­
ronment (Towers and Proulx 2013 ). It require s attun ­
ing to the probl em of relevance and coordinating 
further encounter s with the environment to continue 
the problem-solving (posing) proce ss. 

A Classroom Portrait of 
Problem Drift 

To illustrate the evolutionary process of knowledge 
and the notion of problem drift, an excerpt from a 
group of Grade 1 1 students working with the Squares 
Task (Appendix A) is analy zed. The Square s Task 
was a two-part task that asked Piper , Ben and Carter 
to first count the total number of square s that did not 
contain a blacked-out portion on an eight-by -eight 
grid and to determine the po sition of the blacked-out 
portion that would maximize the number of such 
possible squares . The excerpt begin s as the group 
addre ssed the second question of the task. The use of 
an ellip sis represent s a gap in tran scription ; all name s 
are pseudonyms. 

Piper : Wouldn ' t the smartest thing to do be to put 
it in a corner so you can get the large st 
amount of area? 

Ben: Yeah, because then you'll get the .... 
Carter : But we aren ' t talkin g about the bigges t 

squares, we' re talking about the most squares. 

Piper: Reg ardless, there 's going to be 55 , one-by ­
one square s. 

Carter: Yeah. Some thin gs can't change . 
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Ben: 

Carter: 
Piper: 
Carter: 

Ben: 

Carter: 

Piper: 
Carter: 

Piper: 

OK, we11 like, the most that we got was two­
by-two, right? Do you think if we moved the 
square anywhere on the piece it would 
change the amount of two-by-two s? 
Two-by-twos wouldn ' t change. 
Three-by-threes wouldn't change either. 
Because it still takes the same amount of area. 

If we just blanked out a comer, what would 
change? 
Two-by -twos would be the same because 
you 're still having the same area. 
Yup. 
Three-by-three is going to be the same, but 
you do get four-by -fours and five-by-fives. 
Exactly, so the comer is the best! 

Thi s interaction between Piper, Ben and Carter 
maps an example of problem drift as their action 
couples with the environment. Not included in the 
episode, for sake of brevity, is the solution strategy 
for question one of the squares task (see Appendix 
A). The group used a combination of multiplication 
and subtraction operation s to count the number of 
one-by -one squares and then decided to use a system 
of dots (Figure I) to count the two-by-twos . After all, 
the prompt asked them how many, and the counting 
strategy paired well. 

As the group began to addre ss question two of the 
squares task , there was a converging of past histories. 
Piper suggested that moving the square as far out of 
the way as possible would be most effective , and 
Carter was quick to remind her that the goal of the 
task was not to create the most space, but to create 
the most square s; this action revealed hesitancy to­
ward using the mathematical idea of area to solve the 
problem. For Piper , the relevant problem might be 
framed as, "What is the large st pos sible square we 
could fit on the grid?" , but Carter 's action signalled 
that the relevant problem for him was, "How can we 
creat e the largest number of squares?" The structure 
of the probl em offered both of these possibilitie s, but 
Piper and Carter' s mathemati cal past s led them in 
different initial directions . A social constructivist 
might interpret Piper and Carter as having constructed 
different underst andings of the nature of the task, but 
an enactivi st sees the onset of two very different 
worlds of mathemati cal significance-o ne interacting 
with concepts of size and area , and the other with 
systematized enum eration. 

I, as the provider of the ta sk, anticipated the rel­
evant probl em to become, "Wh ere do you place the 
blacked -out porti on to create the most squar es?", 
but Piper 's comment that the numb er of one-by-one 
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squares would not change regardless of the placement 
caused the group to attend to a new problem that they 
deemed important to the resolution of the task; 
namely , "Which sizes of squares will be unaffected 
by movement of the blacked-out portion?" In other 
words, Piper's comments produced problem drift. 
This was immediately validated by the other group 
members. Ben extended this line of action by wonder­
ing if Piper's pattern would remain true for the two­
by-two squares . At the end of this episode, the action 
of all three students centred on the probl em that was 
deemed as relevant to move toward a solution. The 
group was not solving the problem I encountered 
("Where do you place the blacked-out portion to cre­
ate the most squares?"); rather, they were coordinat­
ing their actions to solve the new, drifted problem, 
"What is the largest possible square we can create 
that doesn't include the blacked-out portion ?" This 
was something quite similar to the proposition made 
by Piper at the onset of action, but quite different than 
the counting of squares that they engaged in through­
out the middle portion of their time with the task- to 
verify that the number of squares was unaffected by 
the movement of the blacked -out section. For the 
enactivist, the mathematics emerged through interac­
tion with the prompt , and the prompt was reciprocally 
redefined by the group's action on it. The process of 
probl em solving (posing) evolved within and along­
side the mathematical environment. Piper, Ben and 

Figure I. The group's final ~mrkspace. When 
counting the ttt.·n-by-nt·o squares, each dot 
represented the celltre of a two-by-hm square . Their 
final solution was shaded in the bottom-l eft comer. 
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Carter all became convinced of the conjecture that if 
larger squares are possible, then more squares are 
possible, and their solution can be seen shaded in the 
bottom left corner of the grid in Figure 1. 

The task afforded many possible actions; counting 
squares presented itself as viable for question one. 
Question two triggered the group toward a much dif­
ferent collective understanding, one where the notion 
of area emerged as crucial to the task. At the end of 
the episode, the group arrived at the understanding that 
maximizing the number of possible squares is the same 
as maximizing the area of the largest possible square . 
Their action led them to play with the notions of area 
and quantity in a geometric and arithmetic amalgam-a 
much different world of mathematical significance than 
was originally available to all three. 

Implications for Teaching 
How, then , should teachers act when viewing group 

problem solving through the lens of enactivism? The 
recognition of problem drift affects how teachers 
choose, prepare and enact problem solving (posing) 
activities in the classroom. First, the understanding that 
mathematics is an actively evolving phenomenon 
implie s that classroom structure should provide spaces 
for student acti on. Problem -solving tasks should be 
designed to make students active produce rs (rather than 
strictly consumer s) of mathematic s, and provide arenas 
for worlds of significance to manifest. Teachers are 
called to include tasks with multiple avenues for con­
ceptualization (like the arithmetic and geometric no­
tions emerging through the Squares Task) and allow 
for student choice, conjecture, discussion, disagree­
ment, justification and refutation. These visible (and 
audible) mathem atical interchanges widen the sphere 
of mathematical action. 

Second , problem drift requires teachers to be in­
tentional in how they anticipate student responses to 
problem- solving (posing) activitie s. The goal is not 
to engineer a situati on where student s will act in 
particular ways; rather , it is to anticipate which fea ­
tures of the task will grab student s' attention and to 
decide what intervention may trigger further student 
action. However, no matter how much teacher s an­
ticipate student interactions with the mathematical 
environment, the evolutionary character of knowing 
resists predictability. It is crucial that teachers , as they 
become fully involved in the knowing action in their 
classroom, re main flexible when student action 
breaches the sphere of anticipated strategy. To allow 
room for problem drift. lesso n plannin g need s to give 
way to lesso n prepari ng. 
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Third, while enacting problem-solving tasks, 
teachers must attune themselves to problem drift­
what the group has posed as a suitab le way for­
ward. Attuning to a group's mathematical knowing 
begins with the identification of problem drift in 
the moments of teaching. This is more than the 
recognition that groups may find several solution 
pathways through a task or hold different construc­
tions of the problem-it is the recognition that 
groups may actuaJly be solving several different 
problems altogether. It means that the orienting 
question of teaching moves away from "How did 
th ey solve the problem?" and toward "What prob­
lem are they posing?" Viewing group problem 
solving (posing) through an enactivist lens allows 
the teacher to see the mathematical as plural, as 
emerging in the moment. We can no longer speak 
of pathways within a single problem, but must 
rather think of each problem as unique, emerging 
through the group's action wi th the ta sk. The 
teacher is then tasked with anticipating possibili­
ties, recognizing where the probl em has drifted in 
classroom activity and acting with the groups to 
further the mathematical action. 
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