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What Problem Are They Posing? Viewing
Group Problem Solving Through an
Enactivist Lens

Nat Banting

Instructional practices that
facilitate deep mathematical
understanding and elicit student
thinking were thrust into the
limelight by the National Council
of Teachers of Mathematics
(NCTM) by two and a half de-
cades’ worth of influential cur-
riculum documents (1989, 2000,
2014). Closer to home, the
Western and Northern Canadian
Protocol (2008) called for similar
pedagogical approaches in the
mathematics classroocm, includ-
ing the incorporation of mean-
ingful student discussion as a
channel for developing mathe-
matical understanding. Group
problem solving presents itself as
a key structure for the classroom
teacher attempting to fulfill these
curricular mandates. For this
reason, group work in the math-
ematics classroom warrants ex-
amination from various theoreti-
cal frameworks, each of which
brings different implications for
employing the structure in the mathematics class-
room. In this article, group problem solving is
viewed through an enactivist lens, which stresses
the evolutionary nature of problem solving as the
learners and the problem mutually define one an-
other. In other words, a problem does not live outside
of the solvers; it is the interaction between knowers
and task that shapes the nature of the problem. A
mathematical problem, then, takes on a plural
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character as the solution to a provided task may
involve several instances of problem drift, where a
new problem becomes the focus of attention because
it emerges as a relevant inquiry in the course of ac-
tion with the evolving mathematical environment.
A portrait of group action is provided to illustrate
the evolutionary process of coming to know, and the
implications of problem drift for teacher action are
discussed.
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Problem Solving for the Social
Constructivist

This shift in the interpretation of a problem-solving
activity is better explained when compared to the
learning theory through which group problem solving
is usually supported: social constructivism. Though
there are many branches of social constructivism
(Ernest 2010), I use the work of Lev Vygotzky (1978)
to structure the discussion because of the importance
he placed on language development and his construct
of the zone of proximal development (ZPD) as a
vehicle for its development, both of which are often
discussed in introductory psychology courses and as
part of teacher training. According to this theory,
learning occurs when students internalize subjective
meanings that fit into their social (and mathematical)
worlds. In order to pull learning forward, interactions
must fall within the learners’ ZPD, a theoretical space
that consists of tasks a novice could not carry out
without an expert’s guidance. The process of inten-
tionally supporting learners to go beyond what they
could do individually is called scaffolding. Small-
group cooperative work, then, activates students as
scaffolds. In other words, it allows students to en-
counter those with more sophisticated knowledge and
thus provides scaffolding toward an understanding of
the mathematical problem. It is the job of the students,
through the use of socially negotiated language, to fit
their understanding to invariants in the environment.
It is the job of the mathematics teacher to provide a
mathematical environment, in the form of a task to
be completed, and to mitigate the learners’ personal
meaning of that environment. Teaching, then, is the
process of diagnosing where in the solution process
the learners are and deciding what assistance will
allow them to move forward.

Problem Solving for the
Enactivist

Enactivism and social constructivism are not dis-
joint (Reid 1996); both learning theories treat social
interaction as the impetus for learning. However, a
key difference is that constructivism is concerned
with issues of fit, whereby learners use experience in
an environment to construct sense from it. Enactivism,
on the other hand, is “not so much about the invariants
within the environment, but about the coordination
of the knower and the environment” (Proulx and
Simmt 2013, 66). According to enactivist theory,
environment and cognition evolve alongside one
another. In the case of group problem solving in the
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mathematics class, the environment consists of both
the given task and the other learners working with
the task. The actions of participants negotiate their
way through a world that is not fixed or pregiven, but
rather one “that is continually shaped by the types of
actions in which we engage” (Varela, Thompson and
Rosch 1991). The nature of the mathematical task
that the learners are operating with and the mathe-
matical knowledge used to arrive at coherence are
constantly influencing each other. Problem solving
1s thus a process of “‘dynamic co-emergence of know-
ing agent-and-known world” (Davis 1995, 8). Acting
within a mathematical environment changes the na-
ture of the environment. This allows the characteris-
tics of the task to become problematic for the learners,
and, thus, the environment to trigger further action.

Problem solvers enter a mathematical environment
with patterns of action established through their past
interactions with environments. In other words, learn-
ers bring their history of viable, mathematical action
with them when they begin to solve a problem. Inter-
action with the new environment begins here. The
feedback provided by interacting with the structure
of the new environment shifts the nature of the envi-
ronment. Because the group now has more informa-
tion about the nature of the task, there is further im-
petus for action, which is reciprocated by a shifting
of the mathematical task. This is the image of evolu-
tionary coming to know, the process of bringing forth
a world of mathematical significance (Kieren and
Simmt 2009; Proulx and Simmt 2013) where problem
and solvers concurrently define one another. The task
is not fixed, it is defined by the solvers. The actions
of the solvers are not fixed; they are proscribed by
the task. Problem solving, then, involves a fundamen-
tal circularity between knowers and their environment
as they mutually specify one another (Davis 1996).
According to enactivist theory, learners are not ap-
propriating an individual, subjective meaning through
the mechanism of social interaction, as proponents
of social constructivism would contend; rather,
through their interaction with others and environment,
learners are bringing forth—enacting—mathematical
meaning together.

In order to solve problems, problem solvers have
the ability to pose “relevant issues that need to be
addressed at each moment. These issues are not pre-
given, but are enacted from a background of action™
(Varela, Thompson and Rosch 1991, 145). In other
words, the mathematical problem does not reside in
the task itself; the structure of the task only triggers
action. Through an enactivist lens, “prompts are
given, not problems. Problems become problems
when knowers engage with them, when they pose
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them as problems to solve” (Proulx and Simmt 2013,
70). That is, the prompt is not thought to contain the
mathematics to be internalized. Instead, mathematical
knowledge “emerge(s] from the knower’s interaction
with the prompt, through posing what is relevant in
the moment” (Proulx and Simmt 201 3, 69). Problem
solving, then, is the process of coordinating intelligent
action in an ever-changing process of problem posing.
In order to do this, leamers pose the problem that they
believe will focus their mathematical action toward
a coordination with the task’s requirements. These
relevant problems evolve as the group acts with the
task, and I have termed this shift in the relevant prob-
lem that focuses students’ action problem drift.
Viewed through the lens of enactivism, learning is
the process whereby problem solvers redefine their
action in relation to the shifts in the mathematical
environment; it is the process of bringing forth math-
ematical significance. Teaching, then, is the process
of providing information, orienting attention and
coordinating the possible in the mathematical envi-
ronment (Towers and Proulx 2013). It requires attun-
ing to the problem of relevance and coordinating
further encounters with the environment to continue
the problem-solving (posing) process.

A Classroom Portrait of
Problem Drift

To illustrate the evolutionary process of knowledge
and the notion of problem drift, an excerpt from a
group of Grade 11 students working with the Squares
Task (Appendix A) is analyzed. The Squares Task
was a two-part task that asked Piper, Ben and Carter
to first count the total number of squares that did not
contain a blacked-out portion on an eight-by-eight
grid and to determine the position of the blacked-out
portion that would maximize the number of such
possible squares. The excerpt begins as the group
addressed the second question of the task. The use of
an ellipsis represents a gap in transcription; all names
are pseudonyms.

Wouldn't the smartest thing to do be to put
it in a corner so you can get the largest
amount of area?

Ben:  Yeah, because then you'll get the. . . .
Carter: But we aren’t talking about the biggest
squares, we re talking about the most squares.

Piper:

Regardless, there’s going to be 55, one-by-
one squares.
Carter: Yeah. Some things can’t change.

Piper:
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Ben:  OK, well like, the most that we got was two-
by-two, right? Do you think if we moved the
square anywhere on the piece it would
change the amount of two-by-twos?

Carter: Two-by-twos wouldn’t change.

Piper: Three-by-threes wouldn’t change either.

Carter: Because it still takes the same amount of area.

Ben:  If we just blanked out a corner, what would
change?

Carter: Two-by-twos would be the same because
you're still having the same area.

Piper:  Yup.

Carter: Three-by-three is going to be the same, but
you do get four-by-fours and five-by-fives.

Piper: Exactly, so the corner is the best!

This interaction between Piper, Ben and Carter
maps an example of problem drift as their action
couples with the environment. Not included in the
episode, for sake of brevity, is the solution strategy
for question one of the squares task (see Appendix
A). The group used a combination of multiplication
and subtraction operations to count the number of
one-by-one squares and then decided to use a system
of dots (Figure 1) to count the two-by-twos. After all,
the prompt asked them how many, and the counting
strategy paired well.

As the group began to address question two of the
squares task, there was a converging of past histories.
Piper suggested that moving the square as far out of
the way as possible would be most effective, and
Carter was quick to remind her that the goal of the
task was not to create the most space, but to create
the most squares; this action revealed hesitancy to-
ward using the mathematical idea of area to solve the
problem. For Piper, the relevant problem might be
framed as, “What is the largest possible square we
could fit on the grid?”, but Carter’s action signalled
that the relevant problem for him was, “How can we
create the largest number of squares?” The structure
of the problem offered both of these possibilities, but
Piper and Carter’s mathematical pasts led them in
different initial directions. A social constructivist
might interpret Piper and Carter as having constructed
different understandings of the nature of the task, but
an enactivist sees the onset of two very different
worlds of mathematical significance—one interacting
with concepts of size and area, and the other with
systematized enumeration.

I, as the provider of the task, anticipated the rel-
evant problem to become, “Where do you place the
blacked-out portion to create the most squares?”,
but Piper’s comment that the number of one-by-one
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squares would not change regardless of the placement
caused the group to attend to a new problem that they
deemed important to the resolution of the task;
namely, “Which sizes of squares will be unaffected
by movement of the blacked-out portion?” In other
words, Piper’s comments produced problem drift.
This was immediately validated by the other group
members. Ben extended this line of action by wonder-
ing if Piper’s pattern would remain true for the two-
by-two squares. At the end of this episode, the action
of all three students centred on the problem that was
deemed as relevant to move toward a solution. The
group was not solving the problem I encountered
(“Where do you place the blacked-out portion to cre-
ate the most squares?”); rather, they were coordinat-
ing their actions to solve the new, drifted problem,
“What is the largest possible square we can create
that doesn’t include the blacked-out portion?” This
was something quite similar to the proposition made
by Piper at the onset of action, but quite different than
the counting of squares that they engaged in through-
out the middle portion of their time with the task—to
verify that the number of squares was unaffected by
the movement of the blacked-out section. For the
enactivist, the mathematics emerged through interac-
tion with the prompt, and the prompt was reciprocally
redefined by the group’s action on it. The process of
problem solving (posing) evolved within and along-
side the mathematical environment. Piper, Ben and

Figure 1. The group's final workspace. When
counting the two-by-two squares, each dot
represented the centre of a two-by-two square. Their
final solution was shaded in the bottom-left corner.
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Carter all became convinced of the conjecture that if
larger squares are possible, then more squares are
possible, and their solution can be seen shaded in the
bottom left corner of the grid in Figure 1.

The task afforded many possible actions; counting
squares presented itself as viable for question one.
Question two triggered the group toward a much dif-
ferent collective understanding, one where the notion
of area emerged as crucial to the task. At the end of
the episode, the group arrived at the understanding that
maximizing the number of possible squares is the same
as maximizing the area of the largest possible square.
Their action led them to play with the notions of area
and quantity in a geometric and arithmetic amalgam—a
much different world of mathematical significance than
was originally available to all three.

Implications for Teaching

How, then, should teachers act when viewing group
problem solving through the lens of enactivism? The
recognition of problem drift affects how teachers
choose, prepare and enact problem solving (posing)
activities in the classroom. First, the understanding that
mathematics is an actively evolving phenomenon
implies that classroom structure should provide spaces
for student action. Problem-solving tasks should be
designed to make students active producers (rather than
strictly consumers) of mathematics, and provide arenas
for worlds of significance to manifest. Teachers are
called to include tasks with multiple avenues for con-
ceptualization (like the arithmetic and geometric no-
tions emerging through the Squares Task) and allow
for student choice, conjecture, discussion, disagree-
ment, justification and refutation. These visible (and
audible) mathematical interchanges widen the sphere
of mathematical action.

Second, problem drift requires teachers to be in-
tentional in how they anticipate student responses to
problem-solving (posing) activities. The goal is not
to engineer a situation where students will act in
particular ways; rather, it is to anticipate which fea-
tures of the task will grab students’ attention and to
decide what intervention may trigger further student
action. However, no matter how much teachers an-
ticipate student interactions with the mathematical
environment, the evolutionary character of knowing
resists predictability. It is crucial that teachers, as they
become fully involved in the knowing action in their
classroom, remain flexible when student action
breaches the sphere of anticipated strategy. To allow
room for problem drift, lesson planning needs to give
way to lesson preparing.
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Third, while enacting problem-solving tasks,
teachers must attune themselves to problem drift—
what the group has posed as a suitable way for-
ward. Attuning to a group’s mathematical knowing
begins with the identification of problem drift in
the moments of teaching. This is more than the
recognition that groups may find several solution
pathways through a task or hold different construc-
tions of the problem—it is the recognition that
groups may actually be solving several different
problems altogether. It means that the orienting
question of teaching moves away from “How did
they solve the problem?” and toward “What prob-
lem are they posing?” Viewing group problem
solving (posing) through an enactivist lens allows
the teacher to see the mathematical as plural, as
emerging in the moment. We can no longer speak
of pathways within a single problem, but must
rather think of each problem as unique, emerging
through the group’s action with the task. The
teacher is then tasked with anticipating possibili-
ties, recognizing where the problem has drifted in
classroom activity and acting with the groups to
further the mathematical action.
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Appendix A

The Squares Task

1. How many squares (of any size) can be drawn on
the above cight-by-eight grid that do not include
any area from the blacked-out portion?

2. Where would you place the blacked-out portion to
maximize the number of possible squares?
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